
Keywords: Virtual Reality (VR), Ygdrasil, VR art, CAVE®, tele-immersion.

Abstract: Ygdrasil is a programming framework used by artists and computer scientists worldwide to create
networked multi-user virtual reality (VR) worlds and tele-immersive art projects. Recently added advanced
rendering modules and scripting language improvements extend the user’s creative control. This paper
describes the development of the VR art project Rutopia 2 using these new features.

1 INTRODUCTION

Multi-user, networked virtual reality technology
enables real-time collaborative science and
engineering. It also serves as a unique art medium
for the enrichment of the human spirit. Through the
use of high-speed networks, powerful graphics
workstations and tracking technology, multiple users
can coexist in an interactive alternate reality of sight
and sound. The development of collaborative VR
environments requires numerous technologies
including 3D modelling software, computer graphics
(CG) rendering techniques, high-speed networking,
sound spatialization and voice conferencing. Artists
working in this medium need development tools that
abstract the process to a level that allows them to
concentrate on their artistic expression instead of the
technology supporting it.

The Electronic Visualization Laboratory (EVL)
at the University of Illinois at Chicago (UIC)
developed the world’s first projection-based virtual
reality room, called the CAVE®, in 1992. In the
mid-nineties, EVL began to connect CAVEs
together over high-speed networks to create real-
time tele-collaborative virtual environments. These
initial development efforts relied heavily on the
expertise of computer scientists working in
collaboration with artists. To streamline the process
for non-expert users, a script-based framework for
shared world development called Ygdrasil was
developed in 1997 by EVL’s Dave Pape (Pape,
2002).
 The Rutopia 2 project explores the aesthetics of

virtual art and traditional Russian folk art of wood
sculpture and toys, and the decorative painting styles
of the Russian regional art centers of Palekh,
Khokhloma, and Dymkovo. These art centers are
famous for superb workmanship, the diverse
methods and techniques, distinctive features and use
of narrative imagery—mostly fairytale. Each distinct
style is identifiable by its ornamental pattern, colour
palette and the choice of materials. Rutopia 2
aesthetics is based on the generalized outlines,
decorative colour schemes, and flamboyant colours
inspired by these styles (Ovsiannikov, 1967).

Recent improvements to the Ygdrasil framework
now allow artists to create advanced virtual worlds
with minimal technical assistance. The framework
initially required specialized C++ knowledge to
develop special purpose modules for all but the most
basic projects. This paper describes recent scripting
language improvements and high-end rendering
technique modules that helped to create the enriched
dynamics and content of the VR art project Rutopia 2.

2 YGDRASIL FRAMEWORK

The Ygdrasil framework combines a transparent
shared scene graph with a script-based interface and
dynamically linked modules. Ygdrasil utilizes a
parallel scene graph along side the OpenGL
Performer scene graph and updates distributed nodes
using the QUANTA networking library developed at
EVL. Ygdrasil generated objects can encapsulate
complex behaviours performed on Performer scene

DEVELOPMENT OF RUTOPIA 2 VR ARTWORK USING NEW
YGDRASIL FEATURES

Daria Tsoupikova and Alex Hill
Electronic Visualization Laboratory, University of Illinois at Chicago, Chicago, IL, USA

225
Tsoupikova D. and Hill A. (2007).
DEVELOPMENT OF RUTOPIA 2 VR ARTWORK USING NEW YGDRASIL FEATURES.
In Proceedings of the Second International Conference on Computer Graphics Theory and Applications - AS/IE, pages 225-228
DOI: 10.5220/0002081502250228
Copyright c© SciTePress

graph objects such as switches, transforms, and
geometric objects. Ygdrasil scripts allow the
creation and initialization of scene objects through
the passing of messages. Additional messages can be
passed between objects at runtime to dynamically
change the content. Dynamic messages are initiated
using events generated by the individual nodes.

For example, a userTrigger node might generate
the event “enter” when a user enters a region of the
environment. Any number of messages can be
assigned to the “enter” event and subsequently sent
to any other node in the scene graph. Events can also
encapsulate additional information relevant to the
event itself. For example, in the following script segment

userTrigger trigger1(volume(sphere),

when(enter,
$user.teleport(100 0 0)))

the variable $user is replaced with the name of

the user node that entered the trigger. Ygdrasil nodes
related to external devices such as a Wanda(TM) or
keyboard input also generate events useful for
programming interactive behaviours.

2.1 Scripting Language Improvements

In the original implementation of Ygdrasil, the
information available when responding to events
was limited to a small set of data passed along with
the event. It soon became apparent that access to the
internal state variables of each node would allow
greater flexibility in programming interactions.
Unfortunately, the original Ygdrasil system
architecture did not facilitate accessing internal state
variables because there was a mismatch between the
stored internal state and the messages sent to the node.

The internal state of each Ygdrasil node was
comprised of any number of database keys, each
requiring a unique identifier within the QUANTA
networking middleware. The available key datatypes
include strings, floats, integers, booleans, and
several different sized float arrays. This internal
state was originally optimized to minimize the
amount of data required for updating networked
client nodes. For example, several messages
indicating the state of collision detection for a
geometry node (i.e. wall(true), floor(false)) were
OR-ed into a single short integer for transfer to
client nodes. Because messages are often aggregates
of several data types, this mismatch required logic to
parse the incoming message into internal database
variables and further logic to retranslate state
variables back into the message format for save-to-
file or runtime access within events. In order to

unify the relationship between message and state,
the message architecture was reorganized around a
system of aggregate data types. The data now
transferred to client nodes directly represents the
aggregate data type of the messages that adjust them.
By registering messages and their corresponding
data types with the system in this fashion, a simple
heuristic can easily recreate message arguments. In
the following script segment

userTrigger trigger1(volume(sphere),

when(enter,trans1.event(teleport,
user=$user)))

transform trans1(position(10 20 0),

when(teleport,
$user.teleport($position0

$position1
$position2)))

the variable user is passed to the transform node

and used in combination with the position state
variables to teleport the user to the current position
of the transform.

 In order to facilitate the calculation of
intermediate variables within the scripting language,
an arrayed float value node was created and sub-
classed for various operations. Using recursive
descent on binary and unary trees allows
calculations to be constructed within the existing
scene graph data structure. In the following script segment

add(when(changed,
 trans1.position(0 $value 0)))

{
multiply()

 {
value height1()

 value(set(2.0))
 }
 value(set(10.0))

}

a value of 10.0 is added to the product of height1
and 2.0. The final result generates a “changed” event
and the state variable can be used to generate a
message to another node. In addition to floating
point operations, a set of and, or, not and boolean
test nodes (i.e. lessThan, greaterThan) support a full
range of boolean logic operations. These math nodes
do not affect the resulting visualization and,
therefore, their location within the scene graph is
arbitrary.

GRAPP 2007 - International Conference on Computer Graphics Theory and Applications

226

2.2 Advanced Rendering Techniques

Even with access to state variables and intermediate
variable calculations, artists often find that they need
advanced rendering techniques to realize their
artistic vision. Techniques that fall into this category
are vertex morphing, real-time texture manipulation,
alternate rendering viewpoints, clipping planes and
stencil buffer operations. These techniques must be
componentized carefully in order that they remain
flexible and useful within the scripting environment.
We use two strategies to address these needs;
segmentation of functionality and separation of
rendering object from rendering source.

The majority of early dynamic nodes for
Ygdrasil encapsulated the time based dynamics
within the node itself. For instance, the spinner node
only accepted a message to adjust the period of a full
rotation but could not be paused or reversed. By
segmenting the time manipulation into a general-
purpose timer node and passing only an orientation
value to the spinner we can gain better control of the
dynamics. Nodes for path following, vertex
morphing, material properties and others can now
have their dynamics paused, reversed, and looped
easily with this new implementation. Moreover,
segmenting the manipulation of large data arrays
helps to retain the power of techniques without
sacrificing flexibility. Programs such as Photoshop
and Maya are useful for manipulating large arrays of
pixels and vertices respectively. Our vertex-
morphing node only takes a keyframe position and
morphs between the vertex positions defined within
two 3D model files. And, our texture application
node applies a secondary texture to an arbitrary
location on an existing texture for producing effects
such as burns, bullet holes, or x-ray vision through
surfaces. Users do not manage the values of
individual pixels, they merely apply a smaller image
onto another image at a specified X and Y location.
In both cases, the manipulation of individual pixels
remains in the realm of more special purpose
programs while the expressive power of the
rendering technique can easily be manipulated
dynamically within Ygdrasil.

Many rendering techniques rely both on an
object located within the scene and operation on
some subset of the geometry in the scene. The
clipping plane node, for instance, must both position
the clipping plane in the scene and indicate the
subset of the scene graph that is subject to clipping.
Our viewTexture node renders a subset of the scene
from an alternate viewpoint and applies it to a
texture object within the scene. And, our
stencilBuffer node must specify both a graphical

object used to create the stencil mask and a subset of
the scene graph to be rendered subject to the mask.
In order to accommodate these dual needs we locate
the rendering node at one location within the scene
and give it the name of a node indicating the subset
of the scene graph it should apply to. In the
following script segment

stencilBuffer(node(stencilGroup)) {
 object tree(file(tree.pfb))
}
group stencilGroup(){
 object moon(file(moon.pfb))
}
object terrain(file(terrain.pfb))

the tree object defines the geometry shape of the
stencil mask, the moon object is rendered into the
resulting mask, and the terrain is rendered normally.
As a result, the user can see the moon only within an
area defined by the rendering of the tree.

3 RUTOPIA 2

Rutopia 2 is a virtual reality art project describing a
magic garden with interactive sculptural trees that
create portals to distant worlds. It was conceived as
a virtual environment linked to a matrix of several
other unique virtual environments that together
create a shared network community. The goal of the
interaction scheme is to avoid the preliminary
instructions usually required to familiarize the user
with the virtual environment and its rules of
exploration. User interaction is based on the
participant proximity to interactive locations while
the wand interface is used only to control the
direction of movement. The project implementation
utilized Ygdrasil, OpenGL Performer 3.2, CAVElib
and the Bergen spatialized sound server on an Intel
Linux PC running SUSE 10.0 and connected to an
Ascension Flock of Birds tracker.

Figure 1: The Island world with the trees.

DEVELOPMENT OF RUTOPIA 2 VR ARTWORK USING NEW YGDRASIL FEATURES

227

A series of 3D modular sculptural trees, each
consisting of dozens of rectangular screens, appear
in the main environment and serve as portals to the
other linked environments (Fig. 1). Users can
“grow” three trees in the monochrome island world
by moving within the proximity of each tree. Each
tree appears as a rapid sequence of flipping and
rotating rectangular screens expanding out and
upward. Once all the trees are fully grown, their
screens turn into windows and the island changes
from monochrome to colour. Each window shows
the view of the remote environment connected to it.
Just as we can look through a window and see the
outside, the user can look through each of the
screens to see a house world consisting of imagery
found in traditional Russian fairytales and folk art.
By moving his or her head completely through one of
the virtual screens, the user enters the connected
environment (Fig. 2).

Figure 2: An avatar peeks into the details of the remote world.

3.1 Utilizing Rendering Nodes

The Rutopia 2 project was realized using the latest
improvements to Ygdrasil including state variable
access and logical operations. The windows of the
trees were made using the new stencilBuffer node.
This node acts as a mask covering the areas outside
the windows so that only the selected window area
allows a view to the other world. The other world
consists of two objects, the rendered object and the
stencil object. The rendered object is the geometry
of the remote place the user can see through the
window. The stencil object forms the viewing
window and is utilized by the stencil buffer mask so
that the user can see only a portion of the rendered
object through the region defined by the stencil
object. Each third window-hole on a tree is
connected to the same view of the house world in an

alternating fashion. Participants can recognize and
visually connect lower and upper parts of the remote
house world projected on the different level
windows to appreciate an even broader view of the
remote environment.

4 CONCLUSION

The development of VR environments is
interdisciplinary in nature and requires both artistic
and scientific skills. For the last several years, artists
and scientists have used the Ygdrasil programming
framework to create networked multi-user virtual
worlds and art projects. Recent scripting language
improvements and advanced rendering techniques
within the Ygdrasil framework empower the creative
freedom of artists in order that they may realize their
creative visions. These recent improvements to
Ygdrasil greatly contributed to the development of
dynamic interactions and advanced rendering effects
in the Rutopia 2 project.

ACKNOWLEDGEMENTS

We would like to acknowledge the support of the
University of Illinois at Chicago’s Electronic
Visualization Laboratory (EVL), Geophysical
Center Russian Academy of Sciences (GC RAS),
Global Ring Network for Advanced Applications
Development (GLORIAD) and San Diego State
University. This material is based in part upon EVL
work supported by the National Science Foundation
(NSF), notably equipment awards CNS-0224306
and CNS-0420477 and international networking
infrastructure awards OCI-0229642 and OCI-
0441094. The CAVE, CAVElib and Wanda are
registered trademarks of the Board of Trustees of the
University of Illinois.
http://www.evl.uic.edu/yg/
http://www.evl.uic.edu/animagina/rutopia/rutopia2/

REFERENCES

Pape D., Anstey J., Dolinsky M., Dambik E., 2002.
Ygdrasil--a framework for compositing shared virtual
worlds. In Future Generation Computer Systems,
Special Issue IGRID 2002, pp. 1041-1049.

Chinese puzzle consisting of geometric shapes to be
reassembled into different figures.

Ovsiannikov I., 1967. Russian folk arts and crafts.
Moscow, Progress Publishers.

GRAPP 2007 - International Conference on Computer Graphics Theory and Applications

228

