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Abstract: The paper presents an approach to formal specification, verification and prototyping of networked 
embedded software system applications ranging from large information systems down to small components 
embedded e.g. in mobile devices. Main attention focuses both on architectural and behavioral specifications 
of either reactive or real-time activities utilizing either structured or object-oriented approach depending on 
application requirements. The design approach fully respecting such requirements can eliminate not only 
behavioral and structural faults but also security flaws caused by design errors. Reflecting current trends in 
engineering software-intensive systems, this contribution discusses in more detail executable specifications 
and rapid prototyping for structured design, and structural specifications and verifications for object-
oriented design. The paper presents Asynchronous Specification Language and Class Specification 
Language developed for that purpose. 

1 INTRODUCTION 

Current computer-based system applications are 
software, hardware, and communication intensive, 
and their functional, performance, reliability, and 
security requirements mandate tightly integrated 
information processing and physical platform 
behavior. Development of such complex systems 
necessarily stems from formal specifications and 
their verification and prototyping (Melhart and 
White, 2000). This paper discusses an approach to 
executable specifications and rapid prototyping for 
structured design, and to structural specifications 
and verifications for object-oriented design. The 
work presented in this paper focuses on a class of 
networked systems embedded in industrial 
applications and reflects current trends in 
engineering software-intensive systems as stated in 
(Broy, 2006) following the ‘Verified Software 
Grand Challenge’ initiated by Tony Hoare, see 
(Woodcock, 2006) and (Jackson, 2006).  
The developed methods and tools cover front-end 
phases of design cycles, namely formal specification 
and rapid prototyping both of architecture and 

behavior of applications under design. The approach 
can be explained as an employment of complex 
reactive systems’ universal development scheme, 
designed by Harel (2001), for the domain of 
industrial distributed computer-based systems. That 
scheme leads from a requirements capture method to 
full behavioral descriptions of system parts, and 
from there to final implementation. 

2 STATE OF THE ART 

Requirements on current embedded software system 
applications include both functional and non-
functional constraints on real-time, safety and 
security properties. They should be formally 
specified and verified or, at least, properly explored 
before they are designed in detail and implemented 
(Lamport, 2002). Moreover, the specification 
approach should either conform or suitably 
complement anticipated design methods, namely 
structured or object-oriented techniques (Wieringa, 
1998). While some applications demand to 
distinguish at the beginning of design structural and 
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behavioral specifications, later on, they request to 
integrate those two approaches to enable a complex 
viewpoint to study various application 
interdependencies. This paper discusses an approach 
to rapid prototyping for behavioral specifications, 
and to structural specifications and verifications for 
object-oriented design. 

The design of well thought-out information 
system applications should consider namely 
functionality and dependability measures, see e.g. 
(Melhart and White, 2000) and (Hessami, 2004). 
Functionality means services delivery in the form 
and time fitting requirement specifications, where 
the service specification is an agreed description of 
the expected service. Functionality properties should 
be realized efficiently and cost-effectively, so 
reachable performance and simplicity of 
implementation belongs to the checked properties. 
Dependability is that property of a system that 
allows reliance to be justifiably placed on the service 
it delivers. Dependability measures consist of 
reliability, availability, security, safety and 
survivability, from which this project focuses on 
safety, which is the ability to deliver service under 
given conditions with no catastrophic affects, and 
security, which is the ability to deliver service under 
given conditions for a given time without 
unauthorized disclosure or alteration of sensitive 
information. Safety attributes add requirements to 
detect and avoid catastrophic failures. Security 
attributes add requirements to detect and avoid 
intentional faults.  

Both safety and security deal directly with 
system’s behavior that stems from a system’s 
architecture. Therefore, structural and object 
oriented specifications of the system under design 
can contribute to the quality of its resultant 
implementation. 

Specification is a written or graphical description 
(i) of what system is supposed to do, which is so 
called behavioral specification, or (ii) of system 
architecture, so called structural specification 
(Lamport, 2002). A formal specification asserts that 
a description has precise and unambiguous 
semantics. The language of specification should fit 
purposes of specification and be appropriate for a 
description of the system. The presented design 
approach employs both behavioral and structural 
specification styles through appropriate specification 
languages aiming at either structured or object-
oriented developments including their rapid 
prototyping in frame of a design. 

The approach is explained with the help of a case 
study derived from a real-world application 
reflecting current trends in application design. 

3 FORMAL SPECIFICATIONS 

This section discusses tools that enable to utilize 
behavioral and structural specifications of a class of 
computer-based systems that can be characterized as 
networked embedded systems in frame of industrial 
applications. The developed methods and tools, 
which can complement well-known and broadly 
available means, cover front-end phases of the 
related design cycles. 

3.1 Formal Specification Tools  

Formal specification concepts employed respect 
both structured and object-oriented design approach 
depending on the target implementation support or 
on the role of a tool in the development process. For 
structured behavioral specifications of reactive 
systems, process algebra CSP, temporal logic LTL 
and related transition systems in frame of the model 
checker SPIN (Holzmann, 1997) and the prover PVS 
(Owre et al., 1992) have been employed. 
Additionally for real-time systems, model checker 
UPPAAL (Kim et al., 1997) and related timed 
automata have been used. In addition to the above 
mentioned freely available and well-known means, 
the following tools have been developed in frame of 
the presented research: (i) Asynchronous 
Specification Language, ASL, with rapid 
prototyping technique for structured design (Sveda 
and Vrba, 2001), (Sveda and Vrba, 2003); and (ii) 
Class Specification Language, CSL, for object-
oriented design (Rysavy and Sveda, 2003), (Rysavy, 
2005). The next subsections introduce main concepts 
of those tools. 

3.2 Behavioral Specifications  

The Asynchronous Specification Language (ASL) 
employs distributed sequential processes with 
message passing. The real-time operational 
semantics of the language stems from the event-
count model of local time, which represents a 
concept of physical timing stemming from some 
periodic physical oscillation whose frequency fits 
measurements of the duration of local process 
actions. Timing semantics can be derived from 
logical time, which is a partial ordering of events in 
the system, and from a physical generator of 
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periodic events, which implements a real-time clock. 
An event-count, E, counts the number of a specific 
type of events that have occurred during execution. 
Each event occurrence invokes the implicit 
operation ADVANCE(E): E := E + 1. The explicitly 
callable operation AWAIT(E, s) suspends the calling 
process until the value of E is at least s. The call 
AWAIT(E, s) can reset the current value of E, 
enabling relative counting. An event-count monitors 
either a prescribed type of asynchronous external 
events or periodic internal events that an internal 
timer circuit implements as local-time clock ticks. 
The following primitives relate to process 
specification, timing, communication, and control. 
 
process_name(is: list_of_s_inputs; os: 
list_of_s_outputs; 
 ic: list_of_m_inputs; oc:list_of_m_outputs):  
... endprocess; 
wait(_, timeout); wait(event, _); wait(event, timeout, 
test); 
send(message, destination); 
loop ... [... when <cond> action ... exit;]* ... endloop; 
 
Each of asynchronous processes can be equipped by 
its individually timed local clock, can receive 
messages through input buffer, and can send 
messages to other, directly or indirectly addressable 
processes. Process header contains in parentheses 
lists labeled by is, os, ic, and oc that act as the 
interface with the process' environment. The 
language distinguishes between signal inputs or 
outputs, which denote communication events 
signaling their occurrence, and message inputs or 
outputs as typed asynchronous channels between 
processes. Those signals and messages provide inter-
process synchronization and communication, whose 
operations are driven by the statements wait(_, 
timeout), wait(event, _), wait(event, timeout, test), and 
send(message, destination).  

The primitive wait(_, timeout) suspends a process 
for the interval defined by the value timeout. 
Operational semantics can be obtained through the 
event-count abstraction introduced above: in this 
case, an event is every tick of the local clock, so the 
related operation is AWAIT(local_ticks, 
timeout_value). For the primitive wait(event, _), 
which suspends a process until the specified event 
(external signal or message) appears, the model 
operation is AWAIT(event_type, 1). The semantics 
of the combined statement wait(event, timeout, test) 
requires two event-counts: the first anticipates the 
specified event and the second, with a lower priority, 
monitors the local clock. The reason of process 

activation can be checked through the value of the 
logical variable test: when the value is true, the event 
occurred within the interval timeout.  

The primitive send(message, destination) 
implements asynchronous communication with non-
blocking semantics. To respect different local 
clocks, a special clocking that is common for the 
source and the destination controls the information 
transfer. However, the nodes communicate 
asynchronously by message passing through an 
input buffer at the destination. The input of a 
message induces the event for the related operation 
AWAIT(message,1). If any synchronization is 
required, it must be described explicitly using wait 
statements. 
The control structure primitives loop ... endloop 
delimit an indefinite cycle, which is exited upon a 
true result of testing the condition following the 
primitive when. Consequently, the statements, which 
occur between the action and exit primitives and 
which follow the endloop primitive, are executed. 
This structured statement enables to extend the 
language with additional control structures by 
simple macro-like text replacements such as 
 
if <cond> then <s1> else <s2> fi; 
 ~ loop when <cond> action <s1> exit;  
    <s2> when true exit; endloop; 
timeloop(timeinterval) ... endloop;   
 ~ loop ... wait(_, interval); endloop; 
 

Actually, the control structure timeloop(timeinterval) 
... endloop specifies an isochronous loop, which is 
periodically initiated whenever the timeinterval 
expires and which can be exited like the indefinite 
cycle. The operation AWAIT(local_ticks, 
timeinterval_value) defines the exact semantics of 
timing these initiations.  

The associated rapid prototyping, which makes 
ASL specifications executable, arises from attribute 
grammar and Prolog deployment. Any Prolog 
interpreter can drive expansion of an ASL 
specification into the related executable code. This 
expansion is based on an attribute grammar 
specifying both syntax and static semantics by a 
definite clause grammar and Prolog rules. It 
provides a simple language translator prototype, 
which tackles the ASL as the input language, and a 
target executable language as the output language. 

The resulted prototyping technique uses 
interconnected node prototype boards with 
microprocessors equipped with a simple real-time 
operating system kernel. While the timing and 
communication primitives are mapped onto relevant 
real-time executive services and communication 
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services of the operating system kernel, the rest of 
ASL specification is prototyped by the executable 
code generated with the help of the Prolog translator 
prototype introduced above. 
3.3 Structural Specifications 
The Class Specification Language, CSL, relates to 
language constructs for description of definitions 
and assumptions on specification in the form of 
logical formulas.  The specifications and 
assumptions provide for the proof system that 
verifies whether a specification is valid under the 
given assumptions. The specification means 
consists, from the structural point of view, of the 
language of predicate logic and the language of 
object calculus. Their synthesis provides a base 
language with expressive power of higher-order 
logics. In terms of logic, this language contains 
standard predicate logical symbols, i.e. quantifiers 
and propositional connectives, and constants as 
objects defined by terms of object calculus. Those 
terms are interpretable in the object calculus; 
concurrently, the language allows quantification 
over the set of constants. The Gentzen deduction 
system may be used as a formal proof system for 
this language. 

A specification consists of a set of classes that 
forms a model of the specified system. The 
reasoning about specification involves the use of the 
above-mentioned sequent proof system. Because the 
specification language in this case is object-based, 
the classes are represented as special objects. A class 
is a basic structure of specifications that covers 
implementations of objects and logical judgments on 
properties of objects.  

The logic represents a higher-order theory based 
on typed object calculus. It consists of a small set of 
primitive syntactic forms. An object is defined as a 
collection of attributes. The following two 
operations only can operate on objects: (i) attribute 
selection a.l that results in the term obtained as an 
evaluation of the attribute body, and (ii) attribute 
update that has the form a.l ← b. The letters a, b 
represent terms of the language and l is a label. 
Computational semantics of the calculus for both 
operations arise from the rules for reduction relation. 
A select operation provides reduction to a term that 
arises from the body of a selected attribute in which 
all occurrences of the bind variable are replaced by 
the object supplying the selected attribute. The result 
of update operation defined by reduction relation 
provides a new object identical with the target object 
up to the update attribute, which body is that of the 
updating term.  

The logic includes a type theory constraining the 

set of well-formed terms. Typing rules of the 
calculus permit subtyping while providing for 
special treatment with bool type. Although the 
language does not contain functions, they can be 
easily inferred as simple objects. A function 
abstraction λ(x : A).a of type A → B denotes the 
structure [x = ζ(s : T)s.x, val = ζ(s : T) a {x ←s}] provided 
that T ≡ [x : A, val : B]. Then a function application MN 
is directly given as (M:x ← N).val. Instances of bool 
type represent, from the computational viewpoint, 
conditional expressions and serve as constants of 
propositional types considering theirs logical 
meanings. The propositional connectives are 
introduced as a set of constants with usual meanings. 
Moreover, quantifiers and predicates are introduced 
inside the object language. To model classes, 
predicates allow writing constraints on types that 
delimit sets of objects satisfying intended conditions. 
Subtype creation uses operator + for denoting that a 
new type is obtained by adding new attributes to the 
old type.  

The logic calculus of objects provides a suitable 
formal environment for specifying and logical 
reasoning with properties of objects. However, 
writing specifications directly in this calculus is 
tedious. More practical notation, the Class 
Specification Language (CSL), enables to write 
compact specifications, but preserves possibility to 
transform any specification straightforwardly to the 
object calculus whenever required for reasoning. 

A class is defined by specifying all of its visible 
properties. The term property means in this case a 
field that represents the state of an object, or an 
observer that serves for the read-only access to an 
object, or a modifier whose execution can change 
the state of an object. A field declaration includes 
the field name and class. Specification of a field may 
be refined using invariant statement. 
 
Field fieldName : fieldClass 
Inv fieldInv = formula 
 
Modifier and observer methods include definitions consisting of 
method’s name, arguments, and a pair of constraints. Declarations 
differ for modifiers that disable a user to specify a result of the 
method. Due to modifiers, declarations always evaluate to the 
object reflecting performed changes. Constraints may involve 
variables referencing actual objects and variables denoting 
specified arguments of the method. 

observer methodName(, arg : argClass, …) : retClass 
pre methodPre = formulaPre 
post methodPost = formulaPost 
 

The language CSL enables to define a new class 
by application of simple inheritance. An inherited 
class automatically receives all fields and methods 
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of its parent class. To handle inheritance properly, a 
schema for definition of invariants and conditions of 
inherited fields and methods is needed. Considering 
that class B inherits class A, then the specification of 
those classes has to preserve inheritance constraints 
assuming each inherited field and method in the 
schema as follows:  
 
fieldInvB ⇒ fieldInvA 
methodPreA ⇒  

methodPreB ∧ methodPostB ⇒ methodPostA 
 
The definition of inheritance constraints in this 
manner enables method overriding. The 
precondition of the overridden method relaxes 
constraints of method execution, contrary to post-
conditions that involve additional constraints. 

The logic calculus defines directly certain 
common classes as they depend on particular aspects 
of the calculus. The class of Bool is defined simply as 
a predicate on propositional type. The logic 
evaluates all possible instances of this class to T and 
F objects declared previously as abbreviations. The 
class of Natural numbers exploits recursive object 
type. It consists of three attributes; two of them 
serve as links to predecessor and successor objects. 
The iszero attribute marks the numeral zero. Usual 
notations 0, 1, 2 ... explicitly denote related 
numerals.  

4 CASE STUDY 

This section demonstrates the above-introduced 
concepts and tools applied to development of a gas-
pipes pressure analyzer consisting of pressure 
sensors interconnected by Internet (Sveda and Vrba, 
2006). The application is based on the IEEE 1451 
family of standards, which is introduced in 
subsection 4.1. Subsection 4.2 explains a subset of 
the application functions selected for formal 
specifications in the rest of this section. To provide 
examples of specification styles using developed 
tools, the next two subsections present selected 
facets of the pressure analyzer specification. While 
subsection 4.3 demonstrates structured specifications 
using ASL, subsection 4.4 exemplifies object-
oriented specifications using CSL. 

4.1 IEEE 1451.1 Architecture 

The IEEE 1451 consists of the family of 
standards for a networked smart transducer interface 
that include namely (i) a smart transducer software 

architecture, 1451.1 (IEEE 1451.1 Standard for a 
Smart Transducer Interface for Sensors and 
Actuators -- Network Capable Application Processor  
Information Model, IEEE, New York, April 2000), 
targeting software-based, network independent, 
transducer applications, and (ii) a standard digital 
interface and communication protocol, 1451.2, for 
accessing the transducer or a group of transducers 
via a microprocessor modeled by the 1451.1. The 
next three standards extend the original hard-wired 
parallel interface 1451.2 to serial multidrop 1451.3, 
mixed-mode (i.e. both digital and analog) 1451.4, 
and wireless 1451.5 interfaces.  

The 1451.1 software architecture provides three 
models of the transducer device environment: (i) an 
object model of a network capable application 
processor (NCAP), which is the object-oriented 
embodiment of a smart networked device; (ii) a data 
model, which specifies information encoding rules 
for transmitting information across both local and 
remote object interfaces; and (iii) network 
communication model, which supports client/server 
and publishers/subscribers paradigms for 
communicating information among NCAPs. The 
standard defines a network and transducer hardware 
neutral environment in which a concrete 
sensor/actuator application can be developed.  

The object model definition encompasses a set of 
object classes, attributes, methods, and behaviors 
that specify a transducer and a network environment 
to which it may connect. This model uses block and 
base classes offering patterns for one Physical 
Block, one or more Transducer Blocks, Function 
Blocks, and Network Blocks. Each block class may 
include specific base classes from the model. The 
base classes include Parameters, Actions, Events, 
and Files, and provide component classes.  

All classes in the model have an abstract or root 
class from which they are derived. This abstract 
class includes several attributes and methods that are 
common to all classes in the model and provide a 
definition facility for instantiation and deletion of 
concrete classes including attributes. Block classes 
form the major blocks of functionality that can be 
plugged into an abstract card-cage to create various 
types of devices. One Physical Block is mandatory 
as it defines the card-cage and abstracts the 
hardware and software resources that are used by the 
device. All other block and base classes can be 
referenced from the Physical Block.  

The Transducer Block abstracts all the 
capabilities of each transducer that is physically 
connected to the NCAP I/O system. During the 
device configuration phase, the description is read 
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from hardware device what kind of sensors and 
actuators are connected to the system. The 
Transducer Block includes an I/O device driver style 
interface for communication with the hardware. The 
I/O interface includes methods for reading and 
writing to the transducer from the application-based 
Function Block using a standardized interface. The 
I/O device driver provides both plug-and-play 
capability and hot-swap feature for transducers.  

The Function Block provides a skeletal area in 
which to place application-specific code. The 
interface does not specify any restrictions on how an 
application is developed. In addition to the variable 
State, which all block classes maintain, the Function 
Block contains several lists of parameters that are 
typically used to access network-visible data or to 
make internal data available remotely. The Network 
Block abstracts all access to a network employing 
network-neutral, object-based programming 
interface supporting both client-server and 
publisher-subscriber paradigms for configuration 
and data distribution. 

4.2 Application 

The case study, based on a real-world application, 
which was introduced in more detail but from 
distinct perspectives by (Sveda and Vrba, 2003) and 
(Sveda and Vrba, 2006), is used in this paper to 
demonstrate basic features of deployment of the 
specification languages ASL and CSL discussed in 
subsections 3.2 and 3.3.  

The application architecture comprises several 
groups of wireless pressure and temperature sensors 
with safety valve controllers as base stations 
connected to wired intranets that dedicated clients 
can access effectively through Internet. The web 
server supports each sensor group by an active web 
page with Java applets that, after downloading, 
provide clients with transparent and efficient access 
to pressure and temperature measurement services 
through controllers. Controllers provide clients not 
only with secure access to measurement services 
over systems of gas pipes, but also communicate to 
each other and cooperate so that the system can 
resolve safety and security-critical situations by 
shutting off some of the valves. 

 Each wireless sensor group is supported by its 
controller providing Internet-based clients with 
secure and efficient access to application-related 
services over the associated part of gas pipes. In this 
case, clients communicate to controllers using a 
messaging protocol based on client-server and 
subscriber-publisher patterns employing 1451.1 

Network Block functions. A typical configuration 
includes a set of sensors generating pressure and 
temperature values for the related controller that 
computes profiles and checks limits for users of 
those or derived values. When a limit is reached, the 
safety procedure closes valves in charge depending 
on safety service specifications. 

In the transducer’s 1451.1 object model, basic 
Network Block functions initialize and cover 
communication between a client and the transducer. 
The client-server communication style, which in this 
application covers configurations of transducers, is 
provided by two basic Network Block functions: 
execute and perform. The standard defines a unique 
ID for every function and data item of each class. If 
the client requests to call any of the functions on 
server side, it uses command execute with the 
following parameters: ID of requested function, 
enumerated arguments, and requested variables. On 
server side, this request is decoded and used by the 
function perform. That function evaluates the 
requested function with the given arguments and, in 
addition, it returns the resulting values to the client. 
Those data are delivered by requested variables in 
execute arguments. 

4.3 Behavioral Specifications by ASL 

The following example demonstrates the ASL 
specification of a client accessing the transducer. 
This specification includes in form of comments the 
most important references to sections of the IEEE 
1451.1 standard. 
 
process CLIENT(oc: data_out, request; ic: response): 
const number_of_channels = 10; 
const interval_of_reading = 100; 
const ServerDispatchAddress = NCAP; 
const port_timeout = 200; 
type buffer = array[1..number_of_channels] of Float32; 
{IEEE 1451.1-6.1.1} 

var data_out:buffer;    
var i: integer; 
var request, response: ArgumentArray;  

{IEEE 1451.1-6.2.14} 
var server_inputsarguments: ArgumentArray; 
var server_outputsarguments: ArgumentArray;  
var success:boolean; 
var execute_mode: UInteger8;    

{IEEE 1451.1-6.1.1} 
var sever_operation_id: UInteger16;   
var data:Float32; 
i = 1;  

timeloop(interval_of_reading)   
{IEEE 1451.1-14.2.1} 
Encode_inputsarguments(server_inputsarguments); 

execute_mode = EM_RETURN_VALUE; 
server_operation_id = READ_VALUE;  

{IEEE 1451.1-8.2.3.5 - Ethernet} 
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MarshalArguments(server_operation_id,  
server_inputsarguments, request ); 

send(request, ServerDispatchAddress); 
wait(response,port_timeout,success); 
if success and execute_mode = EM_RETURN_VALUE  

{IEEE 1451.1-8.2.3.5 - Ethernet} 
 then DemarshalArguments(response,  

server_output_arguments);  
Decode_outputsarguments(data,server_outputsarguments); 

 else data = 0; fi; 
data_out[i] = data;  
i = i + 1; when i > number_of_channels action exit; 

endloop; 
endprocess; 
 
The above exemplified behavioral specification was 
prototyped using the technique mentioned at the end 
of subsection 3.2 that resulted in executable model 
heavily utilized for experiments during not only 
early design phases, but also later on when 
investigating variants for reuse and re-design of the 
application. 

4.4 Structural Specifications by CSL 

The following example demonstrates the CSL 
specification of the NCAP Block class in frame of 
the class hierarchy of Block objects. The Block 
abstract class provides the root for the class 
hierarchy of all Block objects. The BlockMajorState 
type is enumeration of possible block states. The 
state blUninitalize is reserved for local activities 
related to creating that Block object and performing 
any related local preparations. The object in the state 
blInactive is able to configure its network properties, 
initialize itself, and diagnose and maintain the 
BlockMajorState. The working state blActive is reached 
after all initialization and start-up procedures and 
represents the state in which the object remains for 
the time of its normal activity. 
 
BlockMajorState :: {blActive, blInactive, blUninitialized} 
IEEE1451Block :: [GetBlockMajorState : BlockMajorState, 
GoActive : IEEE1451Block, GoInactive : IEEE1451Block, 
Reset : IEEE1451Block, Initialize : IEEE1451Block, 
Owns : IEEE1451Entity → bool] + IEEE1451Entity 
 
A behavior of the object may implicitly change the 
state of this object usually in response to the 
environment stimulus, and a set of defined 
operations drives the object to change its state 
explicitly. The meanings of those operations are 
defined by sets of constraints. The behavior of the 
object influenced by those operations is specified in 
form of IEEE1451BlockBehavior invariant. 
 
INV IEEE1451BlockBehavior(x : IEEE1451Block) ≡ 
x.GetBlockMajorState ↔ blInactive 

⊃ x.GoActive.GetBlockMajorState ↔ blActive 
∧ x.GetBlockMajorState ↔ blActive 
⊃ x.GoInactive.GetBlockMajorState ↔ blInactive 
∧ x.Reset.GetBlockMajorState ↔ blUninitialized 
∧ ¬x.GetBlockMajorState ↔ blActive 
⊃ x.Initialize.GetBlockMajorState ↔ blInactive 
 
The NCAP Block class provides resources and 
operations within an NCAP process to support 
Block, Service, and Component management. 
 
NCAPBlockState :: {nblInitialized, blUninitialized, nbErro} 
IEEE14 51Block :: [GetNCAPBlockState : NCAPBlockState, 
RegisterObject : IEEE1451Block,  
DeregisterObject: IEEE1451Block, 
registers : IEEE1451Entity → bool] + IEEE1451Block 
The state space derived from Block object is divided 
into more specialized substates that reflect purpose 
of NCAP Block objects. The state of object, which is 
stored in GetNCAPBlockState item, may obtain values 
of NCAPBlockState type. 

For the exemplified static structural specification 
some of its properties were proved using the PVS 
system, see a next paper currently under preparation. 

5 CONCLUSIONS 

This paper discusses in more detail executable 
specifications and rapid prototyping for structured 
design, and structural specifications and 
verifications for object-oriented design. Main 
attention focuses both on architectural and 
behavioral specifications of either reactive or real-
time activities utilizing either structured or object-
oriented approach depending on application 
requirements. The paper presents Asynchronous 
Specification Language and Class Specification 
Language developed for that purpose. A case study 
respecting real world constraints demonstrates 
utilization of the developed approach. 

The presented paper introduces some relevant 
facets of a currently launched project – for 
complementary information see (Sveda and Vrba, 
2006) and (Sveda, et al., 2005) -- that aims at front-
end parts of networked, distributed system 
application designs. The project targets creation of a 
formal specification, verification and prototyping 
framework for network applications ranging from 
large information systems down to small 
components embedded e.g. in mobile devices. The 
design approach, fully respecting dependability 
requirements of real-world applications, can 
eliminate not only behavioral and structural faults 
but also security flaws caused by design errors. 
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Reflecting current trends in engineering software-
intensive systems, main attention focuses both on 
architectural and behavioral formal specifications of 
either reactive or real-time system actions, utilizing 
either structured or object-oriented approach 
depending on application requirements. Formal 
specification tools considered include temporal 
logics, real-time logics, object calculi, process 
algebras and transition systems. The implementation 
and integration phases of the project provide pilot 
versions of techniques and tools for conceptual 
design, for behavioral and structural specifications, 
and for rapid prototyping. Moreover, formal 
verification support will include dedicated tools both 
for model checking and for proving 
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