
A DOCUMENT RULES DESCRIPTION LANGUAGE BASED ON
FEATURE LOGIC FOR XML DOCUMENT EXCHANGE

Makoto Imamura1, Yasuhiro Takayama1, Yasuhiro Okada1 and Norihisa Komoda2
1 Mitsubishi Electric Corporation, 2Osaka University

Keywords: Document Exchange, XML Validation, XML Transformation, Schema Description, Logic Programming.

Abstract: We propose a minimum Document Rules Description Language DRDL for XML validation and translation
in web-based document exchange. DRDL has small syntax and simple semantics so that it can ease to reuse
document rules. Furthermore, DRDL can describe mapping constraints from XML tree structure to table
structure for web input-form generation. The technical feature of DRDL is to extend and reinterpret a
Feature Logic, which has been used for representing linguistic knowledge, in order to allow existential and
universal quantifiers over list-value to cope with XML. DRDL has already been applied to real systems
such as elevator design support, Web-EDI, government-to-business and facility management.

1 INTRODUCTION

As XML formats have been widely adopted for a
standard, interoperable document exchange format,
XML validation and translation become common
and critical component for document exchange both
within and across enterprises. In developing web
based XML document exchange systems, it is a
problem how to efficiently make data validation
function and table style form layout.

XML standard technologies, such as XML
schema, XSLT and XQuery, have been developed to
increase expressive power for document validation,
transformation and query. However these standards
are too huge to easily master and are too heavy to be
used in some applications.

In this paper, we propose a simple language
DRDL which has the following features to describe
semantic constraints in document rules.
1. DRDL has small syntax and simple semantics so

that it can ease to reuse document rules, such as
input-form check for elevator specification or
Web-EDI, by translating rules to other languages
such as JavaScript.

2. DRDL can describe table mapping constraints
from XML tree structure to table structure for
web input-form.

The remainder of this paper is organized as
follows: Section 2 presents the requirements for
DRDL. Section 3 defines the syntax and semantics

of DRDL. Section 4 presents an DRDL-based
framework, which consists of an editor, rule translators
and a processor. Section 5 discusses related works,
while section 6 presents conclusions and open
issues.

2 REQUIREMENTS

We present here the requirements of expressive
power and the development productivity for DRDL.

2.1 Expressive Power

In the industrial and business document exchange
systems, document validation and transformation are
indispensable functions for smoothly processing the
exchanged document data to prevent errors. DRDL
needs to have sufficient expressive power to
describe the following functions to treat cross-field,
cross-field-structure cross-field-type and table
mapping constraints, which the first version of XML
Schema can not handle (Daum, 2003).

a) Cross-field constraint processing
To validate constraints across the contents of
elements or attributes in XML documents. For
example, to check that each element <A> is equal to
the sum of each element and <C> in their
respective orders for multiple <A> elements.

71
Imamura M., Takayama Y., Okada Y. and Komoda N. (2007).
A DOCUMENT RULES DESCRIPTION LANGUAGE BASED ON FEATURE LOGIC FOR XML DOCUMENT EXCHANGE.
In Proceedings of the Second International Conference on e-Business, pages 71-77
DOI: 10.5220/0002111800710077
Copyright c© SciTePress

To assign the value to an element which has been
computed for the contents of elements (e.g. the sum
of multiple elements).

b) Cross-field-structure constraint processing
To validate constraints between the structure of an
element and the content of an element in XML
documents. For example, to validate whether the
multiplicity of element <A> is equal to the content
value of element .

To change the structure of an element to satisfy a
cross-field-structure constraint. For example, to add up
the <A> elements such that the multiplicity of element
<A> is equal to the content value of element .

c) Cross-field-type constraint processing
To validate constraints between the type of an
element and the content of an element.

To assign a value to element <A> depending on
the type of the content of element .

To validate if data in an XML document are
consistent with those in RDB (Relational-Database).

d) Table Mapping Constraint Processing
To describe mapping constraints from XML tree
structure to table structure for input form generation.

2.2 Development Productivity

In order to apply DRDL to developing industrial
systems, the XML application development
frameworks need to have the following
requirements.

a) Development efficiency
Firstly, from the development efficiency point of
view, the frameworks have the following
requirements for easily revising document
processing functions with schema upgrade:
1. Editability of document rules
Document rules need to be edited not only by the
programmers in an information system division, but
also by the end-users in a related business division.
2. Reusability of document rules
Document rules need to be easily shared among
organizations participating in the document
exchange, and to be utilized easily by each
organization’s business sub-systems.
3. Replacability of document rules
Document rules need to be easily replaced in the
distributed sub-systems which use a common
document format.

b) Connectivity to other functions
Document rules need to be processed with other
functions in the application system. For example,
rule validation functions should be able to be
communicated with a document view controller in a
client-side document input tool.

3 XML DOCUMENT RULES
DESCRIPTION LANGUAGE

We define here DRDL which has the expressive power
stated in 2.1. 3.1 presents design principles. 3.2 and 3.3
defines the syntax and the semantics of the core part of
DRDL which is called XML constraint language
(XCL). 3.4 presents DRDL as the extension of XCL
with optional functions for application systems.

3.1 Design Principles

The main design principle of DRDL is to define a
minimum language needed to describe semantic
constraints in Web-form based XML document
exchange. To define DRDL, we use the concept of
unification grammar formalism (Shieber, 1986) which
describes natural language syntactic and semantic
constraints. Description in unification grammar
consists of production rules described by context-free
grammar, and feature constraints described by feature
logics whose typical example is (Smolka, 1992).
Production rules correspond to document structure
definition described by DTD or XML schema, and
feature constraints correspond to semantic constraints
described by XSLT or XQuery. We extend the syntax
of a feature logic and reinterpret the semantics of it in
order to cope with XML.

Table 1: Analogy with feature logic and XML processing.

XML processing Feature logic
Validation Transformation

path in feature
structure / location path in XML structure

and ∧ and sequential statement
implication⇒ implication if statement
universal
quantification∀ for-each statement

existential
quantification ∃

cardinality check
of elements

addition or deletion
of elements

equation = equality check unification
(variable assignment)

sort : type check (no correspondence)
subsumption ⊆ upper compatibility

of schema
(no correspondence)

ICE-B 2007 - International Conference on e-Business

72

The main syntactical extension is to introduce
quantifiers over list-value. Semantic reinterpretation is
to introduce validation interpretation for XML
document validation functions in 2.1, and assignment
interpretation for XML document transformation
realized by the assignment functions in 2.1.

A core idea of DRDL which will be stated in the
following subsections is to use semantical analogy
between a feature logic and XML processing in table 1.

3.2 Syntax of XCL

We define in this subsection the syntax of XCL, the
core part of DRDL, and a term and a formula in
XCL like those in a first-order language.

Definition: XCL term
An XCL term, which denotes a list of XML nodes, is
defined as follows:
(1) A constant (a list of XML nodes) is an XCL term.
(2) A location path in XML is an XCL term.

Definition: XCL formula
An XCL formula is inductively defined as follows:
(1) XCL comparison formulae

If s iand t are XCL terms, then s = t, s≠ t, s≤ t, s≥ t,
s>t and s<t are XCL formulae.
(2) XCL type-constraint formula

If s is an XCL term and t is a data type, then s:t is an XCL
formula.
(3) XCL logical formulae

If F and G are XCL formula, then F∧G, F∨ G, ¬ F,
and F⇒G are XCL formulae.
(4) universally quantified XCL formula

If x is a variable, p is a location path, and F is a XCL
formula, then ∀ x ∈ p. F is an XCL formula.
(5) existentially quantified XCL formula

If x is a variable, p is a location path, n is a non-negative
integer or an expression whose evaluated value is a non-
negative integer, and F is XCL formula, then ∃ x∈p s.t.
(count(.)=n).F is an XCL formula. In (count(.)=n), the
symbol “=” may be≠ , ≤ , ≥ or > and the symbol “n” may
be an arithmetic expression.

3.3 Semantics of XCL

We present the operational semantics of each
formula stated in section 3.2.

1. XCL Comparison Formulae
“s = t” is evaluated as follows in validation
interpretation. If the evaluation value of “s” is equal
to the evaluation value of “t” in the sense of list,
then it is “true”. Otherwise it is “false”.

 “s=t” is evaluated as follows in assignment
interpretation. An evaluation value of “t” is assigned to
the position that is addressed by a localtion path “s”. This
evaluation procedure corresponds to a DOM-API “set
node value” which assigns a value to a node in a DOM
tree.

2. XCL type-constraint formula
“s: t” is evaluated as follows in validation
interpretation. If the evaluation value of s belongs to
data type t, then it is true. Otherwise, it is false.

The evaluation of “s: t” is not defined in
assignment interpretation.

3. XCL Logical Formula
XCL logical formulae in validation interpretation are
evaluated as those in propositional logic. XCL logical
formulae in assignment interpretation are evaluated as
follows: For F ∧ G , F is firstly evaluated and
secondly G is evaluated; For F ∨ G , only F is
evaluated; For¬ F, it is reduced to the normal form
F’, in which all ¬ s are attached to comparison
formulae by rewriting with tautology in first-order
predicate logic, and then F’ is evaluated; For F⇒G,
if the evaluated value of F in the validation
interpretation is true, G is evaluated. This evaluation
procedure corresponds to the “if” statement in XSLT.

4. Universally quantified XCL Fformula
In respect of validation interpretation, ∀ x ∈ p. F is
evaluated as follows. Firstly, x in formula F is
substituted by each element of a list value, which is
obtained by evaluating a location path p, and we can
then obtain formulae Gs which are the variants of F.
The number of formulae Gs is equal to the
cardinality of list values of a location path p. If all
the formulae Gs are evaluated and all the values of
those are true, the formula F is true; otherwise, it is
false.

In respect of assignment interpretation, ∀ x∈p. F
is evaluated as follows. Formulae Gs as the variants of
F are obtained by the substitution of x in F in the same
way as that used in validation interpretation. Each
formula G is evaluated in the same order as that in the
list value of p. The order of an element in the list value
of p is naturally defined by the order of a value in an
XML document. This evaluation procedure
corresponds to the “for-each” statement in XSLT.

5. Existentially quantified XCL formula
In respect of validation interpretation, ∃ x ∈ p
s.t.(count(.)=n). F is evaluated as follows. Formulae Gs
as variants of F are obtained by the substitution of x in
F in the same way as ∀ x ∈ p. F. If the number of
these formulae is equal to the evaluation value of “n”

A DOCUMENT RULES DESCRIPTION LANGUAGE BASED ON FEATURE LOGIC FOR XML DOCUMENT
EXCHANGE

73

and at least one of the evaluation values of G is true,
then it is true. Otherwise it is false. This evaluation
procedure corresponds to minOccurs and maxOccurs in
XML Schema, which check the multiplicity of
elements. Quantified XCL formulae are much more
powerful than those in XML schema, because “n” can
be an arithmetic expression.

In respect of assignment interpretation,
∃ x ∈ p s.t.(count(.)=n).F is evaluated as follows.
XML elements are added or deleted until the number of
nodes, which are addressed by a location path p, is
equal to the evaluation value of “n”. Formulae Gs as
variants of F are obtained by the substitution of x in F
in the same way as that for ∀ x ∈ p. F. Only the first
formula in Gs is evaluated. This evaluation procedure
corresponds to an instruction for node operation in
DOM such as “appendChild” or “removeChild”.

3.4 Examples

We present in this subsection examples of the cross-
field, cross-field-structure and cross-field-type
constraints described in 2.1.

1. Cross-field Constraint
The formula shown in figure 1 describes a constraint
whereby, for each <p-list>, the <total> is equal to
the <sum> of each <price> in <product>s. An
example XML document is shown in fig. 2.
Validation interpretation achieves a validation
function for XML documents, while assignment
interpretation achieves a computation function
among cells in a table like a spread-sheet software.

∀ x ∈ /root/p-list. x/total = sum(x/product/price)

Figure 1: Cross-field Constraint with DRDL.

<root> <p-list date＝"2002-10-01">
 <product><name>PC</name>
 <price>950</price></product>
 <product><name>Disk</name>
 <price>500</price></product>
 <total>1450 </total> </p-list>
 <p-list date＝"2002-11-01">.... </p-list> </root>

Figure 2: An Input XML Document.

2. Cross-field-structure Constraint
The formula shown in fig. 3 describes a constraint in
which a multiplicity of <device>s is equal to the
content of <device-number>. Fig. 4 shows an
example of an XML document as the presumed
input. Validation interpretation achieves a

cardinality checking function for the XML elements.
Assignment interpretation achieves addition and
deletion operations on XML elements which
correspond to DOM APIs such as “appendChild”
and “removeChild”.

An assignment interpretation of the formula in figure
3 for the input XML document in figure 4 is as follows:
Three <device> elements are added, consequently the
multiplicity of element <device> is equal to the content
of an element <device-number> which is 5.

∃ x∈ /device-list/device s.t.(count(.) = /device-number).

Figure 3: Cross-field Constraint with DRDL.

<device-number> 5 </device-number>
<device-list><device> pencil </device>
 <device> pencil sharpener </device></device-list>

Figure 4: An Input XML Document.

3. Cross-field-type constraint
An XCL type–constraint formula can define the
data-type of an element depending on the content of
another element, which cannot be described by an
XML Schema. The formula in fig. 5 describes a
constraint whereby, for each <product>, if the
<category> in the <product> is “communication-
facility”, the data type of the <number> of the
product is “communication-facility code”.

∀ x ∈ //product. (x/category = “communication-facility” ⇒
(x/number: “communication-facility-code”)

Figure 5: Cross-field-type Constraint with DRDL.

3.5 DRDL

DRDL is an extended XCL which has the following
optional descriptions.
(1) Table mapping constraint (stated in 2.1d))
(2) RDB mapping constraint
(3) Vector expression constraint

In this subsection, we describe a table mapping
constraint which is the main feature of DRDL. Table
mapping constraint consists of a matrix constraint and a
connection constraint. Matrix constraint describes the
mapping between a location path in XML documents
and the row and column of a table. A connection
constraint describes the condition for tables to be
connected with those of rows or columns.

For example, the constraints in fig. 6 describe the
table mapping denoted by fig. 7. (1) and (2) in fig.6
describe mapping constraints from the left part of
doc1 to the left part of the table (tbl1). In a similar
way, (3) and (4) in fig.6 describes mapping

ICE-B 2007 - International Conference on e-Business

74

constraints for the right part of doc1 and tbl2. (5) and
(6) in fig.6 describe constraints to connect the left and
the right part of the table. Connection constraints can
describe dependency between the number of the
column or row of a table and that of the other table.

(a) Matrix constraint
tbl1 ! row = doc1 ! a1/b (1)

 tbl1 ! column = doc1 ! a1/b/c (2)
 tbl2 ! row = doc1 ! a2/bb (3)
 tbl2 ! column = doc1 ! [a2/bb/e, a2/bb/f] (4)
(b) Connection constraint
 count(a1/b) = count (a2/bb) (5)
 horizontal_connect ([tbl1, tbl2]) (6)

Figure 6: Table mapping Constraints with DRDL.

<a2>
 <bb>
 <e> 11 </e>
 <f> 12 </f>
 </bb>
 <bb>
 <e> 13 </e>
 <f> 14 </f>
 </bb>
</a2>

12 11
13 14

<a1>

 <c> 1 </c>
 <c> 2 </c>
 <c> 3 </c>

 <c> 4 </c>
 <c> 5 </c>
 <c> 6 </c>

</a1>

1 3
4 5 6

2

Connection constraint (5)(6)

[Table] Matrix constraint(1)(2)

[Table (tbl1)]

[XML document (doc1)]

[Table (tbl2)]

Matrix constraint(3)(4)

Figure 7: Table Mapping Example.

4 XML APPLICATION
DEVELOPMENT FRAMEWORK

a) Architecture of the DRDL Framework
DRDL Framework consists of a rule file, an editor, a
processor and a rule translator. Figure 8 shows the
whole structure of DRDL Framework.

DRDL Editor

DRDL File

System Developer

RDB

DRDL Rule
Translator

DRDL
Processor

End -User

XML

Web
Browser

Client
Application

Input

Check Result

JavaScript

DRDL
Processor

Figure 8: Architecture of DRDL Framework.

1. DRDL Editor
In order to satisfy the requirement for “editability of
document rules (2.2a)1)”, we have developed a DRDL
editor for end-users who do not have specific IT
knowledge to enable them to make DRDL formulae.
The DRDL editor has a table-like GUI interface.

The left part of this GUI is for editing the document
schema, and the right part is for editing the document
content constraint or the XML-RDB mapping constraint.

2. DRDL Rule Translator
To fulfill the requirement for “reusability of document
rules (2.2a)2)”, we have developed DRDL rule
translators which transform DRDL formulae to
another programs or scripts for other XML
processors. For example, a translator can generate
JavaScript for web input forms from DRDL formulae.
These JavaScript are used for input checking in our
XSLT based XML input form (Imamura et.al., 2005).

3. DRDL File
To fulfill the required “replacability of document
rules (2.2 a) 3)”, we have introduced DRDL files to
describe document rules independently from
application programs. Sending and replacing DRDL
allows client XML tools to replace the document
processing function and server systems to replace
the XML transformation function.

4. DRDL Rule Processor
To fulfill the requirement for “connectivity to other
functions(2.2b))”, we have developed a DRDL
processor which can cooperatively process XML
documents sharing a DOM tree with other processes.

b) Application Systems of DRDL
The first version of DRDL framework was built in 1999
and has been applied to the following systems
(Imamura et.al., 2000). The number between parentheses
denotes the start year of the system operation.
(1) Elevator design support system (1999)
(2) G2B document-exchange system (2000)
(3) Web EDI system (2001)
(4) Facility management system (2002)

 DRDL Editor

DRDL Files

Design Sheet
(XML)

DRDL Files

Design
Support
System

Order Design Division

Sales Design
Support System

Internet

Model Design
Division

Order
Info.

Design
Info.

Design Sheet
Input Tool

DRDL
Processor

Specif icat ion Input
Tool

DRDL
Processor

Sales Design Division

Sales
 Support
System

Sales Design Division

Figure 9: Elevator Design Support System.

A DOCUMENT RULES DESCRIPTION LANGUAGE BASED ON FEATURE LOGIC FOR XML DOCUMENT
EXCHANGE

75

For example, we show the elevator design
support system in Figure 9. Elevator design sheets
are sent from the sales design divisions to the order
design divisions. DRDL processors are used to
check whether the elevator design sheets satisfy the
document rules stipulated in the input conditions for
the design support systems. The distinct number of
XML elements for each design sheets is about 300,
and the total number of check rules is about 900.
DRDL is used effectively to describe table mapping
constraints depending on the number of floors and
lifts in the building. The DRDL framework
decreased 50 % of the time for creating Web-input
forms compared with an existing form builder.

5 RELATED WORKS

Various schema languages have been proposed in
order to describe document constraints stated in 2.1
without hard-coding (Murata et al., 2005). Famous
ones are Schematron (Jelliffe, 2004) and DSD
(Klarlund et al., 2002) as a pattern-based language.
DRDL is different form them in logic-based. DRDL
is expected easy to translate semantic constraint to
other languages by referring logic-based existing
formal specification works.

XSLT is a standard and popular language for
XML transformation. However its specification is
too huge to easily master, so there are some tools to
support XSLT generation (Tang et al., 2001). Table
mapping constraint description in DRDL is an
approach to specify the mapping pattern from XML
tree structure to table structure. In fact, DRDL has a
translation function from table mapping constraints
in DRDL to XSLT descriptions.

Recently, in the database community, declarative
and unifying approaches with document schema and
database query language have been proposed for data
integration and exchange. The BEA AquaLogic Data
Service Platform adopts data integration framework
based on XML Schema and XQuery to modelling and
accessing the variety of data source types such as
relational, Web service, function-based and file-based
(Reveliotis et al., 2006). In this paper, we discussed the
data integration and exchange from a document
processing and knowledge representation point of view.

6 CONCLUSIONS

We have proposed a minimum semantic constraint
description language DRDL which satisfies the XML

document-processing requirements of expressive
power, development efficiency and connectivity to
other functions needed in real application systems.
Interpretation of the DRDL formula realizes a
validation function for XML documents. Assignment
interpretation of DRDL formulae realize operations
on DOM trees, such as addition, deletion and value-
assignment like DOM-API, and also control
structures, such as the “if “ statement in imperative
languages and the “for-each” statement in XSLT.
Furthermore, DRDL provide table mapping constraint
for Web-input form generation.

Open issues are the following.
(1) Logic programming with terms as XML elements
We have treated the assignment interpretation in a way
analogous to popular imperative languages such as
Java or C for usability and performance. From the
theoretical point of view, however, it is important that a
determination procedure for the satisfiability of XCL
formulae should give a unification algorithm between
XCL formulae (Smoka, 1992). Replacing a term in Prolog
with an XCL formula allows us to obtain a new
constraint logic programming (Jaffar et al., 1994)(Mukai,
1991). This logic programming language is an
alternative XML transformation language to XSLT.
(2) Decision procedure for satisfiability of subsume
relation of XCL formulae.
(3) Comparison with other declarative XML constraint
description languages such as Xcerpt (Schaffert, 2004)
and Relational.OWL (Laborda et.al., 2005).

REFERENCES

Daum,B. 2003, Validation beyond XML Schema,
Modelling Business Objects with XML Schema,
Morgan Kaufmann Publishers, pp.323 -362.

Imamura, M. et al. 2000. Metadata representation for
Internet-based XML application from business to
government, in proc. of 7th International Conference on
Parallel and Distributed Systems Workshops, pp.387-392.

Imamura, M. et al. 2005. An XML Input Form Generation
Method Based on a Tree-table mapping Model,
Transactions of Information Processing Society of
Japan, Vol.46 No.12, pp3066-3077.

Jaffar,J. and Maher,M.J. 1994. Constraint Logic
Programming: A Survey, Journal of Logic
Programming 19, 20 pp.503-581.

Jelliffe, R., 2004. The Schematron, http://xml.ascc.net/
schematron/

Klarlund, N., Anders Møller,A., Schwartzbach ,M.I. 2002,
The DSD Schema Language, Automated Software
Engineering 9 3, 285-319

ICE-B 2007 - International Conference on e-Business

76

Laborda, C. P. and Conrad, S. 2005. Relational.OWL, in
proc. of Second Asia-Pacific Conference on
Conceptual Modelling (APCCM2005), pp.89-96.

Mukai, K. 1991. Constraint Logic Programming and the
Unification of Information, Doctoral Dissertation, Dept.
of Computer Science, Faculty of Engineering, Tokyo.

Murata, M., Lee, D., Mani, M., Kawaguchi,K, 2005.
Taxonomy of XML schema languages using formal
language theory, ACM Transactions on Internet
Technology (TOIT) Volume 5 ,Issue 4, pp.660-704

Reveliotis, P., Carey, M., 2006. Your Enterprise on XQuery
and XML Schema: XML-based Data and Metadata
Integration, in proc. of 22nd International Conference
on Data Engineering Workshops, pp80 – 89.

Schaffert,S. 2004, Xcerpt: A Rule-based Query and
Transformation Language for the Web,
http://edoc.ub.uni-muenchen.de/archive/

Shieber, S. M. 1986. An Introduction to Unification-based
Approaches to Grammar, CSLI Lecture Notes
Number4, Stanford University

Smolka, G. 1992. Feature Constraint Logics for
Unification Grammars, Journal of Logic
Programming, New York, PP51-87.

Tang,X. and Tompa,F.W. 2001. Specifying Transformations
for Structured Documents, Proc. of the 4th International
Workshop on the Web and Databases, pp.67-72

A DOCUMENT RULES DESCRIPTION LANGUAGE BASED ON FEATURE LOGIC FOR XML DOCUMENT
EXCHANGE

77

