
DOCUMENT MANAGEMENT FOR
COLLABORATIVE E-BUSINESS:

INTEGRATING EBXML ENVIRONMENT AND LEGACY DMS

Alessio Bechini, Andrea Tomasi and Jacopo Viotto
Dipartimento di Ingegneria dell'Informazione: Elettronica, Informatica, Telecomunicazioni

University of Pisa, Via Diotisalvi 2, 56122 Pisa, Italy

Keywords: Document Management Systems, ebXML, Interoperability, Web Services.

Abstract: It is widely known that e-business capabilities are a key requirement for a large number of modern
enterprises. New B2B technologies can enable companies all around the world to collaborate in more
effective and efficient ways, better satisfying the needs of their customers. The ebXML specifications are
the standard solution to achieve this kind of interoperability, but they are not as widespread as traditional
legacy systems yet. Enterprises typically store their knowledge inside Document Management Systems
(DMS), which come in different technologies and handle system-specific metadata models. In this paper, we
propose an architecture that enables enterprises to take advantage of the power and flexibility of the ebXML
approach to metadata management; this is achieved without affecting in-place working systems, and with no
need for a complete repository reconstruction.

1 EBXML AS A SUPPORT FOR
BUSINESS INTERACTIONS

ebXML (Electronic Business using eXtensible
Markup Language) is a suite of XML-based
specifications emerging as the de-facto standard for
e-business. It provides “a standard method to
exchange business messages, conduct trading
relationships, communicate data in common terms
and define and register business processes”
(ebXML). For example, ebXML can be proficiently
used as the principal building block within
information systems to support supply chain
traceability (Bechini et al., 2005 and 2007).

The ebXML Registry specifications (ebRIM,
ebRS) play a crucial role within the standard. An
ebXML Registry is defined as “an information
system that securely manages any content type and
the standardized metadata that describes it”, thus
enabling the sharing of content and related metadata
across organizational entities. Being theFmited
number of companies natively store documents and
enterprise knowledge according to the ebXML
standard, since it is a fairly recent technology; the
race for e-business capability has hampered the
adoption of one acknowledged standard solution for

document management, thus yielding significant
interoperability problems. Much (if not all) of the
generated information is present inside one or more
traditional Document Management Systems (DMS),
each implemented upon a different technology and
following a proprietary metadata model.

Ideally, interoperability could be achieved
moving all enterprise knowledge into an ebXML
Registry. In practice, this is hardly ever feasible, due
to the strong bindings between the DMS and the rest
of the company information system. We propose an
architecture to boost up the functionality of in-place
DMSs, taking advantage of the power and flexibility
of ebXML. The original DMSs, left unchanged, are
coupled with an ebXML Registry, used to mirror
their metadata. All metadata-related operations
(especially searches) can thus be enabled to leverage
the ebXML Registry, overcoming the typical
restrictions of the back-end legacy module. A direct
access to the original DMS is performed only in case
an actual document would be involved in the query.
Whenever required by a specific application within
the upper information system, an additional distinct
component can be asked to coordinate the access to
the underlying systems, and enforce metadata
consistency.

78
Bechini A., Tomasi A. and Viotto J. (2007).
DOCUMENT MANAGEMENT FOR COLLABORATIVE E-BUSINESS: INTEGRATING EBXML ENVIRONMENT AND LEGACY DMS.
In Proceedings of the Second International Conference on e-Business, pages 78-83
DOI: 10.5220/0002112700780083
Copyright c© SciTePress

2 INTEROPERABLE DMS

A common requirement for a DMS is the ability to
easily integrate with external systems, in order to
provide access to enterprise knowledge from a wide
variety of platforms. In spite of this, DMSs typically
support a small number of applications, and little or
no effort is made towards generalized
interoperability. As a partial solution, some systems
provide APIs to enable administrators to code
adapter applications.

Recently, the adoption of Service Oriented
Architecture (SOA) contributed to modify this
scenario: the latest versions of the most popular
DMSs provide support for Web services to ease
system integration and extension (FileNet,
Documentum, Vignette). Web services run on the
server side and wrap API calls to offer system access
by means of standard Web technologies.
Unfortunately, the claimed support often simply
relates to a framework to help develop custom
services: administrators still need to study the
system’s details and write the service code
accordingly. This is a tedious and error-prone
process, and it should be avoided as much as
possible. Moreover, no standard way is defined for
the implementation of such Web services, hence
third-party software need to comply with different
interfaces, depending on the actual DMS in use.
SOA support in DMSs should definitely be
improved, in order to keep up with the current
technology trend: “by 2010, 80 percent of

application software revenue growth, including
licenses and subscription fees, will come from
products based on SOA.” (Gartner, 2005).

2.1 A Proposal

The proposed solution can be roughly described as a
Web service extension to integrate DMS interfaces.
The overall system basically takes advantage of
DMS-specific APIs, combines them into logically
distinct functions, and exposes them as Web
services. In this perspective, each specific DMS
requires its own specific wrapper software. Figure 1
shows the architecture of a traditional DMS,
composed with our extension to obtain an
interoperable DMS. As it can be seen, our system
acts as an additional access point to the DMS,
leaving the original system intact. This kind of
enrichment in the access point number let clients
free to keep on working through the native interface,
whenever it is either mandatory or convenient.
Clients using the new interface, instead, will be able
to communicate with the DMS via SOAP messages,
regardless of technology issues and implementation
details.

2.2 DMS Interface for Interoperability

In order to achieve true independence from the
actual DMS in use, we need to set up a general-
purpose interface, able to accommodate typical
needs for document management systems.

Figure 1: Interoperable DMS.

DOCUMENT MANAGEMENT FOR COLLABORATIVE E-BUSINESS:INTEGRATING EBXML ENVIRONMENT
AND LEGACY DMS

79

Unfortunately, no standard interface of this kind has
been clearly stated so far, and no standard access
method to the DMS document base still exists,
despite the fact that typical operations performed
over this kind of systems are fairly general.
Therefore, our prime concern is to outline a set of
core operations that every DMS is required to
support, and then standardize the way they are
accessed.

We restricted our choice to fundamental services,
leaving out any platform-specific feature. This is an
explicit design choice: most applications interface to
a DMS in terms of simple queries (mainly document
upload/download and metadata or content-based
searches), whereas advanced features are rarely used
and are not guaranteed to be available in all
environments. We didn’t take into account
administration functions, such as user creation, role
definition and so on, due to the absence of a standard
treatment for access control and user management.
However, this might be a significant functionality to
add in future versions.

We finally came out with the following list; since
these operations are at the heart of document
management itself, they are the most commonly
used by end-users and the most widely supported by
existing systems. Table 1 shows the corresponding
function signatures in our test implementation.

Authentication - Obviously, some sort of
authentication is needed to access the system. The
simplest and most common way to identify a user is
asking for a username/password pair. If successful,
the login function returns a unique session identifier,
which will be needed for every subsequent
operation; this identifier encodes user rights and
roles, thus allowing access control.

Document/version creation - Creating a brand
new document implies uploading the file and
creating (and filling) a new entry inside the database
to store its metadata. The creation of a new version
for an existing document is almost the same process,
but slightly more information is needed to identify
parent document and version number.

Table 1: Functions overview. The Profile structure represents a minimal subset of supported metadata (system specific).
The ProfileField structure represents a name/value pair for arbitrary metadata fields.

Function Description
public string doLogin(string library, string
user, string password)

Login with the given user/password pair.

public Profile[] search(string dst, string lib,
string docnum, string author, string name,
string type, string[] words)
public Profile[] advancedSearch(string dst,
string lib, string form, ProfileField[] sc,
string[] words, string[] rp, ProfileField[] ord)

Perform full-text and metadata search. The
advanced version allows a variable number

of name/value pairs in input (the
ProfileField structure array). Search criteria

can be freely mixed.

public byte[] getDocument(string dst, string
lib, string docnum, string ver, string subver)

Document check-out.

public string putDocument(string dst, string
lib, string docname, string author, string
typist, string type, string app, byte[] data)
public string advancedPutDocument(string dst,
string lib, string form, ProfileField[] fields,
byte[] data)
public void putVersion(string dst, string lib,
string docnum, string ver, string author, string
typist, string comment, byte[] data)
public void replaceVersion(string dst, string
lib, string docnum, string ver, string subver,
byte[] data)

Document check-in. The first two functions
create a new document. This implies the
creation and filling of a new metadata
entry, together with actual file transfer.

The third function creates a new
version, filling the comment and author

fields in version metadata (almost a
standard). The last one replaces an existing

version.

public void deleteDocument(string dst, string
lib, string docnum, bool delProf)
public void deleteVersion(string dst, string
lib, string docnum, string ver, string subver)

Document deletion (including all
versions) and version deletion (including all

subversions).

public void updateProfile(string dst, string
lib, string docnum, string docname, string
author, string typist, string type, string app)
public void advancedUpdateProfile(string dst,
string lib, string form, string docnum,
ProfileField[] fields)

Metadata editing, and advanced version.

ICE-B 2007 - International Conference on e-Business

80

Document/version editing - Since file editing
can’t be performed in-place, it requires document
download (check-out), local editing, and upload of
the modified copy (check-in); this typically leads to
the creation of a new version, but version
replacement is possible as well. Metadata may be
directly edited with ad-hoc functions, but it most
often changes as part of a file updating process.

Document/version deletion - Deleting one
version determines the erasure of all its subversions;
deleting an entire document results in the erasure of
all its versions. In either case, the deletion includes
both physical files and database entries.

Metadata/fulltext search - Users rarely need a
specific document, and hardly ever know the exact
id; instead, they often look for documents talking
about some topic, or containing a few given words.
Hence, DMSs support searches over both metadata
and file content.

3 SYSTEM ARCHITECTURE

According to our architecture, newly installed and
in-place components are arranged in three sub-
systems (Figure 2):

 An interoperable DMS, containing both
documents and related metadata. It is entirely
based upon the DMS originally in use inside
the enterprise, with the added value of our
interoperability component. In the general
case, there could be many different systems,
each with multiple instances.

 An ebXML Registry, used to store a copy of
DMS metadata in an ebXML-compliant
fashion. Exploiting its capabilities, we can
manage legacy metadata using the same

advanced features available for documents
natively stored in ebXML repositories.

 A controller application intended to coordinate
access to the above-mentioned systems.
Access to DMSs is performed through the
interface we described, while the ebXML
Registry already offers standard Web services.

Since there is no direct link between the ebXML
Registry and enterprise repositories, every
interaction is mediated by the controller. This is
necessary to maintain the independence of each
individual component: as far as the single sub-
system is concerned, no knowledge about the
external world is required. It is up to the controller to
compose the simple interaction functions provided
by each interface into a globally meaningful and
consistent operation. In particular, such software
level should provide also a semantic mapping among
different metadata items on distinct DMS, or maybe
a mapping towards some kind of commonly
established ontology.

4 METADATA MANAGEMENT

Metadata play a crucial role in the exploitation of
functionalities exposed by a typical DMS. In order
to be properly managed and to efficiently contribute
to information delivery goals, each document must
be properly characterized by specifying its
coordinates within an adequately rich metadata
space. In the archive management and digital
libraries community, a standardization effort has led
to the definition of a basic set of metadata to be dealt
with for each stored/referenced document (Dublin
Core); moreover, communication protocols for
metadata harvesting have been built up within the

Figure 2: Overall architecture; an ebXML Registry and several legacy DMSs connected to a controller application.

DOCUMENT MANAGEMENT FOR COLLABORATIVE E-BUSINESS:INTEGRATING EBXML ENVIRONMENT
AND LEGACY DMS

81

Open Archive Initiative (OAI), taking into account
Dublin Core metadata set. Despite this
standardization attempt, Dublin Core has not been
adopted by the large majority of DMSs, mainly due
to its focus on informative documents, instead of
business-related ones. It is worth noticing that
problems about semantic mapping among different
metadata items (or towards a commonly established
ontology) arise also in related application fields, e.g.
cultural heritage digital libraries (Bechini et al.,
2004) and niches search engines (Petinot et al.,
2003): in these contexts, it is often reasonable to
employ a mediator scheme approach, possibly
referring to Dublin Core as a common metadata set.

In the framework of a SOA application, each
DMS can be regarded as a completely autonomous
entity, and no assumption can be made on its own
capabilities in supporting any kind of standard
metadata set. Instead, flexibility/extensibility in
metadata management can be the crucial feature to
enable DMS interoperability at this particular level.
Such a feature is typical of an ebXML repository,
which can thus be proficiently coupled to other
similar legacy modules. For instance, in ebXML
repositories custom metadata categories can be
easily added, as a simple mechanism to group up
sets of related attributes.

With no common set of metadata to be taken as
reference, we can think of explicitly working with
different metadata sets in a coordinated way. The
coordination mechanism, according to the SOA
approach, has to be implemented in the software
layer that accesses the single services at the different
DMS interfaces. This approach to metadata
management deeply affects the interface structure of
any service involved with metadata. In fact, the
service signature must be general enough to allow
passing a list of name/value pairs to describe
multiple metadata items. On the other hand, the
service must be implemented to parse the list and to
behave accordingly to what pairs are actually
meaningful on the specific DMS platform. In the
sample application cited in the next section we have
applied a slightly different variant of this approach,
choosing to develop each service function in two
different flavors: with a static signature, and with a
variable set of parameters. The first one is useful to
access system-specific metadata, whereas the other
can manage any kind of metadata, passed in as
name/value pairs.

5 IMPLEMENTED MODULES

We built up a sample implementation of our
architecture using popular software modules for the
three components. As for the ebXML part, we took
into consideration freebXML (freebXML).
Moreover, our partner Pivot Consulting s.r.l.
provided us with Hummingbird DM, a well-known
commercial DMS: we managed to make it an
interoperable DMS implementing the Web service
wrapper we described as a standard interface. For
the controller role we developed a demonstrative
Web application, in order to allow user interaction
(this should be changed in an automated scenario).

6 RELATED WORKS

SoDOCM (Russo et al., 2006) is an example of
federated information system for document
management. The declared goal of the project is to
provide an application that can transparently manage
multiple heterogeneous DMSs, while retaining their
autonomy. It is based on the mediator architecture, a
well-known concept developed for database
interoperability, and follows the service-oriented
computing paradigm.

With the AquaLogic Data Services Platform
(Carey, 2006) the authors propose a declarative
approach for accessing data, as opposed to the
standard procedural way. The system is intended to
integrate heterogeneous data sources in order to
support composite applications. This is achieved
using XML and XQuery technologies, and
introducing the concept of data service. A core
functionality is the automatic translation between
XQuery and various SQL dialects.

LEBONED (Oldenettel et al., 2003) is a
metadata architecture that allows the integration of
external knowledge sources into a Learning
Management System. The example presented in the
paper operates with the eVerlage digital library,
which provides a Web service interface to import
documents and related metadata.

OAI compliance and metadata re-modeling are a
central issue of the eBizSearch engine (Petinot et al.,
2003). In this paper, the authors describe how they
managed to enable OAI access to the CiteSeer
digital library; the proposed solution consists in
mirroring the original library and extending this
external database to meet OAI specifications.
Synchronization between the two systems is
performed periodically.

ICE-B 2007 - International Conference on e-Business

82

7 CONCLUSIONS AND FUTURE
WORKS

Integrating different content management systems
within a real-world, modern enterprise presents
several interoperability issues, both on the access
methods and the metadata models. Despite of the
existence of a widely accepted standard, the ebXML
specifications, most companies still operate upon
legacy systems and pay little attention to
interoperable infrastructures. In this paper, we
presented an architectural solution for the integration
of traditional DMSs with a standard ebXML
Registry, allowing advanced metadata management
over preexisting legacy systems, while keeping the
old information system up and running. As a side
achievement, we defined a universal interface for
Web service-based access to a generic DMS, which
can be used independently from our architecture.

The proposed solution is focused on architectural
issues, yet leaving out a few aspects located at the
application level and regarding metadata
consistency. The first one is the initial integration:
the ebXML Registry will need to be synchronized
with the DMS in order to replicate the metadata
inside it. Afterwards, consistency must also be
ensured for every write operation; hence, some kind
of transaction mechanism should be implemented to
allow atomic modifications of the repository and
commit/rollback functionalities. Our future work
will also involve a more thorough analysis of
administration functions, which are excluded from
the current version of the DMS interface.

ACKNOWLEDGEMENTS

We wish to thank Pivot Consulting s.r.l. (Navacchio,
PI), for the support provided throughout the entire
project.

REFERENCES

Gartner Inc., Gartner's Positions on the Five Hottest IT
Topics and Trends in 2005, http://www.gartner.com/
DisplayDocument?doc_cd=125868

FileNet Corporation, 2007, IBM Filenet P8 Platform,
http://www.filenet.com/English/Products/Datasheets/p
8brochure.pdf

EMC Corporation, 2003, Developing Web Services with
Documentum, http://www.software.emc.com/
collateral/content_management/documentum_family/
wp_tech_web_svcs.pdf

Vignette Corporation, 2005, Vignette Portal and Vignette
Builder, http://www.vignette.com/dafiles/docs/
Downloads/ WP0409_VRDCompliance.pdf

Blair, D.C., 2006, The Data-Document Distinction
Revisited, ACM SIGMIS Database for Advances in
Information Systems - Winter 2006 (Vol. 37, No. 1)

Carey, M., 2006, Data delivery in a service-oriented
world: the BEA aquaLogic data services platform, in
Proc. of the 2006 ACM SIGMOD international
conference on Management of data

Russo, L., and Chung, 2006, S., A Service Mediator Based
Information System: Service-Oriented Federated
Multiple Document Management, 10th IEEE
International Enterprise Distributed Object
Computing Conference Workshops (EDOCW'06)

Oldenettel, F., Malachinski, M., and Reil, D., 2003,
Integrating Digital Libraries into Learning
Environments: The LEBONED Approach,
Proceedings of the 2003 IEEE Joint Conference on
Digital Libraries

Organization for the Advancement of Structured
Information Standards, http://www.oasis-open.org

OASIS, 2005, ebXML Registry Information Model
specification version 3.0, http://docs.oasis-
open.org/regrep/regrep-rim/v3.0/regrep-rim-3.0-os.pdf

OASIS, 2005, ebXML Registry Services specification
version 3.0, http://docs.oasis-open.org/regrep/regrep-
rs/v3.0/regrep-rs-3.0-os.pdf

Electronic Business using eXtensible Markup Language,
http://www.ebxml.org/

United Nations Centre for Trade Facilitation and
Electronic Business, http://www.unece.org/cefact/

Open Archive Initiative, http://www.openarchives.org/
Petinot, Y., et al. 2003. eBizSearch: an OAI-Compliant

Digital Library for eBusiness. In Proc. of JCDL 2003,
IEEE CS Press, 199-209

Bechini, A., Tomasi, A., and Ceccarelli, G. The Ecumene
Experience to Data Integration in Cultural Heritage
Web Information Systems. In Proc. of CAiSE
Workshops (1) 2004: 49-59

Bechini, A., Cimino, M.G.C.A., Marcelloni, F., and
Tomasi A., 2007, Patterns and technologies for
enabling supply chain traceability through
collaborative e-business. Information & Software
Technology, Elsevier (2007),
doi:10.1016/j.infsof.2007.02.017

Bechini, A., Cimino, M.G.C.A., and Tomasi A., 2005,
Using ebXML for Supply Chain Traceability - Pitfalls,
Solutions and Experiences, in Proc. of 5th IFIP I3E
Conf., Springer, Oct. 2005, pp. 497-511

DOCUMENT MANAGEMENT FOR COLLABORATIVE E-BUSINESS:INTEGRATING EBXML ENVIRONMENT
AND LEGACY DMS

83

