
ADDITIVE PROOFS OF KNOWLEDGE
A New Notion for Non-Interactive Proofs

Amitabh Saxena∗
Department of Information and Communication Technology

University of Trento, TN, Italy

Keywords: Non-interactive zero-knowledge proofs of knowledge, proofs of decision power, additive proofs, identification.

Abstract: This paper has two contributions. Firstly, we describe an efficient Non-Interactive Zero-Knowledge (NIZK)
Proof of Knowledge (PoK) protocol using bilinear pairings. The protocol assumes the hardness of the Com-
putational Diffie-Hellman (CDH) problem. The prover does not perform any pairing computations while the
verifier performs 3 pairing computations. The protocol can be used for identification (eg. in smart-cards).
Secondly, we extend the idea to multiple proofs and propose the notion of efficient Additive Non-Interactive
Witness-Indistinguishable (A-NIWI) proofs. Intuitively an A-NIWI proof can be considered as a PoK of
another A-NIWI proof. Our ideas are based on the aggregate signature scheme of Boneh et al. (proposed in
Eurocrypt 2003).

1 INTRODUCTION

We study the aggregate signatures of (Boneh et al.,
2003) in more detail. Many schemes derived from
aggregate signatures such as Verifiably Encrypted sig-
natures (VES) (Boneh et al., 2003) and Chain Sig-
natures (CS) (Saxena and Soh, 2005) require that al-
though some given aggregate signature can be veri-
fied, no useful information about the individual sig-
natures is leaked. However, the very fact that the
aggregate signature can be verified leaks certain in-
formation - that the individual signatures are indeed
well-formed. Apart from this, is there any other in-
formation leaked? We show that there is absolutely
no other information leaked about the individual sig-
natures when the aggregation contains only two sig-
natures.

Another observation is that the aggregate signa-
tures are extensible. This leads to an interesting con-
struction of Non-Interactive Witness Indistinguish-
able (NIWI) proofs - a given NIWI proofπ1 of state-
mentm1 can be combined with another NIWI proof
π2 of m2 to yield a new NIWI proofπ(1,2) of m1∧m2
such that givenπ(1,2),m1,m2, it is no longer possi-
ble to obtainπ1 (or π2). This process can be con-
tinued using another proofπ3 of m3. We term this
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propertyadditivenessand formally give a construc-
tion of a NIWI proof that satisfies this property. We
call any NIWI proof system satisfying this property
an Additive NIWI (A-NIWI) proof system. Although
this property can be achieved using conventional con-
structions of NIZK proofs (using an NP reduction),
such constructions are extremely inefficient and there-
fore useless in practice.

The rest of this paper is organized as follows.
In Section 2, we give some background on zero-
knowledge. In Section 3, we give an informal de-
scription of our idea by showing that aggregate signa-
tures (of two users) are zero-knowledge. We then give
a formal construction of our zero-knowledge proofs
of knowledge in Section 4. Finally, in Section 5, we
present our example of additive NIWI proofs.

2 PRELIMINARIES

Zero-Knowledge (ZK). Zero Knowledge proofs are
proofs which convince a verifier that a given state-
ment (eg. x ∈ L for someL ∈ NP) is indeed
true without giving any information as towhy it
is true (Goldwasser et al., 1989). This concept
can be intuitively captured by saying that what-
ever the verifier knows after seeing the proof was
already known to the verifier before seeing the
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proof. More formally, we require that there ex-
ist a PPT simulator outputting a transcript that is
indistinguishable to the transcript produced by the
real prover.

Witness Indistinguishability (WI). Another in-
tuitive way to restrict knowledge leakage is
using witness indistinguishableproofs (Feige
and Shamir, 1990; Dwork and Naor, 2000).
However, unlike ZK proofs, a WI proof cannot be
simulated. Informally, a WI proof can be defined
as follows. Letx∈ L for someL ∈ NP such thatx
has two or more witness forL. A proof is WI if it
convinces a verifier that indeedx∈ L but does not
reveal which witness was used to construct the
proof (even if the verifier knows all witnesses).

Proofs of Knowledge (PoKs).Till now we re-
stricted ourselves to proofs of statements of the
type x ∈ L for someL ∈ NP. These are called
proofs of membership(PoMs). However, a more
useful notion is of proofs of statements of the
type I know the witness of x∈ L. That is, the
prover not only proves thatx∈ L but also proves
knowledgeof a witness to the fact. Such proofs
are calledproofs of knowledge(PoKs) and are
formally defined in (Bellare and Goldreich,
1993). Informally, a PoK requires that there be
a knowledge extractorthat uses the prover in a
black-box manner and extracts the witness for the
statement to be proved (Bellare and Goldreich,
1993).

Proofs of Decision Power (PoDPs).Let L ∈ NP ∩
co-NP. A ZK (or WI) proof of decision power
(PoDP) is a PoK for somex∈ L ∪ co-L that con-
vinces a verifier about the knowledge of a witness
for x but does not reveal whetherx∈ L or x∈ co-
L. See (Crescenzo et al., 1997; Crescenzo et al.,
2000) for a discussion on this concept. All our
proofs presented in this paper (whether WI or ZK)
will be PoDPs.

Non-Interactive (NI) ZK and WI Proofs. ZK (and
WI) proofs come in two flavors:interactiveand
non-interactive(NI). In the interactive variants,
there are many exchanges of messages (called
rounds) before the proof is completed. On the
other hand, in the non-interactive variants, the
verifier’s role is played by a hash function or
some other random source of information (such
as a random oracle) (Blum et al., 1988; Rackoff
and Simon, 1992; Goldreich, 2001; Groth et al.,
2006). Depending on whether the proof is ZK of
WI, we call it a NIZK or NIWI proof. Similar to
interactive proofs, NI proofs can also be classified
as PoMs or PoKs.

3 ZERO KNOWLEDGE IN
AGGREGATE SIGNATURES

We give the motivation behind our The aggregate sig-
natures of (Boneh et al., 2003) can be briefly de-
scribed (with some simplifications) as follows. The
construction requires a bilinear map between prime
order groups, which we describe first.

3.1 Bilinear Maps

Let G1 and G2 be two cyclic multiplicative groups
both of prime orderq such that computing discrete
logarithms inG1 and G2 is intractable. A bilinear
pairing is a map ˆe : G1×G1 7→ G2 that satisfies the
following properties (Boneh et al., 2004; Boneh et al.,
2003).

1. Bilinearity: ê(ax,by) = ê(a,b)xy ∀a,b ∈ G1 and
x,y∈ Zq.

2. Non-degeneracy: If g is a generator ofG1 then
ê(g,g) is a generator ofG2.

3. Computability: The map ˆe is efficiently com-
putable.

For the rest of this paper we will assume thatg∈
G1 is some fixed generator.

Security of aggregate signatures is based on the
hardness of the following problem.

Definition 3.1. Computational Diffie-Hellman
(CDH) problem: Given (X,Y) ∈ G1

2, compute
Z ∈G1 satisfyingê(X,Y) = ê(Z,g).

3.2 Aggregate Signatures

In the aggregate signature scheme of (Boneh et al.,
2003), the private keys of two users arex1,x2 ∈ Zq,
while the public keys areX1 = gx1,X2 = gx2 respec-
tively. The scheme also requires a cryptographic hash
functionH : {0,1} 7→G1. Let the hashes of the mes-
sages to be signed beY1 = gy1 andY2 = gy2 respec-
tively (for unknowny1,y2). Then the the aggregate
signature under public keysX1,X2 corresponds to the
valueZ2 = gx1y1+x2y2 (to verify the signature we check

if the equality ê(X1,Y1) · ê(X2,Y2)
?
= ê(Z2,g) holds).

Additionally, the corresponding individual signature
under the public keyX1 = gx1 turns out to begx1y1,
the extraction of which will correspond to the solu-
tion of the CDH instance(X1,Y1) = (gx1,gy1). Call
this the signature extraction problem for the tuple
(X1,Y1,X2,Y2,Z2). Without the extra inputsX2,Y2,Z2,
this reduces to the ordinary CDH problem for(X1,Y1).
We show next that these extra inputs leak no informa-
tion about the solution of the CDH instance(X1,Y1).
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Observe that given just the CDH instance
(X1,Y1) = (gx1,gy1), we can straightaway transform
it into an instance of the signature extraction prob-
lem without knowing eitherx1 or y1 as follows. Gen-
erate two random integersr,u. Then computeX2 =
X1 ·gr = gr+x1, Y2 = gu/Y1 = gu−y1, Z2 = X1

u ·Y2
r =

gx1u+ru−ry1. The tuple(X1,Y1,X2,Y2,Z2) forms a valid
instance of the signature extraction problem.2 In other
words, the aggregate signature leaks absolutely no
knowledge about the individual signature!3 This mo-
tivates the following application.

3.3 An Identification Protocol

Assume that Alice has public keyX1 in the example
of Section 3.2 and is authorized to issue credentials
that can be used for identification. Bob would like
to identify using his credential and at the same time
ensure that the verifier cannot impersonate him later.

1. Alice uses the signature scheme of Section 3.2 to
sign the messagem1 =“The holder of this card is
Bob” such that the resulting hash ofm1 is Y1. She
gives the resulting signatureZ1 to Bob.

2. Suppose Bob wants to identify to Carol using
Alice’s card. Both Bob and Carol agree on a
common random string (CRS)Y2 ∈ G1.4 Then

Bob generates randomx2
R
← Z∗q and computes

(X2,Z2) = (gx2,Z1 ·Y
x2
2 ) ∈G1

2. He gives(Z2,X2)
to Carol.

We show in Section 4.1 thatZ2 proves (to Carol) the
knowledge of the credentialZ1 without leaking any
information. We do this by proving that the non-
interactive variant of the above protocol (where the
CRS is decided beforehand) is a NIZK-PoK ofZ1.

4 NIZK PROOFS OF
KNOWLEDGE

We now give a formal discussion of the above zero-
knowledge property. We use the common-random-

2This was proved in (Coron and Naccache, 2003).
3There is a subtility here. The resulting valueY2 needs

to be the output of the hash functionH . However, if we
considerH to be a random oracle then we can ignore this
subtility in our context.

4The CRS could be decided beforeZ1 is computed.
However, it is necessary for both Bob and Carol to ensure
that the CRS is indeed random. For the purpose of this pa-
per, we will assume that there is a trusted authority that is
responsible for generating the CRS. Also note that a CRS
can be used only once. Hence both parties must ensure that
the CRS isfresh.

string model (Blum et al., 1988) - both prover (P) and
verifier (V) share a common random string (CRS).
Our notion of NIZK-PoKs is similar to that of (Santis
and Persiano, 1992). LetL ∈ NP ∩ co-NP be some
language. For anyx∈ L ∪ co-L, letW x be the set of
witnesses for eitherx∈ L or x /∈ L. For simplicity, we
will assume that all strings in{0,1}∗ correspond to ei-
ther “yes” or “no” instances ofL. Let k be a security
parameter. Define the following protocol.

Protocol (P, V)

1. Common Random String: P andV agree on a

common random string (crs)r
R
←{0,1}k.

2. Common Input: Some stringx
R
←{0,1}k (possi-

bly chosen byP) is common input toP andV.

3. Prover’s Auxiliary Input: P is given as auxiliary

input w
R
←W x.

4. Proof Generation: P uses(r,w,x) to compute
and output a proofπ.

5. Proof Verification: V uses a deterministic proce-
dure on input(x, r,π) and outputs either 0 or 1.

Definition 4.1. (P,V) is a NIZK-PoK (and a PoDP)
for L ∈ NP∩ co-NP if the following hold.

1. Completeness: For all x ∈ Σ∗ and honest provers
P

Pr

[

V(x, r,π) = 1 r,x
R
←{0,1}k,w

R
←W x,

π← P(x,w, r)

]

= 1

2. Zero-Knowledge: There is a universal PPT simu-
lator M that on input some random stringx (the
problem instance) outputs a tuple(rm,πm) such
thatV(x, rm,πm) = 1 and the distributions{x, r,π}
and{x, rm,πm} below are indistinguishable.

{x, r,π} def
=







r,x
R
←{0,1}k,

V(x, r,π) = 1 w
R
←W x,

π← P(x,w, r)







{x, rm,πm}
def
=

[

V(x, rm,πm) = 1 x
R
←{0,1}k,

(rm,πm)←M

]

3. Proof-of-Knowledge: There is a universal PPT ex-
tractorE that functions as follows.E gives a “ran-
dom looking” stringre to the proverP∗, who out-
puts a pair(x,π). If V(x, re,π) = 1 thenE takes
in as input(x, re,π) and outputs a stringwe. We
require that for allP∗, the stringsre are indistin-
guishable from truly random strings, and

Pr





re← E(x),(x,π)← P∗(re),
we∈W x V(x, re,π) = 1,

we← E(x, re,π)



≈ 1

Note that our NIZK-PoKs areadaptive- the prover
can choose the statementx after seeing the CRSr.
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4.1 NIZK-PoK for a CDH Solution

Let ê : G1×G1 7→ G2 be a bilinear map as defined
in Section 3.1 such that|G1|= |G2| = q (prime). Let
g be some fixed generator ofG1, which we will use
as the base for our problem instances. Assume that
the computational Diffie-Hellman (CDH) problem is
hard in G1. Therefore, due to the Goldreich-Levin
Theorem (Goldreich and Levin, 1989), there must ex-
ist a hard-core predicate (sayδ()) for the solution of
the CDH instance.5 Consider the language consisting
of pairs of the form(gx,gy) ∈G2:

L = {(gx,gy)|hard-core predicateδ(gxy) = 1}

Clearly,L ∈ NP∩ co-NP and the elementgxy, the
solution to the CDH instance(gx,gy) forms the wit-
ness to both the “yes” and “no” instances. We de-
scribe a NIZK-PoK for the knowledge of this witness.
First we define the following problem.

Definition 4.2. Decision Class-Diffie-Hellman
(DCDH) problem. Given X,Y ∈ G1, output 1 if
(X,Y) ∈ L, otherwise output 0.

Define the following protocol betweenP andV.

Protocol(P,V).

1. Common random string (CRS): An element

Y2
R
←G1. LetY2 = gy2 for unknowny2.

2. Common input: A DCDH instance(X1,Y1) =
(gx1,gy1) ∈G1

2.

3. Provers auxiliary input: WitnessW = gx1y1 ∈G1
for the DCDH instance(X1,Y1).

4. Proof generation: P generatesx2
R
←Z∗q and com-

putes(X2,Z2) = (gx2,W ·Y2
x2) ∈ G1

2. It outputs
(X2,Z2) as its proof.

5. Proof verification: V accepts the above proof if
the following holds:

ê(X1,Y1) · ê(X2,Y2)
?
= ê(Z2,g) (1)

Theorem 4.3. The above non-interactive protocol
(P,V) is a NIZK proof of knowledge of the witness
to the DCDH decision problem instance(X1,Y1).

Proof. Completeness is trivial:
LHS= ê(X1,Y1) · ê(X2,Y2) = ê(gx1,gy1) · ê(gx2,gy2)

= ê(gx1y1+x2y2,g) = RHS

5To apply the Goldreich-Levin result, we must exhibit
a one-way function that takes as input any CDH solution
(say H ∈ G1) and outputs a corresponding CDH instance

(H1,H2) ∈ G1
2. To do this, generateα R

← Z∗q and compute

(H1,H2) = (H1/α,gα) ∈ G1
2. ThenH is the solution (to

baseg) of the CDH instance(H1,H2).

Zero Knowledge: The input is some DCDH in-
stance(X1,Y1). SimulatorM generates two random

elementsr,u
R
←Z∗q. It then computesX2 = X1 ·gr ,Y2 =

gu/Y1 andZ2 = X1
u ·Y2

r . It outputsX2,Y2,Z2 as part of
the simulated transcript. The tuple(X1,Y1,X2,Y2,Z2)
is indistinguishable from a real transcript.

Proof of Knowledge: We construct an extractor

E as follows.E generates a random elementy2
R
← Z∗q

and setsY2 = gy2. It givesY2 as the random string
to the proverP, who outputs(X1,Y1,X2,Z2) such
that (X1,Y1,X2,Y2,Z2,g) satisfies Equation 1. Then
E computes and outputsW = Z2/(X2)

y2, the witness
to the DCDH instance(X1,Y1).

5 ADDITIVE NON-INTERACTIVE
PROOFS OF KNOWLEDGE

Observe that in the protocol of Section 4.1, given
the transcript(X1,Y1,X2,Y2,Z2,g), we can generate
a new DCDH instance(X3,Y3) = (gx3,gy3) and form
the tuple(X1,Y1,X2,Y2,X3,Y3,Z3,g), such thatZ3 =
Z2 ·gx3y3 behaves like a PoK ofZ2. We call this prop-
erty “additiveness” - whenever a non-interactive PoK
Zi can be converted into a new non-interactive PoK
Zi+1 of Zi . First we define the following problem.

5.1 The Composite-CDH Problem

Let Si = {(X1,Y1),(X2,Y2), . . . ,(Xi ,Yi)} be a set con-
taining i DCDH instances. DefineZi ∈ G1 to be the
value such that

∏
(Xj ,Yj )∈Si

ê(Xj ,Yj) = ê(Zi ,g)

Definition 5.1. Composite Computational Diffie
Hellman (CCDH) problem. Given Si , compute Zi .

We say thatZi is the CCDH solution of the setSi .
The CCDH problem is as hard as the CDH problem.

Lemma 5.1. The CCDH problem is hard if and only
if the CDH problem is hard.

Proof. The “only if” part is trivial to prove. For the
“if” part, consider an adversaryA who can always
output the CCDH solution of any setSi . We can useA
to solve any CDH instance(X,Y) as follows. Gener-

ate randomx′,y′
R
←Z∗q and computeX′= gx′ ; Y′= gy′ .

The setSi = {(X,Y),(X′,Y′)} is given toA , who out-
puts the CCDH solutionZi of Si . In this caseZi/gx′y′

is the solution of our CDH instance.
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5.2 Additive NIWI Proofs

We now present a construction of anAdditive
Non-Interactive Witness-Indistinguishable Proof of
Knowledge(A-NIWI-PoK). An A-NIWI-PoK can be
instantly transferred into another another A-NIWI-
PoK such that the new proof behaves like a PoK of
the older PoK. Define the following protocol between
P andV.

Protocol(P,V)

1. Common Random String: A random element

Yn+1
R
←G1.

2. Common Input: The common input is a set
Sn = {(X1,Y1),(X2,Y2), . . . ,(Xn,Yn)} containingn
DCDH instances w.r.t. a common generatorg.

3. Prover’s Auxiliary Input: Zn, the CCDH solu-
tion of Sn. P will prove knowledge ofZn.

4. Proof Generation: P generatesxn+1
R
← Z∗q and

sets(Xn+1,Zn+1)← (gxn+1,Zn ·Y
xn+1
n+1 ) ∈ G1

2. It
outputs(Xn+1,Zn+1). Observe thatZn+1 is the
CCDH solution ofSn+1 = Sn∪{(Xn+1,Yn+1)}.

5. Proof Verification: V verifies thatZn+1 is indeed
the CCDH solution ofSn+1.

Theorem 5.2. The pair(Zn+1,Sn+1) is a NIWI-PoK
of the CCDH solution Zn of Sn for all n≥ 1.

Proof. Similar to ZK proofs, a WI proof has com-
pleteness, witness-indistinguishability and knowl-
edge extractor requirements (Feige and Shamir, 1990;
Dwork and Naor, 2000). Completeness is trivial.

Witness-Indistinguishability: The claim is true
for n = 1 (because ZK implies WI). For anyn > 1,
given the setSn and random stringYn+1, we can
construct a pair(Xn+1,Zn+1) such thatZn+1 is the
CCDH solution ofSn+1 = Sn∪{(Xn+1,Yn+1)}. This
can be done in at least two different ways: (1) Using
the CCDH solutionZn of Sn and the witness for the
DCDH instance(Xn+1,Yn+1). (2) Using the CCDH
solution of Sn+1\{(X1,Y1)} and the witness for the
DCDH instance(X1,Y1). Clearly, it is infeasible to
distinguish which strategy was used.

Proof of Knowledge: We must exhibit an extrac-
tor En+1 that works as follows. FirstEn+1 outputs a
random stringYn+1, which is given to the prover. The
prover then outputs a tuple(Sn,Xn+1,Zn+1) such that
Sn is a set containingn DCDH instances andZn+1 is
the CCDH solution ofSn∪ {(Xn+1,Yn+1)}. Finally,
En+1 takes as input(Sn,Xn+1,Zn+1) and outputsZn,
the CCDH solution ofSn.

En+1 generatesyn+1
R
← Z∗q and computesYn+1 =

gyn+1 ∈ G1. En+1 givesYn+1 to some proverP who
outputs a tuple(Sn,Xn+1,Zn+1) such thatSn contains

n DCDH instances andZn+1 is the CCDH solution of
Sn+1 = Sn∪{(Xn+1,Yn+1)}. From thisEn+1 computes
Zn = Zn+1 ·X

−yn+1
n+1 and outputsZn as the CCDH solu-

tion of Sn.

5.2.1 Additiveness

Observe that any given Niwi-PoK(Zn,Sn) can be in-
stantly transferred into a new Niwi-PoK(Zn+1,Sn+1)
of (Zn,Sn) (in other words, (Zn+1,Sn+1) proves
knowledge of(Zn,Sn)). We call this propertyaddi-
tivenessand any Niwi-PoK exhibiting this property
an Additive Niwi-PoK (A-Niwi-PoK).

5.2.2 Is it Zero-knowledge?

The witness indistinguishability property of above
NIWI-PoK ensures thatZn+1 does not leak any “use-
ful” information about the secretZn. However, we
have been unable to construct a simulator and it
is quite likely that the above protocol is not zero-
knowledge.

To see why it may not be zero-knowledge (and
still be witness hiding), observe that given the pair
(Z3,S3) with |S3|= 3, an adversary may be able to ob-
tain some information about all the CCDH solutions
Z∗2 for the 3 setsS∗2 ( S3 with |S∗2|= 2 without getting
any information about the witnesses of the individual
DCDH instances ofS3.

6 SUMMARY

In this paper we presented an efficient Non-Interactive
Zero-Knowledge (NIZK) protocol that is a Proof of
Knowledge (PoK) for the solution of some given
Diffie-Hellman problem instance in bilinear groups.
Our protocol is based on the aggregate signatures
of (Boneh et al., 2003) and its interactive variant
(where the CRS is generated “on-the-fly”) can be used
for efficient identification (eg. in smart-cards).

We also proposed the notion ofAdditive
Non-Interactive Witness Indistinguishable Proofs of
Knowledge(A-NIWI-PoKs). An A-NIWI proof can
be considered as a PoK of another A-NIWI proof.
However, we have unable to construct a simulator to
achieve zero-knowledge. We can use the simulator of
the proof of Theorem 4.3 and achieve additive NIZK
property at the cost of increasing the size of the proof
to 2n at n levels. As an open question, we would like
to ask if constant-size additive NIZK PoKs exist.

In summary, we feel that the proposed paradigm
of A-NIWI-PoKs can be used in a vast majority of e-
commerce applications, more specifically in the core
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of protocols for smart cards and secure web purchases
but even more so in the context of auctions (due to the
inherent non-interactive nature of the scheme).
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