
EXTENSIBLE ACCESS CONTROL MODEL FOR XML
DOCUMENT COLLECTIONS

Goran Sladić, Branko Milosavljević and Zora Konjović
Faculty of Technical Sciences, University of Novi Sad, Fruškogorska 11, Novi Sad, Serbia

Keywords: XML, RBAC, Access control, Information security.

Abstract: This paper presents the XXACF (eXtensible Role-Based XML Access Control Framework) framework for
controlling access to XML documents in different environments. The proposed access control definition
language and the corresponding software architecture are described. The framework enables defining access
control policies on different priority and granularity levels. The XXACF enables the enforcement of access
control for different operations on XML documents, as well as different ways of access control enforcement
for the same operation. This framework’s configurability facilitates customization of particular
implementations according to specific needs. Extensibility of XXACF framework is achieved by the
possibility of extending the core functionality for specific requirements and also the addition of the new
modules for context-sensitive access control.

1 INTRODUCTION

Access control is only one aspect of a compre-
hensive computer security solution, but also one of
its most important segments. It provides confidenti-
ality and integrity of information.

In the role-based access control (RBAC) model,
access to resources of a system is based on the role
of a user in the system (Ferraiolo et. al., 2001;
Ferraiolo et. al., 2003). Basic RBAC model
comprises the following entities: users, roles and
permissions, where permissions are composed of
operations applied to objects. In RBAC, permissions
are associated with roles, and users are made
members of roles, (Ferraiolo et. al., 2001; Ferraiolo
et. al., 2003).

The growth of XML as a format for data
modeling and interchange arises the issue of access
control to XML documents. An XML document
may contain data of different level of accessibility.

The Extensible XML Role-Based Access Control
Framework (XXACF) provides the means of
defining access control policies and access control
enforcement based on users’ roles. Access control
policies in XXACF may be defined in different
priority and granularity levels and they may be
content depended, thus facilitating efficient
management of access control. The access control

policy in XXACF may be separately defined for
each operation on an XML document.

The framework itself is modularly organized in
the manner which provides a simple update or
upgrade of the existing modules, as well as the
inclusion of new ones. The extensibility of the
XXACF is achieved by extending the core
functionality according to the specific requirements,
as well as including new modules for the purpose of
context-sensitive access control enforcement. The
concept of context-sensitive access control enables
customization of access control policies depending
on the environment where XXACF is being used.
Therefore, XXACF can be deployed in various
environments.

XXACF is implemented in Java EE technology
and based on open source components. It is used as a
module of the application server in a multi-tier
software architecture. The prototype implementati-
on, used for controlling access to XML documents,
is tested in a complex real-life workflow system.
The additional modules for context-sensitive access
control, as well as modules for integration with the
workflow system were implemented in order to
satisfy specific requirements of the access control
for the business process implemented through the
workflow system.

373
Sladić G., Milosavljević B. and Konjović Z. (2007).
EXTENSIBLE ACCESS CONTROL MODEL FOR XML DOCUMENT COLLECTIONS.
In Proceedings of the Second International Conference on Security and Cryptography, pages 373-380
DOI: 10.5220/0002117203730380
Copyright c© SciTePress

2 RELATED WORK

X-RBAC (Bhatti et. al., 2004) is a system for
controlling access to XML documents in web
service-based systems. The access control in this
system is based on the RBAC model. The access
control policies depend on the user’s session context
and the content of the documents being accessed
(Bhatti et. al., 2004). Depending on document
content, the access control policies can be specified
on four granularity levels: conceptual level,
document’s schema level, document instance level
and the document’s element level (Bhatti et. al.,
2004). However, policies that deny access can not be
specified. The supported operations are reading,
writing, navigate (reading the referenced data) and
all (supports all three previous operations). The
propagation level down through hierarchy can be
defined for each access control policy. The three
levels of propagation are supported: (a) without
propagation, (b) first level propagation and (c)
cascade propagation (Bhatti et. al., 2003).

In papers (Botha and Eloff, 2001a; Botha and
Eloff, 2001b) access control for XML documents in
a workflow environment is presented. The access
control policies of the workflow system are based on
the RBAC model. There are two types of access
control policies (Botha and Eloff, 2001b): policies
which grant access (operation) and policies which
deny access (operation) on the object. The
operations that are supported are as follows: read,
edit, add and delete (Botha and Eloff, 2001b). Each
process in the workflow system implies the
manipulation of certain number of XML documents.
The definition of the given process defines which
roles can execute that process, i.e. its sub-processes.
It is possible to create access control policies not
only on the document level but also on the document
fragment level (Botha and Eloff, 2001a).

XML ACP (Access Control Processor) (Damiani
et. al., 2000) represents a system for access control
for XML documents in web-based applications. The
system works as a plug-in to the existing web server
technology (Damiani et. al. 2000). The access
control is possible on several levels of granularity:
DTD level, document instance level, specific
document’s element/attribute level. The access
control policies can be classified in eight priority
groups. The access control policies propagation
down through the hierarchy is supported. The
policies can grant or deny access (Damiani et. al.,
2002). In access control policy definitions, user
identification is based on the user ID or the user
group ID and/or the location (computer or computer

network) ID being the origin of the request to access
a document (Damiani et. al., 2002).

Author-X system (Bertino et. al., 2001; Bertino
and Ferrari, 2002) provides for defining access
control policies on different granularity levels,
which can grant or deny the access. The controlled
propagation of access control policies is provided,
where policies defined for document or DTD can be
applied on the other semantically related documents
or DTDs on different granularity levels (Bertino and
Ferrari, 2002). There are two working modes: pull
and push (Bertino et. al., 2001). In the pull mode, the
user requests explicitly the access to the document.
After the reception of the request, the X-Access
forms a document that will contain only the data
visible for the user, i.e. the data that the user can
change. After the change has been done, the user
sends the changed content to the system and the
system verifies whether the changed content is in
accordance with security rights (Bertino et. al.,
2001). In the push mode, the system periodically
sends documents to all users. Although the same
document is sent to all users, the specified security
rights are enforced by encrypting parts of the
document with different keys for different policies.
Each user possesses the keys which are available to
him or her according to the specified security rights
(Bertino et. al., 2001).

Table 1 shows comparation of the XML access
control systems described in this chapter and the
XXACF system.

3 XXACF DATA MODEL

3.1 Roles

The roles are defined in an XML document
conforming to the XML schema presented in Figure
1. The name must be specified for each role (the
name attribute of the <role> element). If the value
of the abstract attribute of the <role> element is
“true”, then that role can not be directly assigned to
the user, i.e. it’s a connector role. The content of the
<description> element represents a short
description of the role. For each role, it is possible to
specify its parent roles (<parent_roles> element)
and to establish the role hierarchy with multiple
inheritance (Ferraiolo et. al., 2003).

SECRYPT 2007 - International Conference on Security and Cryptography

374

Table 1: Comparation of XML access control systems.

 usage AC model granularity levels policy propagation cont-sens operations extensible

X-RBAC web-
services

RBAC based
on credentials

conceptual, schema,
instance, element

no propagation, one
level, cascade down YES prune read, write,

navigate NO

XAC
WFMS WFMS RBAC schema, instance,

fragment
no propagation,
cascade down NO prune read, add, delete,

edit NO

XML
ACP web

users, groups,
computers,
domains

schema, instance,
element, attribute

no propagation,
cascade down NO prune read NO

Author-X general credentials schema, instance,
element

no propagation, one
level, cascade down NO prune & encrypted

read, add, delete, edit NO

XXACF general RBAC schema, instance,
fragment

no propagation,
cascade down or up
1-N levels

YES
prune, encrypted &
dummy read, add,
delete, edit, provisional

YES

Figure 1: XML schema of the roles.

3.2 Users

The user is identified by the id attribute of the
<user> element (see Figure 2). The user’s personal
data is contained in the <personal_info> element.
The entities which comprise user’s personal data are
defined according to the system requirements. The
XXACF is designed and implemented to be
independent of the entities that represent user’s
personal data. The user’s data regarding
authentication and authorization are defined in the
<principals> element. Each user is allowed to
own several <principal> elements. The
<principal> element, identified by id attribute,
contains authentication data (<authentication>
element) and roles (<roles> element) which will be
assigned to the user when he or she logs in using the
authentication data of that principal. That way it is
possible that the user owns several user accounts,
with specific roles assigned to each user account.

Figure 2: XML schema of the users.

3.3 Access Control Policies

The XML schema in Figure 3 defines the structure
of access control policies, which is based on policies
described in (Hada and Kudo, 2002) supporting
provisional operations and policy conditions. Access
control policies described in (Hada and Kudo, 2002)
are extended in order to support role hierarchies, to
provide priorities of the access control policies as
defined in (Damiani et. al., 2000; Damiani et. al,
2002) and to support arbitrary operations for which
policies are defined. Each access control policy is
defined by the <policy> element to which a unique
identifier (attribute id) is assigned. The policy
permits or denies (<permission>) the subject to
execute the operation (<operation>) on the object
(<object>) (Ferraiolo et. al., 2003). Since access
control policies are based on the RBAC model, the
subject, for which the policy is defined, represents
the role. The object of the access control policy is a
document schema or a document instance identified
by its unique ID. If the policy is defined only for the
particular document (schema) fragment, it is
necessary to specify the XPath expression which
selects that fragment. Also, by using XPath
expressions with conditions, content depended
object (policies) may be specified. Apart from the
main operation for which the policy is defined, there
may be some provisional operations (Hada and
Kudo, 2002). If the condition (<condition>) is
satisfied, the access control policy will be applied.
Contrary, it will not be the case. Each condition is
consist of the name of a logical operation (not, and,
or and xor) (attribute operation) and a
subconditions and/or a predicates (<predicate>
element). By predicate is meant function which
return value is true or false. Value calculated by
applying a specified logical operation on return

EXTENSIBLE ACCESS CONTROL MODEL FOR XML DOCUMENT COLLECTIONS

375

values of subconditions and predicates represents the
return value of a condition. The functionality of the
each predicate should be properly implemented. This
gives possibility for implementation of a specific
access control which is not supported through the
RBAC model or is much efficient to implement in
this manner than using presented policies without
conditions (i.e. insertion of a digital signature into
document is allowed if signature is valid and
generated using the key of the certain user). By
using a predicate which return value depends on the
state of an environment (i.e. access to document
depends on current state of the process to which
document belongs to), context-sensitive access
control (Ferraiolo et. al., 2003) is possible.

Figure 3: XML schema of access control policies.

The permission of policy is described by the
<permission> element showed in Figure 3. The
permission can be dual, to grant access (the value of
the type attribute is “grant”) or deny access (the
value of the type attribute is “deny”). In order to
avoid specifying explicitly the policy for each entity,
the propagation of policies is enabled, starting from
the entity specified by the <object> element
downwards or upwards the hierarchy. The attribute
propagation_direction defines the propagation
direction. If the attribute value is “down”, the
propagation is directed from the specified object
downwards along the hierarchy. On the other hand,
if the value is “up”, it is directed from the specified
object upwards. The level of propagation, i.e. the
maximum number of hierarchy levels the
propagation is performed, is specified by the
attribute propagation_level. The propagation
level can be unlimited, a certain number of levels or
with no propagation at all. Access control policy
strength is defined by the strength attribute as
defined in (Damiani et. al., 2000; Damiani et. al.,

2002). Values of the strength attribute can be
“normal”, “hard” and “soft”. The value “normal”
can be specified if the object of the access control
policy is the document schema or the document
instance, “hard” value is specified only for the
document schema and “soft” value if the object is
the document instance.

Access control policies defined for a descendant
role have a higher priority than the policies defined
for the ascendant role. Priority of the access control
policies defined for the same role is determined
according to the object they are related to (document
schema or document instance), to the strength of the
policy and also to the propagation level of the
policy. On the basis of these elements it is possible
to define eight priority levels (the priority is
descending from the first to the last): (1) the policy
defined for the document schema, with no
propagation, strength is “hard”, (2) the policy
defined for the document schema, with propagation,
strength is “hard”, (3) the policy defined for the
document instance, with no propagation, strength is
“normal”, (4) the policy defined for the document
instance, with propagation, strength is “normal”, (5)
the policy defined for the document schema, with no
propagation, strength is “normal”, (6) the policy
defined for the document schema, with propagation,
strength is “normal”, (7) the policy defined for the
document instance, with no propagation, strength is
“soft” and (8) the policy defined for the document
instance, with propagation, strength is “soft”.

4 ACCESS CONTROL IN XXACF

The process of access control is performed within
four steps: (1) a selection of the applicable access
control policies, (2) marking document nodes, (3)
conflict resolution and (4) execution of the requested
operation. Each of these steps is implemented within
one or more modules of the system. Hence, a change
in the algorithm of a particular step or the whole
access control procedure is performed by changing
or adding a certain module(s).

4.1 Selection of the Applicable Access
Control Policies

When a document is being accessed in order to
execute a certain operation, access control policies
defined for that document and its schema are loaded
from repositories. The access control policies being
loaded must be defined for the specified operation

SECRYPT 2007 - International Conference on Security and Cryptography

376

and for the roles assigned to the user who performs
the operation on that document.

The system tests the condition of usage for each
loaded access control policy. If condition is satisfied,
the access control policy will be applied; otherwise
it will not be applied.

4.2 Marking Document Nodes

Marking the document nodes is performed on the
DOM (Document Object Model) model of the
document. In order to provide the means for access
control in XXACF, the DOM model is extended
with the additional functionalities. The diagram in
Figure 4 shows the classes which represent the
marking of a DOM tree.

Each implementation of the XACNode interface
contains the MarkMap object which contains all
access control policies applied on that node (Figure
4 shows the example for the XACElementImpl).
The name of the role for which the access control
policy is defined is used as the key of the hash table
contained in the MarkMap class. Hash table values
are the instances of the MarkMatrix class which
contain access control policies defined for the given
role and applied on that node.

The MarkMatrix distributes access control
policies on the one of ArrayList lists of the
matrix matrix. The row index depends on whether
the access control policy grants or denies access to
that node. The column index represents the priority
level of the access control policy. Therefore,
matrix has two rows and eight columns.

Each of these lists contains instances of
MarkItem. A MarkItem contains the access control
policy and the distance from the root node selected
by the given policy to the node to which belongs that
MarkItem instance.

For each access control policy, the class Marker
determines which nodes of the tree are selected by
the object of the policy and applies the policy on
these nodes.

Figure 4: Classes for marking.

4.3 Conflict Resolution

After marking is finished, it is necessary to resolve
conflicts (if any) and determine the final access
control policies which will be applied on the nodes.
Upon conflict resolution there may be several final
access control policies for each node, where all final
access control policies either grant or deny the
access.

The first activity in selection of final access
control policies is conflict resolution according to
the “most specific subject takes precedence”
(MSSTP) principle (see Figure 5). According to this
principle, access control policies defined for the
roles on the lower hierarchical level have higher
priority than the ones defined for the roles on the
higher level. For each role it is checked whether
there are policies defined for that role. If the policies
defined for that role exist, they are selected. On the
other hand, if they don’t exist, the role hierarchy is
recursively traversed for policies.

When access control policies of a role are added
to the list of selected policies it is checked whether
the list already contains policies defined for one of
the ascendant roles. If there are policies defined for
any of the ascendant roles, they are removed from
the list. That can happen if a role A is an ascendant
to roles B and C, and there are no defined policies
for B, but these policies exist for roles C and A.
Since there were no policies for role B, the policies
of role A are applied according to the MSSTP
principle. If there are policies defined for role C
(which override policies defined for role A), the
policies of role A are not used. But, if the policies of
the role A are already in the list of the selected
policies, they must be removed in order to maintain
the MSSTP principle of conflict resolution.

Besides, while adding policies defined for a
certain role to the list, it is necessary to verify if
there are any policies of descendant roles in the list.
If they exist, given policies will not be added to the
list. That can occur if one role A is and ascendant to
roles B and C and there are defined policies for roles
A and B, while there are no policies defined for role
C. The conflict resolution procedure takes the
policies defined for role B. Since there are no
policies for role C, policies of its ascendant role (A)
are taken. But, since policies of role B are already in
the list of selected policies, policies of role A will
not be added in order to maintain the MSSTP
conflict resolution principle.

The next activity is conflict resolution using
“most specific object takes precedence” (MSOTP)
principle (see Figure 5). It is performed on the

EXTENSIBLE ACCESS CONTROL MODEL FOR XML DOCUMENT COLLECTIONS

377

policies selected in the previous activity. In this step,
the policies whose object is nearest to the node on
which the policy is applied are selected. The
distances between the root node selected by the
object of the policy and the node on which access
control policy is applied are compared.

The result of previously described activities is an
instance of MarkMatrix class which contains
access control policies (of all selected roles)
arranged according to priority levels. The policies
from the first highest non empty level of matrix are
retrieved.

If, in the selected priority level, there are access
control policies that grant and deny access, the
defined conflict resolution is verified. In case that
defined conflict resolution uses “denial takes
precedence” (DTP) principle, the final access
control policies are the ones that deny access. In
case that the applied principle is “grant takes
precedence”, the final access control policies are the
ones that grant access.

In case that in the selected priority level all
access control policies either grant or deny access,
the final access control policies grant access, or deny
it.

4.4 Operation Execution

XXACF supports the following operations on XML
documents: (a) updating documents (inserting new
nodes, deleting and changing (replacement) of the
existing ones) and (b) reading documents. The
reading operation is implemented in three different
ways: pruned reading, dummy reading and
encrypted reading. Apart from the already
implemented document operations, new operations
may be added by implementing an XXACF module
and registering it within the XXACF framework.

4.4.1 Update Operations

A new subtree to be inserted into the document tree
is temporarily inserted. Then, the selected access
control policies are applied on the whole tree and the
conflict resolution process is performed. If the final
access control policies on each node of the inserted
subtree grant the access, the insertion is allowed. If
the insertion of any node of the inserted sub tree is
not allowed, the subtree is removed from the
document tree because its insertion is not allowed.

Analogously to the insertion operation, a delete
operation of the subtree is allowed if a deletion of all
nodes of the subtree is allowed, i.e. if the final

access control policies of each node of subtree
permit this operation.

For the replacement of some subtree by another
subtree, it is necessary that access control policies
allow replacement of the nodes, i.e. that it is allowed
to replace one of the nodes and that replacement
with the given node is allowed. Hence, two sets of
access control policies have to be defined for the
operation of replacing a subtree. The first set defines
the precondition (whether the node can be replaced).
The second set defines the postcondition (whether
the replacement with a given node is allowed).

Figure 5: Conflict resolution.

4.4.2 Reading Operations

The XXACF currently supports three types of
reading operations: pruned reading, dummy reading
and encrypted reading.

Pruned reading provides only the reading of
those parts of the XML document that are allowed to
be read by the user – the content for which the user
has no read authorization is removed. Given the
extended DOM model of a document, this process is
performed by removing nodes of the document tree
for which the access is not granted. If a node, for
which the access is not granted, is a leaf, it is
removed from the tree. If a node with a denied
access is not a leaf (hence it is an XML element)
then, in order to preserve the document structure, it
is not removed from the tree, but its attributes which
the user is not granted to read are removed.

The dummy read operation processes the
document in such a way that the parts of the

SECRYPT 2007 - International Conference on Security and Cryptography

378

document not granted to be read are replaced by
dummy (fake) values. The purpose of this type of
reading operation is to obtain the document which is
in accordance with its XML schema. Since the XML
Schema standard supports a large number of data
types and defining new ones, generating dummy
values according to the given data type may be very
complex. We have opted to use the approach that
multiple dummy value generators may be
implemented and integrated into the XXACF, each
targeting a specific data type.

The pruned reading and dummy reading
operations are executed on user demand, i.e. on each
request for reading a document. In case of a large
number of users accesses the documents, mostly for
reading, using previously described reading operati-
ons that can seriously impact the system
performance.

The effective alternative to these approaches is to
use encrypted reading – by creating a new
document based on the original one, according to the
access control policies defined for the original
document. The users can access only the parts of the
new document for which they are authorized. One of
the methods to form that kind of document is to use
cryptographic techniques based on keys (Stallings,
1998; Schneier, 1996). According to access control
policies, different parts of document are encrypted
with different keys. The user possesses only those
keys that enable him or her to decrypt the parts of
the documents that he or she is allowed to access.
The major problem for this type of reading is to
determine which document parts will be encrypted
by which key. The simplest approach is to encrypt
each document node with a different key, while this
key is accessible only to the users authorized for the
access to the node. This approach is simple for
implementation, but can cause generation of large
number of keys. Our solution to this problem is to
determine role groups, where each group is
consisted of all roles to which the access to some
node(s) is granted. One key is generated for each
role group; all nodes for which that group has the
access right are encrypted by that key.

Activity diagram in Figure 6 describes the
XXACF procedure of determining the list of the root
nodes of the subtrees which each node should be
encrypted by the same key, as well as the possible
subtrees transformation. All nodes of the each
subtree own same role group. If the node is an XML
element, the method is recursively invoked for its
attributes and child nodes. If the node is not an XML
element, it is inserted in the list. In case that the node
is an element, and that it has no attributes or child

nodes (the element is a leaf node), it is inserted in
the list. If the element node is not a leaf, it is verified
if all its attributes and child nodes are in the list and
whether they all have the same role group as the
element node. If all these conditions are met, the
whole subtree having the given element as a root can
be encrypted by the same key. Therefore, all
attributes and child nodes are removed from list, and
the node is inserted. If one of these conditions is not
satisfied, the transformations of attributes, as well as
all child nodes that are not elements, are performed
in order to enable the encryption with different keys.
The XML Encryption specification allows only the
encryption on the element level and it is possible to
encrypt the whole element or its content only (XML
Encryption, 2002). If an attribute’s role group differs
from the role group of its element parent, it is
necessary to encrypt that attribute with another key.
In order to enable attribute encryption and maintain
conformance with XML Encryption specification, it
is necessary to transform it into the element. The
similar case occurs if it is necessary to encrypt the
element content (child node) with different keys.
Since it is not possible to encrypt the whole element
with one key, it is necessary to transform all
attributes to subelements of the given element. For
the same reason, there are the situations when all
not-element subnodes must be transformed. At the
end of this activity encryption list will contain the
root nodes of the subtrees which nodes will be
encrypted by the one key. Also, all root nodes
(subtreees) with the same role group should be
encrypted by the same key.

5 CONCLUSIONS

This paper presents the main features of the
eXtensible XML Role-Based Access Control
Framework (XXACF). The language for access
control definition provides its representation
according to the RBAC model and enables definition
of context-sensitive access control. The system
supports specifying access control policies on
document schema, document instance, and
document fragment levels. Also, content-dependent
access control policies specification is possible.
XXACF provides access control enforcement for
different operations on a document, as well as the
possibility of different ways of access control
enforcement for the same operation. XXACF is a
Java-based application. The system extensibility and
configurability facilitates the customization of a
specific implementation to users’ needs, on the basis

EXTENSIBLE ACCESS CONTROL MODEL FOR XML DOCUMENT COLLECTIONS

379

of document access control. The software
architecture, presented in this paper, separates XML
documents from RBAC components and provides an
independent design and administration of the access
control policies.

Figure 6: Creation of encryption node list in XXACF.

The most notable improvements over systems
reviewed in Section 2 are the following:

• Access control is based on the RBAC model
with support of the users’ roles hierarchy.

• Definition of access control policies on
different priority and granularity levels which
may be content depended.

• Context-sensitive access control enforcement
is supported.

• Support for separate access control enforce-
ment for different operations on documents
and different ways of implementing of the
same operation.

• XXACF is extensible in the way that its
deployment can be customized according to
users’ specific needs.

The XXACF prototype implementation is
verified on a real workflow system based on XML
documents.

Future work in development of XXACF includes
the integration with other access control systems,

enabling the application that uses XXACF operate
not only with XML documents, but also with data in
other formats (such as relational databases). Besides,
the functionality of defining the static and dynamic
separation of duties (SoD) constraints (Ferraiolo et.
al., 2003) is also under way.

REFERENCES

Ferraiolo, D. F., Kuhn D. R., Chandramouli, R., 2003.
Role-Based Access Control, Artech House.

Ferraiolo, D.F., Sandhu, R., Gavrila, S., Kuhn, D.R.,
Chandramouli, R., 2001. Proposed NIST Standard for
Role-Based Access Control. ACM Transactions
Information and System Security, 4(3), pp. 224-274.

Bhatti, R., Joshi, J.B.D., Bertino, E., Ghafoor, A., 2004.
XML Based Specification for Web Services Document
Security [Electronic version]. IEEE Computer Society
Press, 37(4), pp. 41-49.

Bhatti, R., Joshi, J.B., Bertino, E., Ghafoo, A., 2003.
Access Control in Dynamic XML-Based Web-
Services with X-RBAC [Electronic version]. The First
International Conference on Web Services, Las Vegas,
USA.

Botha, R.A., Eloff, J.H.P., 2001. An Access Control
Architecture for XML Documents in Workflow
Environments [Electronic version]. Proceedings of
SAICSIT 2001, South African Computer Journal, 3.

Botha, R.A., Eloff, J.H.P., 2001. A Framework for Access
Control in Workflow Systems. Information
Management and Computer Security, 9(3), pp 126–
133.

Damiani, E., De Capitani Di Vimercati, S., Paraboschi, S.,
Samarati, P., 2000. Securing XML documents
[Electronic version]. Proceedings of the 7th
International Conference on Extending Database
Technology, Konstanz, Germany, pp. 121-135.

Damiani, E., de Capitani di Vimercati, S., Paraboschi, S.,
Samarati, P., 2002. A Fine Grained Access Control
System for XML Documents. ACM Transactions on
Information and System Security, 5(2), pp. 169–202.

Bertino, E., Castano, S., Ferrari, E., 2001. Securing XML
Documents with Author-X. IEEE Internet Computing
5(3), pp. 21–31.

Bertino, E., Ferrari, E., 2002. Secure and Selective
Dissemination of XML Documents. ACM
Transactions Information and System Security, 5(3).
pp. 290–331.

Hada, S., Kudo, M., 2002. XML Access Control
Language. Retrieved January 10. 2006, from
http://www.trl.ibm.com/projects/xml/xss4j/docs/xacl-
spec.html.

Stallings, W., 1998. Cryptography and Network Security:
Principles and Practice, Prentice Hall.

Schneier, B., 1996. Applied Cryptography, John Wiley.
XML Encryption Syntax and Processing. Retrieved June

10. 2005, from http://www.w3.org/TR/xmlenc-core.

SECRYPT 2007 - International Conference on Security and Cryptography

380

