
PRACTICAL VERIFICATION OF UNTRUSTED TERMINALS USING
REMOTE ATTESTATION

Simone Lupetti
Department of Computer Science, University of Tromsø, N-9037 Tromsø, Norway

Gianluca Dini
Department of Information Engineering, University of Pisa, I-56122 Pisa, Italy

Keywords: Untrusted Terminal Problem, Remote Attestation.

Abstract: We present a technique based on Trusted Computing’s remote attestation to enable the user of a public terminal
to determine whether its configuration can be considered trustworthy or not. In particular, we show how the
user can verify the software status of an untrusted terminal and be securely informed about the outcome of
the verification. We present two flavors of this technique. In the first, the user makes use of a personal digital
device with limited computing capabilities and a remote trusted server that performs the actual verification. In
the second, the personal device is assumed to have enough computing power (as in the case of smart-phones
and PDAs) to autonomously perform the verification procedure.

1 INTRODUCTION

One of the fundamental prerequisite to use a comput-
ing device is to trust it to correctly perform the re-
quested operations. The owner (or a regular user) of a
computer is usually (even if not always rightfully con-
fident about the status of the software of his machine.
The prolonged use of a personal computer, possibly
including the installation and maintenance of the soft-
ware, represent a natural way to build a trust relation
with it.

But while establishing a trust relation by these
means is possible in the case of personal and private
computers, there are settings, such as for public ter-
minals in airports, hotel lounges and Internet cafés,
where such prolonged relation with a specific com-
puting device is hard (if not impossible) to achieve. In
these settings it is hard to know the practices used to
maintain the terminal, as well to determine with cer-
tainty the set of programs that runs on the platform.
Notice that these public terminals not only share all
security problems typical of a personal machine but,
because they are potentially used by an large num-
ber of users, the threats deriving from user’s mali-
cious behavior may be exacerbated. The usual way to
avoid unintended interactions among different users is
to map them into different roles on the machine, but

this practice is not a viable option where the user base
is not known a priori.

Therefore, when faced with the need to use a pub-
lic terminal, a user is usually forced to choose be-
tween stepping back and potentially endangering his
security and privacy. As consequence, most of users
will refrain to perform any “critical” operation i.e. any
operation that involves sensitive data such as pass-
words, PINs and cryptographic keys1. This means
that public terminals may be, for all practical pur-
poses, unfit to do anything from accessing a web-mail
service to perform an Internet banking transaction.
This dramatically restricts the usefulness of such ter-
minals.

The problem we have described is known as
the untrusted terminal problem and an handful of
very different solutions have been proposed along
the years. Some of them are based on personal
trusted devices, from smart cards (Abadi et al., 1991;
Berta et al., 2005) to camera phones (Clarke et al.,
2002; McCune et al., 2005), others require users
to make “easy” cryptographic computations (Stabell-

1Notice also that, while the notification that a password
will be sent on an “untrusted” network is a common fea-
ture of most of Internet browsers, the notification that such
a password will be typed of an “untrusted” terminal is un-
conceivable.

402
Lupetti S. and Dini G. (2007).
PRACTICAL VERIFICATION OF UNTRUSTED TERMINALS USING REMOTE ATTESTATION.
In Proceedings of the Second International Conference on Security and Cryptography, pages 402-407
DOI: 10.5220/0002123304020407
Copyright c© SciTePress



Kulø et al., 1999), finally, other are based on AI trans-
formations (King and dos Santos, 2005).

Differently from the previous works on this topic,
we do not focus on authenticating a single message
or operation but on determining whether the whole
terminal meets the security requirements of the user.
This includes the authenticity of the messages leaving
the terminal but also addresses further security and
privacy guarantees as, for example, that user’s data,
such as typed passwords and browsing history, is not
stored in local memory for later unauthorized use by
other parties. To this end we propose the use of re-
mote attestation, a key feature of Trusted Computing
(TC), to give the user confidence on the trustworthi-
ness of the terminal he is using. This technique is
designed to allow a local platform to authenticate the
hardware configuration and the software stack run-
ning on a remote platform to tune its amount of trust
in this latter (Bottoni et al., 2006).

We present two variations of the our verification
technique. In the first the user is helped by a trusted
digital deice that is not powerful enough to perform
remote attestation. In this case we assume the avail-
ability of a trusted remote server performing the re-
mote attestation on behalf of the user and securely
communicating him the outcome. We assume the
server is well-known, providing this service as part
of its business, for example. The second scenario we
consider is one in which the trusted personal digital
device is capable of carrying on a remote attestation
procedure by itself.

The rest of the paper is organized as follows. In
Section 2 we introduce the system model. In Sec-
tion 3 we give an overview of Trusted Computing and
remote attestation. In Section 4 we present the two
variations of the verification protocol and argue their
resistance to the terminal duplication attack. The pro-
tocol is then discussed in Section 5 together with the
possible vulnerabilities inherently deriving from the
Trusted Computing model. We draw our conclusions
in Section 6.

2 MODEL

A user U wants to gain confidence about the trustwor-
thiness of an untrusted public terminal T . This means
that an attacker can control the complete software sta-
tus of T . However we exclude threats in which the
attacker have physical access to T and is able tamper
with its hardware. With this ability a malicious party
can always gain complete control of a machine and,
under this assumption, no verification process would
be able to detect tampering.

Verifier

ST
U

Untrusted
Network

P

T
U

P

Scenario 1

Scenario 2

Figure 1: Representation of the two scenarios for the verifi-
cation of an public terminal.

T ’s hardware must be conform to the Trusted
Computing specifications and therefore supports the
remote attestation procedure as described in (Pearson,
2002). If this is not the case, our verification proce-
dure will fail and the user U will not be able to con-
sider T as trustworthy regardless its actual software
status.

We assume a public terminal that supports our
verification mechanism to clearly show a label (for
example taped on its screen frame) stating a human
readable ID (more on this in Section 4.3). Notice,
that because we offer security under the assumption
of software-only attacks, the assumption of ID la-
bels as a secure source of information for the user is
sound (McCune et al., 2005).

To perform the verification of T ’s software status
we assume that the user carries with her a trusted per-
sonal device P. Initially we will consider this device
to have a simple screen and minimal computing ca-
pabilities. This could be a smartcard with a alphanu-
meric display that can be connected to the terminal
T in order to exchange data with it. We assume that
while P is not powerful enough to perform the whole
verification procedure, it is able to compute some sim-
ple cryptographic functions such as message authen-
tication code and to display the user a string of char-
acters. In this scenario we assume the presence of
a remote trusted server S connected to the terminal
T (Figure 1, Scenario 1). The communication chan-
nel between T and S is considered also untrusted. In
particular we assume that an attacker is able to read,
modify, delete and create new messages to and from
T .

Later we will relax the constrains on the personal
digital device considering a more powerful one, such
a smart-phone or a PDA, that is able to carry on the
verification process autonomously. In this scenario
the trusted server S is not needed anymore (Figure 1,
Scenario 2).

PRACTICAL VERIFICATION OF UNTRUSTED TERMINALS USING REMOTE ATTESTATION

403



3 TRUSTED COMPUTING AND
REMOTE ATTESTATION

A Trusted Computing Platform (TPM) is a comput-
ing platform entailing a specialized co-processor for
security operations, such as to perform digital signa-
tures and data hashing or to provide protected storage.
We consider the Trusted Computing Group platform’s
specifications as reference model (Pearson, 2002).
This provides guidelines for developers to enable the
design of security-related functionalities on a TPM-
based system.

Remote attestation is a process with which a host
can authenticate the software stack present in a re-
mote platform. Intuitively, a trusted component called
Core Root of Trust Management (CRTM) starts the
boot process on the remote platform measuring the
BIOS. Then the BIOS measures the boot loader, that,
in turn, measures the operative system’s kernel and
so on, up to user’s applications. A measure is usually
performed by taking a SHA-1 hash of the image of the
software that is being measured. This hash is stored
in a TPM’s protected set of registers called Platform
Configuration Registers (PCRs). A software measure-
ments describe therefore the whole platform’s config-
uration (Sailer et al., 2004). In this way it is possible
to detect the run of malicious (or simply undesired)
software.

To prevent tampering, access to the PCRs is
hardware-restricted and their value can be modified
only in two ways: the first is cold-initializing the
whole platform (TPM Startup()), operation that set
all PCRs to all zeroes but requires physical access to
the platform (in case the initialization follows instead
from a sleep-mode, the state of all PCRs is restored
to the ones previous the sleep). The second way to
modify the value of a PCR is to use the TPM extend()
function. This latter takes a 160 bit string and tar-
get PCR as input values. The selected register is then
updated as follows: the input string is concatenated
with the current value of the register, then the result is
hashed in 160 bit digest to fit the register length and
there stored. The value for the i-th update of a PCR
(indicated as PCR[i]) is therefore calculated as:

PCR[i] = SHA-1(input string | PCR[i-1])

The value of a PCR can be reported either by a
TPM PcrRead() that produces a non-cryptographic
description of the content of a set of PCRs or by the
TPM Quote() function. This latter requests the TPM
to produce a signed message that contains the value of
a set of PCRs and some externally supplied data, (typ-
ically a nonce to confirm the freshness of the signed

message)2. The resulting data structure can be used
to implement remote attestation because it assures the
integrity and authenticity of the content the PCR to
remote parties.

To produce this data structure,a TPM has exclu-
sive access to an attestation identity key pair (AIK−1;
AIK) securely created and kept inside the TPM for its
whole lifetime. Its private part AIK−1 is protected in a
way that it can be used only by the TPM itself while a
certificate issued by an external certification authority
binds its public part to the identity of a specific TPM.

4 VERIFICATION PROTOCOL

We describe here how the verification of T ’s status is
carried out by the user first with the help of a trusted
personal device with limited computing capabilities P
and the remote server S, and how the user is securely
informed about the outcome. Then we will show how
the same verification procedure can be greatly simpli-
fied by relaxing the constraints on the personal device
P.

In both scenarios with TID we indicate the identi-
fier of the untrusted terminal T . We assume this iden-
tifier to be derivable, in some way, from the public
identity key AIK of T by a compression mechanism
such an hash function. For example, if SHA-1 is used
we have:

TID = SHA-1{AIK}

While details about this are still scarce, we expect
a TPM identity key pair certificate to contain (at least)
serial number and a series of attributes uniquely iden-
tifying the TPM (the distinguished name, in X.509
jargon). This means that the serial number (or any
other unique attribute) can be used as TID as well. Re-
gardless of what is used as TID, a human readable ver-
sion of this must clearly visible on the public terminal.

4.1 Verification by a Remote Trusted
Server

In this first scenario we assume the user to be helped
in the verification process by a trusted personal de-
vice with limited computing capabilities and a mini-
mal display and by a remote trusted server S that per-
forms the verification on user’s behalf. In particular
we assume P to be able to perform message authen-
tication encoding and decoding. In this scenario P

2The caller must have the necessary credentials to use
the signing key to generate this message

SECRYPT 2007 - International Conference on Security and Cryptography

404



shares a secret string of characters K with S. A high
level description of the procedure is given below.

Step 1: After user’s request, P produces the follow-
ing one-time login token:

OT P = MACK(Time)

by computing a symmetric message authentica-
tion code such as HMAC under the key K. The ac-
tual data to be authenticated is a timestamp Time
indicating when the login attempt is being per-
formed.

Step 2: P −→ S : OT P,Time
P forwards the one-time password and the times-
tamp to the trusted server S (using the connec-
tivity offered by T ) to initiate the verification of
the local terminal. The use of the one-time pass-
word OT P is necessary because otherwise the un-
trusted terminal could record and reply a login to-
ken to the server S to asking a remote attestation
and therefore potentially exposing S to a DoS at-
tack. OT P serves also as a guarantee for user’s
anonymity because it creates unlinkability of dif-
ferent login attempts from the same (or different)
terminal.

Step 3: S −→ T : “Attest”,N
The trusted server checks that Time is properly
authenticated. Notice that timestamps are here
used only to prevent replay attacks and there is
therefore no needs for finely synchronized clocks.
The only verification done on the value of Time
is that this latter must indicate a subsequent in-
stant in respect with the last login attempt from
the same user. If so, the trusted server S initiates
the remote attestation protocol by challenging the
untrusted terminal. The challenge should include
a nonce N to prevent the host under verification to
re-use an old response.

Step 4: T −→ S : {PCRset,N}AIK−1

At this point the terminal can respond to the attes-
tation challenge, issuing a TPM Quote() to pro-
duce an answer message containing a set of PCRs
describing the platform status and the nonce from
the attestation challenge to prove the freshness of
the reply. This message is then sent back to S. No-
tice that in some implementations the sole list of
PCRs may not be enough for S to derive the T ’s
configuration, maybe because the value of PCRset
for too many acceptable configurations should be
known by S. In this case, to allow direct inspec-
tion by S of the T software status, the log of all
executable activations should be sent along with
PCRset. This latter would be also sent to S as it
serves as integrity measure of the log.

Step 5: By the analysis of PCRset (or PCRset and the
activation log, if necessary) S determines whether
T is in a trustworthy configuration or not. The set
of acceptable configurations may vary both in re-
spect of the service that the user want to access
(different services may require different config-
urations) and of the users themselves (different
users may have different requirements about T ).

Step 6: S −→ P : Outc,TID,HMACK(Outc|TID)
S sends the terminal the attestation outcome Outc.
We indicate here that both a positive or a nega-
tive outcome is sent back to T but, in the case the
attestation fails, to send a negative outcome to T
may be completely irrelevant since T , not being in
a trusted configuration could drop this message.
This means that Outc can simply be a confirma-
tion bit in case of positive attestation and nothing
otherwise. What is important, however, is that T
will not be able to produce a phony positive out-
come because it does know K. S sends this mes-
sage to T that forward it ad verbatim to P. We
omitted this additional step for brevity.

Step 7: P −→U : TID
The trusted digital device D verifies the integrity
of Outc and TID, then checks if the verification
outcome Outc is positive. If this is the case, it
displays to its screen the terminal identifier TID in
the same format as printed on T ’s label.

Step 8: The user compares TID that he sees on the
terminal with the one displayed on his personal
device. If they are equal then the user assume that
the machine that S has verified is really T . Else
S has been tricked into verifying another machine
on T ’s behalf and the terminal is considered not
trustworthy.

4.2 Verification by the Trusted Personal
Device

In this second scenario we relax the constraints on the
trusted personal device that is now assumed to able
to perform the remote attestation autonomously. The
verification process can this way avoid to resort on a
remote trusted server resulting in a greatly simplified
procedure.

Step 1: P −→ T : “Attest”,N
The trusted personal device directly initiates the
remote attestation protocol by challenging the un-
trusted terminal. As in the previous scenario the
challenge includes a nonce N to prevent the host
under verification to re-use an old response. No-
tice that, since this message does not bring any

PRACTICAL VERIFICATION OF UNTRUSTED TERMINALS USING REMOTE ATTESTATION

405



user identification, the privacy of the user is pre-
served also in this version of the protocol.

Step 2: T −→ P : CAIK ,{PCRset,N}AIK−1

The terminal responds to the attestation challenge.
It first issue a TPM Quote() to produce an string
containing a set of PCRs describing the platform
status. Then attaches to this string the nonce from
the attestation challenge to prove the freshness of
the reply and send it back to P. A digital certifi-
cate CAIK vouching for the authenticity of the key
AIK is also send along with this message.

Step 3: P verifies the digital signatures of
{PCRset,N}AIK−1 using CAIK

3. Then P ana-
lyzes the PCRset to determine whether T is
in a trustworthy configuration or not. P takes
this decision exactly as S does in the previous
scenario.

Step 4: P −→U : TID
If P finds that the terminal T is in a trusted config-
uration it retrieves or calculates TID and displays
it on its screen.

Step 5: The user compares TID that he sees on the
terminal with the one displayed on his personal
device exactly as in the previous scenario.

4.3 Terminal Duplication Attack

The previous protocol (in both variants) makes use,
among other things, of physical labels containing a
cryptographic digest of the terminal’s public attesta-
tion key AIK. In its last step the user is required to
compare the value on this label with the value, that is
displayed on his personal device P. This is necessary
to establish a link between the terminal that the user is
using and the machine that has been actually attested.
Without this provision the protocol would be vulnera-
ble to a terminal duplication attack where a malicious
host M in an acceptable configuration is measured in
place of the terminal T and the outcome of the attes-
tation is replayed to the user as it would come from T .
At this point the user would believe that the machine
that has been attested is T while, in fact, is not.

Notice that the fact that the malicious host M
is in a trusted configuration (otherwise the remote
attestation would fail) does not help to confine the
verification outcome (Outc in the first scenario and
{PCRset,N}AIK−1 for the second) to M.

While the host that performs the remote attesta-
tion (S or T ) can make sure (by direct verification)
that M’s configuration is such that it does not allow
the message containing the verification outcome to be

3We assume that P is able to verify and use CAIK

transfered on another machine, the mere fact that it
needs to outputted somehow to the user (in our case
by sending it to his personal device P) requires this
message to escape the (trusted) domain of the ma-
chine that has just been verified (for example by an
USB or infrared port, etc.). This makes the attacker
able to capture the outcome as soon as it exits M and
reply it at will to any other machine.

5 DISCUSSION

Our technique allows the user to establish the trust-
worthiness of the whole platform she is willing to use.
This means that, once the verification protocol has
successfully run on a public terminal, the user does
not need anymore to be concerned about possible ma-
licious behavior of this latter. While most of other
works in this field deal on how authenticate a single
message coming from an untrusted terminal, we fo-
cus instead in how determine once-for-all if the ter-
minal can be safely used by the user (at least within
the same session). We believe this to represent a clear
advantage over the other available methods in terms
of usability. The downside of using remote attestation
is that hardware compromization would render tour
method ineffective, while the approaches aiming to
authenticate each single message are immune to such
a threat.

While the trustworthiness of the public terminal T
is established by measuring its software state using
Trusted Computing’s remote attestation, some con-
cerns have been expressed about TC from the tech-
nical point of view.

While this remote attestation gives strong assur-
ance on what runs on a platform, it is still unable
to cope with trojans exploiting the inevitable vulner-
abilities present even in trusted software (Oppliger
and Rytz, 2005). Also, the requirement that all code
containing a runtime that could potentially run in an
general purpose platform (including interpreters, vir-
tual machines, etc.) must be instrumented to allow
measurements of the code it runs, may be hard to
meet. Vendors of closed source, proprietary appli-
cations may not be motivated to provide an instru-
mented version of their software (Reid and Caelli,
2005). However, both these concerns are less press-
ing in the case of a kiosk-like public terminals be-
cause these latter usually run a minimal version of the
operative system and limited number of applications
(typically a just web browser). This would reduce on
one hand the overall size of the software running on
the machine, hence leading to expect less vulnerabil-
ities and, on the other hand these particular settings

SECRYPT 2007 - International Conference on Security and Cryptography

406



may motivate vendors to provide ad-hoc version of
their software (e.i. web browsers, virtual machines
etc.) instrumented for remote attestation to enter the
market of public terminals.

To date it remains unclear, however, how the link
between a certified platform configurations and it
trustworthiness should or could be established. While
a given set of PCR’s values (or a log whose integrity is
guaranteed by the PCRs) must be certified to be used
in remote attestation, it is still uncertain on who will
provide such a certification and which criteria will be
used for this purpose.

Other concerns have been expressed about the
ethical and social implication of the complete veri-
fication of the software state of machine typical of
TC (Anderson, 2003). However we believe these
to be here less relevant because what is measured
is a public terminal, not a general purpose, private
machine where remote attestation may expose user
habits and private data. We argue therefore that the
measurement of a public terminal does not threat the
user’s privacy just because of its public availability.

6 CONCLUSIONS

We have presented a mechanism to allow the user of a
public terminal to gain confidence about its software
state using Remote Attestation a technique provided
under the umbrella of Trusted Computing. Our tech-
nique comes in two flavors: in the first one, the limita-
tions due to a minimal personal device are overcame
by using a trusted remote server that performs the ter-
minal verification on behalf of the user. In the second,
we relax the assumptions on the personal digital de-
vice and assume that it can autonomously verify the
public terminal without the help of a trusted remote
server.

By the use of identification tags posted on the pub-
lic terminal and the trusted personal device, the user
is presented a reliable confirmation that the attesta-
tion process has been successfully carried out for the
machine she is actually using.

Our solution also takes into account user privacy
by enabling her to use a different identification token
to initiate each verification process. This makes hard
for a set of colluding terminals to link the login at-
tempts of the same user to the verification service.

We believe that our mechanism may effectively
enable the use of public terminals also for handling
sensible user data without threatening the privacy of
user’s data.

REFERENCES
Abadi, M., Burrows, M., Kaufman, C., and Lampson, B. W.

(1991). Authentication and delegation with smart-
cards. In TACS ’91: Proceedings of the International
Conference on Theoretical Aspects of Computer Soft-
ware, pages 326–345, London, UK. Springer-Verlag.

Anderson, R. (2003). Cryptography and competition pol-
icy: issues with ’trusted computing’. In PODC ’03:
Proceedings of the twenty-second annual symposium
on Principles of distributed computing, pages 3–10,
New York, NY, USA. ACM Press.

Berta, I. Z., Buttyán, L., and Vajda, I. (2005). A framework
for the revocation of unintended digital signatures ini-
tiated by malicious terminals. IEEE Trans. Depend-
able Secur. Comput., 2(3):268–272.

Bottoni, A., Dini, G., and Kranakis, E. (2006). Creden-
tials and beliefs in remote trusted platforms attesta-
tion. In WOWMOM ’06: Proceedings of the 2006 In-
ternational Symposium on on World of Wireless, Mo-
bile and Multimedia Networks, pages 662–667, Wash-
ington, DC, USA. IEEE Computer Society.

Clarke, D. E., Gassend, B., Kotwal, T., Burnside, M., van
Dijk, M., Devadas, S., and Rivest, R. L. (2002). The
untrusted computer problem and camera-based au-
thentication. In Pervasive ’02: Proceedings of the
First International Conference on Pervasive Comput-
ing, pages 114–124, London, UK. Springer-Verlag.

King, J. and dos Santos, A. (2005). A user-friendly ap-
proach to human authentication of messages. In FC
2005: Proccesings of the 9th International Confer-
ence on Financial Cryptography and Data Security,
volume LNCS 3570/2005, pages 225–239. Springer
Berlin / Heidelberg.

McCune, J. M., Perrig, A., and Reiter, M. K. (2005).
Seeing-is-believing: Using camera phones for human-
verifiable authentication. In SP ’05: Proceedings of
the 2005 IEEE Symposium on Security and Privacy,
pages 110–124, Washington, DC, USA. IEEE Com-
puter Society.

Oppliger, R. and Rytz, R. (2005). Does trusted computing
remedy computer security problems? IEEE Security
and Privacy, 3(2):16–19.

Pearson, S. (2002). Trusted Computing Platforms: TCPA
Technology in Context. Prentice Hall PTR, Upper Sad-
dle River, NJ, USA.

Reid, J. F. and Caelli, W. J. (2005). DRM, trusted comput-
ing and operating system architecture. In ACSW Fron-
tiers ’05: Proceedings of the 2005 Australasian work-
shop on Grid computing and e-research, pages 127–
136, Darlinghurst, Australia, Australia. Australian
Computer Society, Inc.

Sailer, R., Zhang, X., Jaeger, T., and Doorn, L. V. (2004).
Design and implementation of a TCG-based integrity
measurement architecture. In Proceedings of the 13th
USENIX Security Symposium, pages 223–238.

Stabell-Kulø, T., Arild, R., and Myrvang, P. H. (1999). Pro-
viding authentication to messages signed with a smart
card in hostile environments. In Proceedings of the 1st
USENIX Workshop on Smartcard Technology.

PRACTICAL VERIFICATION OF UNTRUSTED TERMINALS USING REMOTE ATTESTATION

407


