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Abstract: Lately, hash function security has received increased attention. Especially after the recent attacks that were 
presented for SHA-1 and MD5, the need for a new and more robust hash function has become imperative. 
Even though many solutions have been proposed as replacements, the transition to a new function could be 
costly and complex. In this paper, we introduce a mode of operation that can be applied to any existing or 
future hash function in order to improve its collision resistance. In particular, we use steganography, the art 
of hiding a message into another message, to create a scheme, named Σ-Hash, which enforces the security of 
hashing algorithms. We will demonstrate how, apart from hash function security, Σ-Hash can also be used 
for securing Open Source code from tampering attacks and other applications. 

1 INTRODUCTION 

Cryptographic hash functions are nowadays an 
essential part to the majority of cryptographic 
protocols. A hash function is a process that takes an 
input of arbitrary size and returns a fixed size output, 
which is called hash value or message digest. Hash 
functions should have the following cryptographic 
properties: first, pre-image resistance dictates that 
given the hash value h, it should be computationally 
infeasible to find any message m so that h=hash(m). 
Moreover, a hash function should also be second 
pre-image resistant, which means that given a 
message m1 it should be hard to find a message 
m2≠m1 so that hash(m1)=hash(m2). Finally, 
collision resistance impairs that it should be hard to 
find two different messages m1, m2 so that 
hash(m1)=hash(m2). 

Most popular hash functions, such as MD5 
(Rivest, 1992) and SHA-1 (NIST, 1995) construct a 
hash value by applying a variant of the Merkle-
Damgård construction (Merkle, 1989) (Damgård, 
1989) to a compression function. According to this 
scheme, a long message is broken into equal-sized 
blocks with the final block being padded to the 
allowable block size. Then, a compression function 
is operated on the blocks to produce the fixed size 
hash value. If the compression function is collision-
resistant then so will be the hash function. Even 
though the Merkle-Damgård construction ensures to 

some point the security of hash functions, it also has 
some vulnerabilities that can be exploited to attack 
such algorithms.  

Recently, various attacks (Boer, 1993) (Wang 
2005) to these algorithms were presented provoking 
discussions in order to propose a new, safer hashing 
algorithm. Apart from the obvious problem of 
security and collisions another issue has also 
emerged: existing applications and cryptographic 
algorithms should be able to easily migrate to a new 
possible function, a task that may not be easy. The 
hash transition problem, as it is referred to, has 
various aspects which have been examined in 
(Bellovin, 2005). Randomized hashing (Halevi, 
2005) is a mode of operation that has been proposed 
for strengthening hash functions. It has been 
designed mainly for use in digital signatures 
schemes, without requiring any alterations in the 
existing algorithms and their implementation.  

Here, we introduce a mode of operation for hash 
functions that uses steganography to enhance 
collision resistance of current and future hashing 
algorithms. Steganography is used to hide a secret 
message into another message that is characterized 
by redundancy. In this paper we use steganographic 
functions to produce hash values that are more 
resistant to collisions. This mode of operation, called 
Σ-Hash (Sigma Hash), can be used in conjunction 
with any hashing algorithm. Due to the properties of 
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the steganographic algorithms it is hard for an 
attacker to produce collisions for Σ-Hash. 

The structure of this paper is as follows: in 
section 2 we briefly describe our motivation. 
Subsequently we present the basics of 
steganography. In section 4 the proposed Σ-Hash 
scheme is presented and analyzed. Finally, we 
provide some concluding remarks. 

2 MOTIVATION 

Even though hash functions are carefully designed to 
satisfy the required security properties, they are still 
vulnerable to collision attacks. Due to their nature, it 
will always be possible to find two different inputs 
that will produce the same output. Using the 
birthday paradox (Bellare, 2004) an attacker can find 
a collision for a hash function of range r in r1/2 
operations. This is considered the simplest attacking 
method, equivalent to a brute force attack. A 
birthday attack is considered computationally 
infeasible for modern.  

Nevertheless, other more efficient techniques 
have been proposed that can identify collisions in 
fewer steps. The first attack in SHA-0 was presented 
by Wang (Wang, 1997) in 1997. Earlier, in 1993 
some form of collisions for MD5 had been found 
(Boer, 1993). Recently, Wang’s team discovered 
collisions in MD4, MD5, HAVAL-128, and 
RIPEMD (Wang, 2005), while the authors in 
(Biham, 2005) presented a technique that can be 
used to find collisions in SHA-0 with a 251 
complexity. Wang et al showed in (Wang, 2005) that 
a collision can be found in SHA-1 with 269 
computations. Even though these attacks are 
theoretical, they demonstrate that the currently most 
widely used hash algorithms are indeed vulnerable. 

Furthermore, lately, especially with the 
emergence of the open source movement, it is very 
common for users to download open source 
programs, compile them locally and then execute 
them. This has led to a new form of attack, called 
source code tampering, where a malicious user alters 
the source code or even inserts arbitrary pieces into 
it. A user downloading such code has no way of 
knowing if the original source code has been 
tampered with and of course, cannot be expected to 
review every single line of code that he downloads. 
Hash functions provide a means for integrity 
checking which can mostly detect and correct errors 
introduced by the network. A malicious user that is 
able to modify the source code remotely he will as 
easily be able to also modify its hash value. Such 
kind of attacks may be countered with the use of 

digital signatures. However, the use of digital 
signatures brings along all the known issues of 
public key cryptography: performance and 
communication overhead, key management issues, 
not to mention the growing number of identity theft 
and phishing incidents.  

3 STEGANOGRAPHY 

Steganography concerns itself with ways of 
embedding a secret message into a cover object, 
without altering the properties of the cover object 
evidently. The embedding procedure is typically 
related with a key, called a stego-key. Without 
knowledge of this key it will be difficult for a third 
party to extract the message or even detect its 
existence. Once the cover object has data embedded 
in it, it is called a stego object. The amount of data 
that can be hidden in a cover object is often referred 
to as embedding capacity. The embedding capacity 
is directly related with the secrecy of the message. 
Usually, the distortions in the cover object caused by 
the steganographic algorithm become more obvious 
as a user tries to add more hidden data.  

In general, any object which demonstrates 
increased redundancy can be used to hide 
information. Image steganography usually involves 
hiding information in the Least Significant Bits 
(LSB) in the spatial or frequency domain. Audio 
steganography works in a similar way. Text based 
steganography uses methods that are similar to those 
for image and audio steganography. However, in 
many cases, hidden messages in texts need to be 
carefully protected since an abnormality in natural 
language can be easily detected. Other techniques 
include syntactic and semantic manipulation of a 
given text or aesthetic manipulation, such as the 
white space method. The latter involves adding 
spaces or tabs at the end of words or lines.  

Mark-up languages, like HTML, can be used to 
store data. One can store binary values based on the 
simplicity of such languages as well as the freedom 
to rearrange tags without changing the displayed 
page. Programming languages like C or Java have 
stricter rules and thus less redundancy. One could 
always use steganographic methods that are based 
on aesthetic changes. For example, white space 
steganography could be used as most compilers 
disregard spaces and tabs. Moreover, one could 
operate steganographic functions on source code 
comments, or even insert carefully coded comments 
in order to hide a message.  
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4 THE Σ-HASH SCHEME 

The proposed scheme combines Steganography and 
hash functions in order to improve the collision 
resistance of the latter. In this section we will 
describe in detail the proposed method. 

 
Figure 1: Σ-Hash public mode. 

4.1 Hashing and Verifying 

Let M denote the original message that will be Σ-
Hashed. During the first step M is hashed using any 
hashing algorithm fh, to produce the hash value H:  

fh (M) = H (1) 
In the second step we embed the hash value H to 

M. This can be done by using any known 
steganographic algorithm fs. The stego-key for the 
embedding process will be the hash value H that was 
produced in the first step. The output of this step will 
be a stego-object called MS as follows:   

fs (M, H, H) = MS (2) 
By choosing H as a key we eliminate the need 

for a key exchange and maintenance, as the hash 
value will be exchanged anyway. Furthermore, the 
steganographic process ensures that the secret 
message, in our case the hash value, will be spread 
across the original message, regardless of its size 
and without affecting its appearance and 
functionality. Thus, the original object will remain 
functional, regardless of the embedded message.  
In the third step the stego-object MS is hashed: 

fh (MS) = HS (3) 
We have now computed two different hash values 
for seemingly the same object. The first one, H, is 
the usual hash value, while the second one, HS, is 
computed over an alternate version of the original 
object, which contains a secret message, embedded 
to it using steganography. The final hash value that 
will be used is produced by XOR-ing H and HS: 

Σ-Hash = H XOR HS (4) 
Σ-Hash is distributed along with the stego-object 

MS. Figure 1 depicts how this public mode of Σ-

Hash functions. Alternatively, a user may choose to 
keep H private and only publish HS. In this case: 

Σ-Hash = HS (5) 
This private mode, viewed in Figure 2, can be used 
from the author of M, to monitor possible attempts 
for collision attacks. 

 
Figure 2: Σ-Hash private mode. 

In order to verify the validity of the given hash 
functions in terms of ensuring that there is no 
attempt for collision attack, three steps should be 
followed. Firstly, the given object, MS is hashed in 
order to produce HS’ which is XOR-ed with Σ-Hash:  

fh (MS) = HS’ 
H’ = Σ-Hash XOR HS’ (6) 

In the case of the private mode there is no need for 
XOR-ing as H’ is already known to be equal to H 
and kept private. As we mentioned in the previous 
section H’ is used as the key for embedding the key 
H to M. Thus, in order to retrieve H, which is stored 
as a secret message using steganography, the inverse 
steganographic function fs

-1 is performed, using H’ 
as the stego-key:  

fs
-1(MS, H’) = H (7) 

Evidently, H’ should be equal with H, otherwise a 
collision attack has been attempted. 

4.2 Attacking Σ-Hash 

We consider an attacker that wishes to attack Σ-Hash 
in terms of collision resistance. Initially two choices 
exist: find a collision for the hash of M or for the 
hash of MS. In any case this would mean that M’ or 
MS’ should be found so that: 

H’ = fh (M’) = fh (M) = H   (8) 
or  

HS’ = fh (MS’) = fh (MS) = HS (9) 
Considering the first choice, an attacker 

computes M’ that produces the same hash value with 
M. In this case, embedding H to M’ would produce a 
significantly different stego-object MS’ ≠ MS. Robust 
steganographic algorithms ensure that the hidden 
data are not embedded into a specific area of the 
cover object but instead are equally and randomly 
spread into it. Thus, even slight variations in the 
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contents of the cover object can produce different 
stego-objects. The hash value of a different stego-
object MS’ would be different from HS and so would 
be the final Σ-Hash value.  

We argue here that a steganographic algorithm 
fed with the same key and secret message but 
slightly different input should produce alternate 
outputs. In detail, inputs should different 
significantly enough to be regarded as two separate 
objects. If significant bits in cover objects are 
different then steganography will produce different 
outputs. Especially in text based steganography, 
where two different cover objects are most likely 
expected to also vary in length, the stego-object will 
always be different. This fact also ensures that HS 
will also be different from H since MS is similarly 
significantly different from M. 

Similarly, an attacker may choose to find a 
collision for HS by carefully choosing a different 
stego-object MS’ so that: fh (MS’) = HS. In that case 
the inverse steganographic operation on MS’ will 
give off a different secret message than the expected 
hash value H. As the stego-object will be different 
from the original one, the steganographic algorithm 
will fail to provide the original hidden message.  

Evidently, an attacker should be able to 
overcome the difficulties set by steganography in 
order to successfully attack Σ-Hash. Efficient 
steganographic algorithms ensure that alterations to 
cover-objects result in different stego-objects and 
alterations to stego-objects make original hidden 
messages impossible to retrieve. An attacker would 
have to find a collision for H that also produces the 
same stego-object MS, something that is considered 
hard, having in mind the attacks we described in 
section 2. It should also be mentioned that it is hard 
even to extract M from MS as most steganographic 
functions are not reversible.  

4.3 Applications 

Naturally, Σ-Hash can be used to enforce hash 
function security. Its use can be applied to all known 
applications of hashing algorithms as long as the 
verification process is altered to match the one 
required by Σ-Hash. As we have already mentioned, 
Σ-Hash was originally designed as a solution to 
source code tampering. An attacker able to modify 
the source code will also be able to modify the hash 
that will be used to verify its integrity. However, if 
Σ-Hash is used, the attacker will not be able to 
successfully compute the new Σ-Hash value as he 
does not have knowledge of the cover object. In 
detail, the attacker can only alter the stego object as 
MS is only published. Suppose that he has also found 
a collision for HS. When a user will try to verify Σ-

Hash, he will not be able to extract the correct 
information from MS, and thus verification will fail.  

5 REMARKS 

In this paper we introduced Σ-Hash, a novel mode of 
operation for hashing algorithms that uses 
steganography to achieve better collision resistance. 
We presented the details of our scheme, which can 
be used with any existing or future hash function, 
and analyzed how collisions are avoided.  

Currently we are working on a proof of concept 
implementation of Σ-Hash that will enable us to 
experiment with further applications. We have 
demonstrated that our scheme can be used to avoid 
source code tampering, or phishing attacks. We 
intend to present further applications of Σ-Hash, 
using a real world implementation with commonly 
used hash algorithms. Finally, we will provide 
suggestions for specific steganographic algorithms 
which are optimal for using with Σ-Hash. 
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