
USING STEGANOGRAPHY TO IMPROVE HASH FUNCTIONS’
COLLISION RESISTANCE

Emmanouel Kellinis1 and Konstantinos Papapanagiotou2
1KPMG LLP, One Canada Square, London E14 5AG, United Kingdom

2Dept. of Informatics and Telecommunications, University of Athens, Panepistimiopolis, Ilissia, Greece, GR15784

Keywords: Hash function, steganography, source code tampering.

Abstract: Lately, hash function security has received increased attention. Especially after the recent attacks that were
presented for SHA-1 and MD5, the need for a new and more robust hash function has become imperative.
Even though many solutions have been proposed as replacements, the transition to a new function could be
costly and complex. In this paper, we introduce a mode of operation that can be applied to any existing or
future hash function in order to improve its collision resistance. In particular, we use steganography, the art
of hiding a message into another message, to create a scheme, named Σ-Hash, which enforces the security of
hashing algorithms. We will demonstrate how, apart from hash function security, Σ-Hash can also be used
for securing Open Source code from tampering attacks and other applications.

1 INTRODUCTION

Cryptographic hash functions are nowadays an
essential part to the majority of cryptographic
protocols. A hash function is a process that takes an
input of arbitrary size and returns a fixed size output,
which is called hash value or message digest. Hash
functions should have the following cryptographic
properties: first, pre-image resistance dictates that
given the hash value h, it should be computationally
infeasible to find any message m so that h=hash(m).
Moreover, a hash function should also be second
pre-image resistant, which means that given a
message m1 it should be hard to find a message
m2≠m1 so that hash(m1)=hash(m2). Finally,
collision resistance impairs that it should be hard to
find two different messages m1, m2 so that
hash(m1)=hash(m2).

Most popular hash functions, such as MD5
(Rivest, 1992) and SHA-1 (NIST, 1995) construct a
hash value by applying a variant of the Merkle-
Damgård construction (Merkle, 1989) (Damgård,
1989) to a compression function. According to this
scheme, a long message is broken into equal-sized
blocks with the final block being padded to the
allowable block size. Then, a compression function
is operated on the blocks to produce the fixed size
hash value. If the compression function is collision-
resistant then so will be the hash function. Even
though the Merkle-Damgård construction ensures to

some point the security of hash functions, it also has
some vulnerabilities that can be exploited to attack
such algorithms.

Recently, various attacks (Boer, 1993) (Wang
2005) to these algorithms were presented provoking
discussions in order to propose a new, safer hashing
algorithm. Apart from the obvious problem of
security and collisions another issue has also
emerged: existing applications and cryptographic
algorithms should be able to easily migrate to a new
possible function, a task that may not be easy. The
hash transition problem, as it is referred to, has
various aspects which have been examined in
(Bellovin, 2005). Randomized hashing (Halevi,
2005) is a mode of operation that has been proposed
for strengthening hash functions. It has been
designed mainly for use in digital signatures
schemes, without requiring any alterations in the
existing algorithms and their implementation.

Here, we introduce a mode of operation for hash
functions that uses steganography to enhance
collision resistance of current and future hashing
algorithms. Steganography is used to hide a secret
message into another message that is characterized
by redundancy. In this paper we use steganographic
functions to produce hash values that are more
resistant to collisions. This mode of operation, called
Σ-Hash (Sigma Hash), can be used in conjunction
with any hashing algorithm. Due to the properties of

337
Kellinis E. and Papapanagiotou K. (2007).
USING STEGANOGRAPHY TO IMPROVE HASH FUNCTIONS’ COLLISION RESISTANCE.
In Proceedings of the Second International Conference on Security and Cryptography, pages 337-340
DOI: 10.5220/0002125203370340
Copyright c© SciTePress

the steganographic algorithms it is hard for an
attacker to produce collisions for Σ-Hash.

The structure of this paper is as follows: in
section 2 we briefly describe our motivation.
Subsequently we present the basics of
steganography. In section 4 the proposed Σ-Hash
scheme is presented and analyzed. Finally, we
provide some concluding remarks.

2 MOTIVATION

Even though hash functions are carefully designed to
satisfy the required security properties, they are still
vulnerable to collision attacks. Due to their nature, it
will always be possible to find two different inputs
that will produce the same output. Using the
birthday paradox (Bellare, 2004) an attacker can find
a collision for a hash function of range r in r1/2
operations. This is considered the simplest attacking
method, equivalent to a brute force attack. A
birthday attack is considered computationally
infeasible for modern.

Nevertheless, other more efficient techniques
have been proposed that can identify collisions in
fewer steps. The first attack in SHA-0 was presented
by Wang (Wang, 1997) in 1997. Earlier, in 1993
some form of collisions for MD5 had been found
(Boer, 1993). Recently, Wang’s team discovered
collisions in MD4, MD5, HAVAL-128, and
RIPEMD (Wang, 2005), while the authors in
(Biham, 2005) presented a technique that can be
used to find collisions in SHA-0 with a 251
complexity. Wang et al showed in (Wang, 2005) that
a collision can be found in SHA-1 with 269
computations. Even though these attacks are
theoretical, they demonstrate that the currently most
widely used hash algorithms are indeed vulnerable.

Furthermore, lately, especially with the
emergence of the open source movement, it is very
common for users to download open source
programs, compile them locally and then execute
them. This has led to a new form of attack, called
source code tampering, where a malicious user alters
the source code or even inserts arbitrary pieces into
it. A user downloading such code has no way of
knowing if the original source code has been
tampered with and of course, cannot be expected to
review every single line of code that he downloads.
Hash functions provide a means for integrity
checking which can mostly detect and correct errors
introduced by the network. A malicious user that is
able to modify the source code remotely he will as
easily be able to also modify its hash value. Such
kind of attacks may be countered with the use of

digital signatures. However, the use of digital
signatures brings along all the known issues of
public key cryptography: performance and
communication overhead, key management issues,
not to mention the growing number of identity theft
and phishing incidents.

3 STEGANOGRAPHY

Steganography concerns itself with ways of
embedding a secret message into a cover object,
without altering the properties of the cover object
evidently. The embedding procedure is typically
related with a key, called a stego-key. Without
knowledge of this key it will be difficult for a third
party to extract the message or even detect its
existence. Once the cover object has data embedded
in it, it is called a stego object. The amount of data
that can be hidden in a cover object is often referred
to as embedding capacity. The embedding capacity
is directly related with the secrecy of the message.
Usually, the distortions in the cover object caused by
the steganographic algorithm become more obvious
as a user tries to add more hidden data.

In general, any object which demonstrates
increased redundancy can be used to hide
information. Image steganography usually involves
hiding information in the Least Significant Bits
(LSB) in the spatial or frequency domain. Audio
steganography works in a similar way. Text based
steganography uses methods that are similar to those
for image and audio steganography. However, in
many cases, hidden messages in texts need to be
carefully protected since an abnormality in natural
language can be easily detected. Other techniques
include syntactic and semantic manipulation of a
given text or aesthetic manipulation, such as the
white space method. The latter involves adding
spaces or tabs at the end of words or lines.

Mark-up languages, like HTML, can be used to
store data. One can store binary values based on the
simplicity of such languages as well as the freedom
to rearrange tags without changing the displayed
page. Programming languages like C or Java have
stricter rules and thus less redundancy. One could
always use steganographic methods that are based
on aesthetic changes. For example, white space
steganography could be used as most compilers
disregard spaces and tabs. Moreover, one could
operate steganographic functions on source code
comments, or even insert carefully coded comments
in order to hide a message.

SECRYPT 2007 - International Conference on Security and Cryptography

338

4 THE Σ-HASH SCHEME

The proposed scheme combines Steganography and
hash functions in order to improve the collision
resistance of the latter. In this section we will
describe in detail the proposed method.

Figure 1: Σ-Hash public mode.

4.1 Hashing and Verifying

Let M denote the original message that will be Σ-
Hashed. During the first step M is hashed using any
hashing algorithm fh, to produce the hash value H:

fh (M) = H (1)
In the second step we embed the hash value H to

M. This can be done by using any known
steganographic algorithm fs. The stego-key for the
embedding process will be the hash value H that was
produced in the first step. The output of this step will
be a stego-object called MS as follows:

fs (M, H, H) = MS (2)
By choosing H as a key we eliminate the need

for a key exchange and maintenance, as the hash
value will be exchanged anyway. Furthermore, the
steganographic process ensures that the secret
message, in our case the hash value, will be spread
across the original message, regardless of its size
and without affecting its appearance and
functionality. Thus, the original object will remain
functional, regardless of the embedded message.
In the third step the stego-object MS is hashed:

fh (MS) = HS (3)
We have now computed two different hash values
for seemingly the same object. The first one, H, is
the usual hash value, while the second one, HS, is
computed over an alternate version of the original
object, which contains a secret message, embedded
to it using steganography. The final hash value that
will be used is produced by XOR-ing H and HS:

Σ-Hash = H XOR HS (4)
Σ-Hash is distributed along with the stego-object

MS. Figure 1 depicts how this public mode of Σ-

Hash functions. Alternatively, a user may choose to
keep H private and only publish HS. In this case:

Σ-Hash = HS (5)
This private mode, viewed in Figure 2, can be used
from the author of M, to monitor possible attempts
for collision attacks.

Figure 2: Σ-Hash private mode.

In order to verify the validity of the given hash
functions in terms of ensuring that there is no
attempt for collision attack, three steps should be
followed. Firstly, the given object, MS is hashed in
order to produce HS’ which is XOR-ed with Σ-Hash:

fh (MS) = HS’
H’ = Σ-Hash XOR HS’ (6)

In the case of the private mode there is no need for
XOR-ing as H’ is already known to be equal to H
and kept private. As we mentioned in the previous
section H’ is used as the key for embedding the key
H to M. Thus, in order to retrieve H, which is stored
as a secret message using steganography, the inverse
steganographic function fs

-1 is performed, using H’
as the stego-key:

fs
-1(MS, H’) = H (7)

Evidently, H’ should be equal with H, otherwise a
collision attack has been attempted.

4.2 Attacking Σ-Hash

We consider an attacker that wishes to attack Σ-Hash
in terms of collision resistance. Initially two choices
exist: find a collision for the hash of M or for the
hash of MS. In any case this would mean that M’ or
MS’ should be found so that:

H’ = fh (M’) = fh (M) = H (8)
or

HS’ = fh (MS’) = fh (MS) = HS (9)
Considering the first choice, an attacker

computes M’ that produces the same hash value with
M. In this case, embedding H to M’ would produce a
significantly different stego-object MS’ ≠ MS. Robust
steganographic algorithms ensure that the hidden
data are not embedded into a specific area of the
cover object but instead are equally and randomly
spread into it. Thus, even slight variations in the

USING STEGANOGRAPHY TO IMPROVE HASH FUNCTIONS’ COLLISION RESISTANCE

339

contents of the cover object can produce different
stego-objects. The hash value of a different stego-
object MS’ would be different from HS and so would
be the final Σ-Hash value.

We argue here that a steganographic algorithm
fed with the same key and secret message but
slightly different input should produce alternate
outputs. In detail, inputs should different
significantly enough to be regarded as two separate
objects. If significant bits in cover objects are
different then steganography will produce different
outputs. Especially in text based steganography,
where two different cover objects are most likely
expected to also vary in length, the stego-object will
always be different. This fact also ensures that HS
will also be different from H since MS is similarly
significantly different from M.

Similarly, an attacker may choose to find a
collision for HS by carefully choosing a different
stego-object MS’ so that: fh (MS’) = HS. In that case
the inverse steganographic operation on MS’ will
give off a different secret message than the expected
hash value H. As the stego-object will be different
from the original one, the steganographic algorithm
will fail to provide the original hidden message.

Evidently, an attacker should be able to
overcome the difficulties set by steganography in
order to successfully attack Σ-Hash. Efficient
steganographic algorithms ensure that alterations to
cover-objects result in different stego-objects and
alterations to stego-objects make original hidden
messages impossible to retrieve. An attacker would
have to find a collision for H that also produces the
same stego-object MS, something that is considered
hard, having in mind the attacks we described in
section 2. It should also be mentioned that it is hard
even to extract M from MS as most steganographic
functions are not reversible.

4.3 Applications

Naturally, Σ-Hash can be used to enforce hash
function security. Its use can be applied to all known
applications of hashing algorithms as long as the
verification process is altered to match the one
required by Σ-Hash. As we have already mentioned,
Σ-Hash was originally designed as a solution to
source code tampering. An attacker able to modify
the source code will also be able to modify the hash
that will be used to verify its integrity. However, if
Σ-Hash is used, the attacker will not be able to
successfully compute the new Σ-Hash value as he
does not have knowledge of the cover object. In
detail, the attacker can only alter the stego object as
MS is only published. Suppose that he has also found
a collision for HS. When a user will try to verify Σ-

Hash, he will not be able to extract the correct
information from MS, and thus verification will fail.

5 REMARKS

In this paper we introduced Σ-Hash, a novel mode of
operation for hashing algorithms that uses
steganography to achieve better collision resistance.
We presented the details of our scheme, which can
be used with any existing or future hash function,
and analyzed how collisions are avoided.

Currently we are working on a proof of concept
implementation of Σ-Hash that will enable us to
experiment with further applications. We have
demonstrated that our scheme can be used to avoid
source code tampering, or phishing attacks. We
intend to present further applications of Σ-Hash,
using a real world implementation with commonly
used hash algorithms. Finally, we will provide
suggestions for specific steganographic algorithms
which are optimal for using with Σ-Hash.

REFERENCES

NIST, 1995. Secure hash standard. Federal Information
Processing Standard, FIPS-180-1.

R. Rivest, 1992. The MD5 Message-Digest Algorithm.
RFC 1321, IETF.

X. Y. Wang, 1997. The Collision attack on SHA-0. In
Chinese, to appear on www.infosec.edu.cn, 1997.

R.C. Merkle, 1989. A Certified Digital Signature. In
Advances in Cryptology - CRYPTO '89. Springer-
Verlag.

I. Damgård, 1989. A Design Principle for Hash Functions.
In Advances in Cryptology - CRYPTO '89. Springer-
Verlag.

S. M. Bellovin and E. K. Rescorla, 2005. Deploying a
New Hash Algorithm. In NIST Hash Function
Workshop.

S. Halevi and H. Krawczyk, 2005. Strengthening Digital
Signatures via Randomized Hashing, Internet Draft,
IETF.

E. Biham, R. Chen, A. Joux, P. Carribault, W. Jalby and
C. Lemuet, 2005. Collisions in SHA-0 and Reduced
SHA-1. In Advances in Cryptology–Eurocrypt’05.
Springer-Verlag.

X. Wang, D. Feng, X. Lai, and H. Yu, 2004. Collisions for
hash functions md4, md5, haval-128 and ripemd.
Cryptology ePrint Archive, Report 2004/199.
Available at: http://eprint.iacr.org/

B. den Boer and A. Bosselaers, 1993, Collisions for the
Compression Function of MD5. Advances in
Cryptology–Eurocrypt’03. Springer-Verlag.

X. Wang, Y. Yin, H. Yu, 2005. Finding Collisions in the
Full SHA-1. In Advances in Cryptology - CRYPTO '05.

M. Bellare, T. Kohno, 2004. Hash Function Balance and
its Impact on Birthday Attacks. In Advances in
Cryptology-EUROCRYPT 04. Springer-Verlag.

SECRYPT 2007 - International Conference on Security and Cryptography

340

