
IMPROVING SECURITY IN CHAOTIC SPREAD SPECTRUM 
COMMUNICATION SYSTEMS WITH A NOVEL ‘BIT POWER 

PARAMETER SPECTRUM’ MEASURE 

Branislav Jovic 
Department of Electrical and Computer Engineering, University of Auckland, 38 Princes street, Auckland, New Zealand 

Charles Unsworth 
Department of Engineering Science, Univesity of Auckland, 70 Symonds street, Auckland, New Zealand 

Keywords: Security, Spread Spectrum, Communications, Chaos, PC Synchronization, Bit Power Parameter Spectrum. 

Abstract: Due to the broadband nature and the high sensitivity to parameter and initial conditions in chaotic signals, 
chaotic spread spectrum (SS) communication systems have been regarded as highly secure. However, it is 
often easier to decrypt chaotic parameter modulation (CPM) based SS systems than was originally thought. 
In this paper, a single user CPM based chaotic communication system implementing Pecora-Carroll (PC) 
synchronization is described. Following this, the CPM based communication system, employing the chaotic 
carrier generated by the Burger’s map is proposed. To highlight the security aspect a new measure called 
‘Bit Power Parameter Spectrum’ (BPPS) is introduced.  The BPPS is then used to identify parameters that 
provide high secure and insecure regions for the chaotic map. Furthermore, it is demonstrated how a binary 
message can be decrypted easily if the parameters of the map exist in the insecure region of the BPPS and 
how security is optimised if the parameters exist in the secure region of the BPPS. The results are contrasted 
with those of the standard Lorenz CPM based system. The BPPS measure shows that the Lorenz CPM 
based system is easily decrypted for nearly all parameter values thus rendering the carrier insecure.

1 INTRODUCTION 

In 1990 Pecora and Carroll (PC) discovered that 
chaotic systems can be synchronized. Along with the 
broadband nature and the high sensitivity of chaotic 
systems to parameter and initial condition 
perturbations, chaotic synchronization allowed 
researchers to design SS chaotic communication 
systems. These systems were primarily designed 
with the aim of the increased security over the 
existing SS systems. However, as will be discussed 
shortly, chaotic communications are often insecure. 

A PC synchronization scheme can be viewed as 
a master-slave synchronization system (Jovic et al., 
2006a).  The master system provides at least one of 
its chaotic outputs to the slave system. The slave 
system uses the given master output (driving signal), 
to elegantly synchronize itself to the master system, 
regardless of its initial conditions. The master-slave 
system can also be viewed as the transmitter-

receiver communication system. Since the 
introduction of the PC synchronization method a 
number of communication schemes based on this 
method have been proposed, (Wu and Chua, 1994; 
Oppenheim et al., 1992; Cuomo and Oppenheim, 
1993; Jovic et al., 2006a). These include such 
methods as the chaotic masking (CS) (Oppenheim et 
al., 1992), the chaotic parameter modulation (CPM) 
(Cuomo and Oppenheim, 1993) and the initial 
condition modulation (ICM) (Jovic et al., 2006a). 
Other chaotic SS communication systems, such as 
those based on DS-CDMA synchronization also 
exist and have been studied in (Jovic et al. 2007a). 

In contrast to PC synchronization where the 
master-slave system either synchronizes or does not, 
it is also possible to design controllers which enforce 
synchronization. Such design techniques have been 
investigated for both chaotic flows (Jovic and 
Unsworth, 2007b) and chaotic maps (Millerioux and 
Mira, 1998, 2001; Yan, 2005). In a number of cases 
it has been shown that these techniques can be 
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applied to chaotic communications (Millerioux, 
1998; Nan, 2000). In (Millerioux and Mira, 1998, 
2001) synchronization of piecewise linear chaotic 
maps in a master-slave configuration is investigated. 
In particular, finite time synchronization is 
considered and the conditions for it discussed. It is 
shown that finite time synchronization requires the 
eigenvalues of the error system matrix to be equal to 
zero. The significance of the results in relation to 
secure chaotic communications is also discussed. 

A similar method to that of the master-slave map 
synchronization of (Millerioux and Mira, 2001) is 
proposed here. In our method the general approach 
to master-slave synchronization of chaotic maps is 
presented and the requirements for synchronization 
outlined. It is shown that the synchronization is 
achieved by keeping the eigenvalues of the error 
system matrix within the unit circle in the z domain. 
Furthermore, the method of implementing the 
synchronized master-slave system within a CPM 
based secure SS chaotic system is demonstrated. 

With the development of secure communication 
techniques based on the concept of chaotic 
synchronization, eavesdropping techniques have also 
been developed in parallel, highlighting the lack of 
security in many of the proposed systems.  The 
eavesdropping techniques include those based on the 
prediction attacks (Short, 1994), short-time zero-
crossing rate (STZCR) attacks (Yang, 1995), 
generalized synchronization attacks (Álvarez et al., 
2004c), return map attacks (Pérez and Cerdeira, 
1995), spectral analysis attacks (Álvarez et al., 
2004b), and parameter estimation attacks (Álvarez et 
al., 2004a), among other. 

In perhaps the broadest of terms the chaotic 
communication eavesdropping techniques, in the 
literature today, can be divided into those which 
directly extract the transmitted message without the 
knowledge of the dynamics of the transmitter (Short, 
1994; Yang, 1995; Álvarez et al., 2004b), and those 
which make certain assumptions about the dynamics 
of the transmitter before attempting the extraction of 
the message (Álvarez et al., 2004a, 2004c). 

In this paper, it is demonstrated how one can 
decrypt a binary message from a CPM based SS 
communication system with no prior knowledge of 
the dynamics of the transmitter. The message 
extraction technique is based on the average power 
of the received signal which for a secure system 
must be equal for both bits 0 and 1. The carrier 
powers of bits 0 and 1 must be equal, or very nearly 
equal, to each other to eliminate the possibility of 
recognising the message from these (Álvarez et al., 
2004c). It is shown that in terms of the bit power 

security, the Burgers’ map CPM system can be 
optimized and outperforms the Lorenz CPM system. 

2 SS CHAOTIC 
SYNCHRONIZATION BASED 
COMMUNICATION SYSTEMS 

In this section, the chaotic communication system 
with the receiver based on the PC chaotic 
synchronization, namely chaotic parameter 
modulation (CPM) is briefly described. A block 
diagram of a SS chaotic communication system 
based on the CPM concept is shown in Figure 1. A 
requirement for the CPM scheme is for the master-
slave system to synchronize for a given driving 
signal (Jovic and Unsworth, 2007b). 
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Figure 1: A block diagram of the chaotic communication 
system based on the parameter modulation concept. 

In Figure 1, the message signal m varies between 
the two particular values, depending on whether a 
binary 0 or a binary 1 is to be transmitted. The 
message is incorporated into a certain modulating 
parameter of the master system causing it to change 
its value with the change in the message. The 
parameters of the slave system are fixed at all time. 
When the master-slave parameters are identical 
synchronization occurs. This forces the 
synchronization error to zero, indicating that bit 0 
has been transmitted. Alternatively, with the master-
slave parameter mismatch the system does not 
synchronize, indicating that bit 1 has been 
transmitted. Assuming that the additive white 
Gaussian noise (AWGN) component n is near zero, 
and that sufficient amount of time has passed for rx  

and ∧

x  to synchronize, the transmitted message m is 
recovered in the form of ∧

m . The choice of the 
modulating parameter of the master chaotic system 
must be chosen with care to ensure chaotic 
properties of the system at all time. This ensures the 
increased security within the communication system. 
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3 GENERAL APPROACH TO 
THE DESIGN OF THE 
SS CHAOTIC 
SYNCHRONIZATION BASED 
COMMUNICATION SYSTEMS 

In this section, the general approach to the design of 
the synchronized chaotic maps is proposed and 
applied to the design of the CPM based SS 
communication systems. 

3.1 Synchronization of Chaotic Maps 

In (Pecora and Carroll, 1990), the chaotic 
synchronization concept with a single signal of the 
master system supplied to the slave system is 
considered. The general result of this is that the 
master-slave system either synchronizes or does not 
(Pecora and Carroll, 1990; Jovic et al, 2006a). In this 
subsection, the design of nonlinear controllers for 
the chaotic map master-slave systems is proposed. In 
particular, the method is demonstrated on the two 
dimensional Burgers’ chaotic map. These controllers 
then ensure the synchronization among the master-
slave systems. The design of the nonlinear control 
laws is via the following theorem: 
 
Theorem 1: 

 
Suppose:   nnnnn eUeAe +=+1 ,∀ 0≥n , 
       1)()( <=+ BeigUAeig nn . 
   
Then: 0→ne , as ∞→n ,∀ nRe ∈0 . 

 
The theorem states that the equilibrium 0, of the 

error system 1+ne , is globally asymptotically stable 
if and only if all eigenvalues of nn UAB +=  have 
magnitude less than one. 

 
Special case: If the matrix B is a function of n, 

then the condition that 
nn BB −+1

 remains 
bounded must also be satisfied. 

 
In the above theorem the brackets | | denote the 
magnitude of the eigenvalues of a matrix, and the 
brackets ||  || denote the Euclidian norm.  In the 
following sections theorem 1 is used for the purpose 
of synchronizing one, two and three dimensional 
master-slave chaotic maps. 

3.2 SS Communication System based 
on the Synchronization of Burgers’ 
Map Master-Slave Chaotic System 

In this subsection, the master-slave synchronization 
of the Burgers’ map master-slave system is 
considered and the CPM based SS communication 
system proposed.   

The Burgers’ map (Whitehead and MacDonald, 
1984) is given by equation 1: 

 

nnnn

nnn

YXbYY
YaXX

+=
−=

+

+

1

2
1                                       (1) 

 
With the parameters a = 0.75 and b = 1.75 the 

system is chaotic. 
The design procedure of the synchronizing 

nonlinear control laws of the Burgers’ map CPM 
based SS chaotic communication system of Figure 2 
is now explained. Let the error be defined by 
equation 2: 
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nnn YYe −=
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In order to demonstrate the design of the controller 
of Figure 2 assume no noise in the system. It follows 
then that: nnr YY = . The difference error, (the error 
system), can then be represented by equation 3: 
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Equation 3 can also be represented by equation 5, 
keeping in mind the identities of equation 4: 
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With theorem 1 in mind matrix equation 6 is 
formed: 

nnnnn eUeAe +=+1                (6) 
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Figure 2: The Burgers’ map SS chaotic communication system based on the parameter modulation concept. 
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Modifying equation 5 to fit the matrix form of 

equation 7, equation 8 is obtained: 
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Following theorem 1 the control laws can be 

chosen in the following manner: 

)(,0,,0 iviiiiii nnnnnnn XbuuYYuu
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With the control laws of equation 10, the matrix 
B of equation 9 takes the form of equation 11:  
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It is then readily verifiable that the eigenvalues 

of matrix nB  of equation 11 are equal to 0 and a.  
Furthermore, the theorem 1 above requires matrix B 
to be constant.  As the matrix B is a function of n, it 
must also be ensured that nn BB −+1  remains 
bounded to guarantee global asymptotic stability 
which is the requirement for synchronization. The 
fact that nn BB −+1  remains bounded is 
demonstrated by equation 12: 
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∀  |a| < 1, and as ∞→i .           (12) 

   
Therefore, as stated in equation 12, in order for 

the master and slave systems of Figure 2 to 
synchronize, the parameter a must be kept within the 
unit circle in z domain. 

The control laws nu1  and nu2  are therefore 
given by equations 13 and 14, and incorporated into 
Figure 2. 
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The important feature of the master-slave system of 
Figure 2 is that it only requires the master signal nY  
to synchronize the master and slave systems.  This 
fact is of particular importance for communications 
as only one signal needs to be transmitted thus 
reducing the required bandwidth (Jovic et al., 
2006a,b). 

In Figure 2, the master system parameter set of 
015.0=a  and 75.1=b  has been chosen to represent 

a bit 0. The master system parameter set of 205.0=a  
and 75.1=b  has been chosen to represent a bit 1. 
The reasoning behind such choice of parameters is 
clarified in the next section. Note that the message m 
of Figure 2 takes on the values of 0 and 1 depending 
on the polarity of a bit transmitted. The slave system 
parameters are set for all time at 015.0=a  and 

75.1=b , so that synchronization at the receiver side 
signals a bit 0 and de-synchronization signals a bit 1. 
Both parameter sets, 015.0=a  and 75.1=b , and 

205.0=a  and 75.1=b  generate chaotic behaviour 
within the system (Whitehead and MacDonald, 
1984). 

The transmitted signal nY  is shown in Figure 3 
when the series of 10 bits is transmitted, that is, 
when m = [0 0 1 0 1 1 0 1 0 1]. Figure 3 also shows 
the corresponding squared synchronization error, 

2
nye , under noiseless conditions. 
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Figure 3: The transmitted signal 
nY  and the squared 

synchronization error 2
nye . 

The received bits are detected by squaring and 
integrating the error 

nye . The output of the integrator 

is then compared to the predetermined threshold and 
the decision is made whether a bit 0 or a bit 1 was 
sent. Note that the spreading factor of 400 has been 
used to represent one bit. By definition, the 
spreading factor denotes the number of discrete 
points (chips) contained within one information bit. 
It is the ratio of a bit period to a chip period (Jovic 
and Unsworth, 2007b). A transient period of 10 
chips has been allowed for the case of Figure 3. 
During the transient period there is no data 
transmission taking place. 

4 BIT POWER SECURITY 
ISSUES OF THE SS CHAOTIC 
COMMUNICATION SYSTEMS 

In this section, highly secure and insecure regions of 
the Burgers’ map CPM based SS communication 
system are identified using a new measure called the 
‘Bit Power Parameter Spectrum’ (BPPS). The 
analysis is also performed on a standard Lorenz 
CPM based SS system. It is shown that an 
eavesdropper can readily decode the message, 
without any assumptions about the system, if the 
system is operated outside the secure regions of the 
BPPS. 

4.1 Security Evaluation of the Burgers’ 
Map CPM based SS Chaotic 
Communication System 

For any secure chaotic communication system it is 
imperative that the power of the chaotic carriers 
representing bits 0 and 1 be approximately equal to 
avoid the possibility of decoding information by a 
third party simply based on the average powers of 
the chaotic carriers (Álvarez et al., 2004c). In order 
to perform the security analysis on the Burger’s map 
communication system of Figure 2, and thus explain 
the choice of the modulating parameters, the average 
power of the chaotic carriers representing bits 0 and 
1 is now analysed. To do so the average power of a 
number of bits (1024) is first calculated and the 
mean of those powers and the corresponding 
standard deviation found. A number of points are 
then obtained for a number of different sets of 
chaotic parameters and the average power graph, 
with the error bars, versus the varied parameter, 
plotted.  A pseudo random binary sequence (PRBS) 
generator has been used to model the transmitted 
bits. The plots have been produced with the concept 
of security in mind.  If the average power of the 
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chaotic carriers of bits 0 and 1 are different during 
the same transmission, with the confidence intervals 
which do not overlap, then the security of the system 
based on those carriers is jeopardized.    

Figure 4 shows the BPPS of the chaotic carriers 
representing the bits transmitted.  For the bits 1 the 
parameter b is always kept constant at 1.75 with the 
parameter a varied in steps of 0.01 from a = 0 to a = 
0.75.  For the case of Figure 4 bits 0 are represented 
by the parameter values: a = 0.6 and b = 1.75 at all 
times. Bits 1 must then be represented by some other 
parameter values in order to achieve successful 
communication.  From Figure 4 it can be observed 
that the average power of the chaotic carriers is 
approximately the same, (and the deviation of this 
power), when the parameter a is kept in the region: 0 
< a < 0.22, whereas it differs drastically outside of 
this region. Therefore, choosing the parameter sets 
for bits 0 and 1 anywhere outside this region would 
jeopardize the security of the system.  Thus, 
choosing the parameter values: a = 0.6 and b = 1.75 
to represent bits 0 is not suitable for the security 
reasons.  In order to remedy this let the parameter 
values representing bits 0 be: a = 0.015 and b = 1.75.  
In this case Figure 5 is obtained.  From Figure 5 it is 
observed that the carrier powers of the bits 0 and 1 
have approximately equal values thus offering 
increased security over the choice of parameters of 
Figure 4. 
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Figure 4: The BPPS within the Burgers’ CPM based SS 
chaotic communication system when the bits 0 are 
represented by the parameter set: a = 0.6, b = 1.75. 

Based on the findings of Figure 5, it is now 
shown that choosing the parameter set: a = 0.015 
and b = 1.75, to represent bits 0, and the parameter 
set, a = 0.205 and b = 1.75, to represent bits 1, 
produces the best performance in terms of the bit 
error rate (BER). In Figure 6, the BER vs. the bit 
energy to noise power spectral density ratio (Eb/No) 
curves have been plotted. Figure 6 demonstrates the 

progressive improvement represented by the BER 
curves with the parameter a varied in the secure 
region of Figure 5 from a = 0.0625 up to a = 0.205 
in steps of 0.0475.  The parameter b has been set to 
1.75 for both bits 0 and 1. The parameter a 
representing bit 0 has been set to: a = 0.015.  Note 
that the best BER performance is achieved by 
choosing the parameter sets, representing bits 0 and 
1, to be as far apart as possible from each other 
within the secure region of Figure 5.  Also note 
further improvement in the BER curve, marked by 
the open circles, as one exits the secure region. 
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Figure 5: The BPPS within the Burgers’ CPM based SS 
chaotic communication system when the bits 0 are 
represented by the parameter set: a = 0.015, b = 1.75. 
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Figure 6: The secure region BER curves of the SS chaotic 
communication system based on the parameter modulation 
of the Burgers’ chaotic map with the progressively 
increasing bits 1 parameter a. 

Figure 7 illustrates the effect on security caused by 
choosing inappropriate parameter sets which 
produce chaotic carriers of different power.  In case 
of Figure 7 bits 0 have been represented by the 
parameter set of a = 0.6 and b = 1.75, while bits 1 
have been represented by the parameter set of a = 
0.205 and b = 1.75.  The average power of the 
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transmitted signal of Figure 7 has been evaluated 
using the sliding window of 400 chips in length (the 
spreading factor of a single bit).  The sliding 
window is then shifted one chip in time and the 
average power evaluated again. This process is 
repeated until the end of the transmitted signal.  It 
can be observed from Figure 7 that the average 
power of the chaotic carriers of the transmitted bits 
oscillates periodically with the change of the binary 
message. In contrast to Figure 7, Figure 8 illustrates 
the effect on security caused by choosing the 
appropriate parameter sets which produce chaotic 
carriers of approximately equal power.  In case of 
Figure 8 bits 0 have been represented by the 
parameter set of a = 0.015 and b = 1.75, while bits 1 
have been represented by the parameter set of a = 
0.205 and b = 1.75. 
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Figure 7: The binary message, the transmitted signal nY  
and the average power of the transmitted signal. Bits 0 
parameter set: a = 0.6 and b = 1.75.  Bits 1 parameter set:  
a = 0.205 and b = 1.75. 
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Figure 8: The binary message, the transmitted signal nY  
and the average power of the transmitted signal. Bits 0 
parameter set: a = 0.015 and b = 1.75.  Bits 1 parameter 
set: a = 0.205 and b = 1.75. 

4.2 Security Evaluation of the Lorenz 
CPM based SS Chaotic 
Communication System 

In (Cuomo and Oppenheim, 1993), the Lorenz CPM 
based SS chaotic communication system has been 
presented. In this scheme the binary message is used 
to alter the parameter b of the master (transmitter) 
between 4 and 4.4 depending on whether a bit 0 or 
bit 1 is to be transmitted. However, at the slave 
(receiver) side the parameter b is fixed at 4 for all 
time. Thus, the synchronization either occurs or does 
not, depending on the state of the parameter b at the 
transmitter (master) side. The other Lorenz 
parameters, namely σ and r, are fixed at 16 and 45.6, 
respectively. A BPPS as that of Figures 4 and 5 is 
plotted in Figure 9 but for the Lorenz CPM based 
chaotic communication system of (Cuomo and 
Oppenheim, 1993). In this case the parameter b of 
the bits 1 is varied from 0.1 to 10 in steps of 0.1 with 
the other parameters being fixed at the constant 
values specified above.  From Figure 9 one can see 
that there are no secure regions where one can 
operate the system as the power of the bits 1 
increases, almost linearly, with the parameter b. 
Therefore, to minimise the impact on the security, 
the parameters b representing bits 0 and 1, must be 
kept as close to each other as possible. 
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Figure 9: The BPPS within the Lorenz CPM based SS 
chaotic communication system. The close up is shown in 
the upper left hand corner. 

5 CONCLUSIONS 

In this paper, a method of synchronizing chaotic 
maps and its implementation within a CPM based 
SS chaotic communication system has been 
proposed. The security of the proposed, as well as of 
the existing SS chaotic communication systems, has 
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then been evaluated in terms of the average power of 
the chaotic carriers of the bits transmitted. In order 
to do so, a novel analysis technique, termed the ‘Bit 
Power Parameter Spectrum’ (BPPS), has been 
proposed. Without any assumptions about the 
system architecture or its characteristics, the BPPS 
has been used to show that the CPM based SS 
systems are not as secure as often thought. 

The design of the nonlinear control laws for the 
synchronization of the chaotic map master-slave 
systems has been proposed and demonstrated on the 
two dimensional Burgers’ map master-slave system. 

Following this, the method of implementing the 
synchronized master-slave system within a CPM 
based secure SS communication system has been 
demonstrated on the two dimensional Burgers’ map. 
The nonlinear control laws were designed in such a 
way to force the synchronization among the master 
and slave systems using only one signal of the 
master system. This is of particular importance for 
communications as only one signal needs to be 
transmitted thus reducing the required bandwidth. 

Finally, the Lorenz CPM based SS chaotic 
communication system has been presented. The 
security of the proposed and the existing CPM SS 
chaotic communication systems has been evaluated 
in terms of the average power of the chaotic carriers 
of the bits transmitted using the newly proposed 
technique of BPPS. It has then been shown that due 
to the largest BPPS overlap region, the Burgers’ map 
CPM based SS chaotic communication system can 
be optimized and is thus more secure than the 
Lorenz CPM based SS system. As the BPPS relies 
on the evaluation of average power, the security 
optimization is thus achieved by assuming that an 
eavesdropper has no knowledge of the system 
architecture or its dynamics. Furthermore, it has 
been shown that the BER performance of the 
Burgers’ map CPM based SS chaotic 
communication system can also be optimized. The 
optimization is achieved by choosing the parameter 
sets, representing bits 0 and 1, to be as far apart as 
possible within the secure operating region of the 
BPPS. 
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