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Abstract: We propose a new space efficient operator to multiply elements lying in a binary field F2k . Our approach is
based on a novel system of representation called Double Polynomial System which set elements as a bivariate
polynomials over F2. Thanks to this system of representation, we are able to use a Lagrange representation
of the polynomials and then get a logarithmic time multiplier with a space complexity of O(k1.31) improving
previous best known method.

1 INTRODUCTION

Efficient hardware implementation of finite field
arithmetic, and specifically of binary field F2k , is
often required in cryptography and in coding the-
ory (Berlekamp, 1982). For example in elliptic curve
cryptosystem (Koblitz, 1987; Miller, 1986), the main
operation is the scalar multiplication on the curve,
which necessitates thousands of multiplications and
additions over a finite field. Similarly, hundreds of
multiplications over a binary field are required for
the Diffie-Hellman Key exchange protocol (Diffie and
Hellman, 1976).

Previously to this work, several architectures have
already been proposed to efficiently implement the
arithmetic in F2k . These architectures are mostly ded-
icated to the multiplication since this operation is ex-
tensively used and is often the most expensive. Each
of them takes advantage of a special representation of
the field. In particular, one of them uses polynomial
basis or shifted polynomial basis (Mastrovito, 1991;
Fan and Dai, 2005) while another uses normal ba-
sis (Gao, 1993; Hasan et al., 1993). The latter pro-
viding a really efficient squaring in the field since in
this basis the squaring is just a cyclic shift of the co-
efficients.

In these representations the main approach to per-
form the multiplication consists to express the oper-

ation as a matrix-vector product with binary entries.
Parallel architectures are thus capable to perform this
product within logarithmic time. However, these ar-
chitectures still achieve a space complexity of k2. Ac-
cording to the recent improvements proposed in (Fan
and Hasan, 2007), one can still perform the matrix-
vector product in logarithmic time but with a space
complexity of k1.56 or k1.63. This has been made pos-
sible thanks to structured matrices such as Toeplitz
ones and a divide-and-conquer approach for the prod-
ucts.

In this paper we propose a new approach which
reduces the exponent in the space complexity to 1.31
while keeping a logarithmic time complexity. First,
we introduce a novel system of representation, the
Double Polynomial System. In this representation,
elements of F2k are polynomials in two variables
A(t,Y ) = ∑

n−1
i=0 ai(t)Y i where ai(t) have degree strictly

less than r.
Therefore, as in classical polynomial represen-

tation, the multiplication can be performed in two
steps: a polynomial multiplication, and then a reduc-
tion phase to reduce the degrees in Y and in t.

The reduction in Y is simple due to the definition
of DPS. The same is not true for the reduction in t.
Here, we use a Montgomery-like reduction approach
in order to perform this reduction with few polyno-
mial multiplications, this enabling us to easily use
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the Fast Fourier Transform. Therefore, our multiplier
fully benefits from the FFT process which is highly
parallelizable and provides a subquadratic space com-
plexity.

Hence, we propose a binary field multiplier which
has a delay of (16log3(k)+ 20)TX + 8TA and a space
complexity of O(k1.31), where TX and TA correspond
respectively to the delay of one XOR gate and one
AND gate.

Let us briefly give the outline of the paper. We
first introduce the DPS representation for binary fields
F2k (Section 2). We present the DPS multiplication in
Section 3 and discuss the problem of finding a suit-
able polynomial to achieve our Montgomery-like co-
efficient reduction in Section 4. Then, we present
in Section 5 a modified version of our multiplica-
tion introducing Lagrange basis. We recall in Sec-
tion 6 some basic facts on the architecture design of a
ternary FFT. We finally conclude this paper by a de-
tailed explanation of the complete architecture for our
DPS-Lagrange multiplier and its complexity analysis
and comparison (Section 7).

2 DPS REPRESENTATION

A binary field F2k is generally constructed as the set
of polynomials modulo an irreducible polynomial P∈
F2[t] of degree k

F2k = F2[t]/(P(t))
= {A(t) ∈ F2[t] s.t. degA(t) < k}

We introduce a novel binary field representation,
the Double Polynomial System (DPS), inspired from
AMNS number system of Bajard et al. (J.-C. Bajard,
2005).

Definition 1 (DPS representation). A Double Poly-
nomial System (DPS) is a quintuplet B = (P,γ,n,r,λ)
such that

• P(t)∈F2[t] is an irreducible polynomial of degree
k,
• γ(t),λ(t) ∈ F2[t]/(P(t)) satisfy

γ(t)n ≡ λ(t) mod P,

and λ(t) has a low degree in t.

A DPS representation of an element A(t) ∈ F2[t]/(P)
is a polynomial AB(t,Y ) ∈ F2[t,Y ] such that

AB(t,Y ) =
n−1

∑
i=0

ai(t)Y i with degt ai(t) < r

and AB(t,γ(t))≡ A(t) mod P

In the sequel we will often omit the subscript B to
denote the DPS form of an element A. In some cases,
when it is clear from the context, we may discard the
variables t,Y to define the DPS representation of an
element. We will also denote by E the polynomial
E = Y n−λ.

Example 1. Let us consider the field F24 , then the
quintuplet B = (P = t4 + t3 + t2 + t +1,γ = t3 + t2 +
t,n = 3,r = 2,λ = t) is a DPS for this field. We can
check this with Table 1 which gives the DPS expres-
sion of each element in F24 .

Table 1: Elements of F24 in B .

A(t) 0 t2 t3 + t2 + t +1 t3 + t
AB 0 (t +1)Y 2 Y +1 Y 2 + t +1

A(t) 1 t2 +1 t3 + t2 + t t3 + t +1
AB 1 (t +1)Y 2 +1 Y Y 2 + t

A(t) t t2 + t t3 + t2 t3 +1
AB t Y 2 +Y +1 Y + t Y 2

A(t) t +1 t2 + t +1 t3 + t2 +1 t3

AB t +1 Y 2 +Y Y + t +1 Y 2 +1

In particular, we can verify that if we evaluate (t +
1)Y 2 +1 in γ, we get (t +1)γ2 +1 = (t +1)(t3 + t2 +
t)2 +1 = t2 +1 mod P, as expected. One can also see
that degY ((t + 1)Y 2 + 1) = 2 < 3 = n and degt((t +
1)Y 2 +1) = 1 < 2 = r. ♦

Remark 1. The DPS can be seen as a generalization
of the polynomial representation of double extensions
F2rn . Such extensions are usually constructed first as
F2r = F2[t]/(P(t)) and then as F2rn = F2r [Y ]/(Y n−λ)
with λ ∈ F2r , see (Guajardjo and Paar, 1997). How-
ever, this construction is not possible when the degree
k of the field F2k is prime. DPS provides an alternative
for double extension in this situation.

Remark 2. As in classical polynomial representa-
tion, the addition in DPS is just a parallel bitwise
XOR on the coefficients.

We proceed now by considering the problem of
the multiplication of two elements expressed in a
DPS. This can be done in two steps as described in
Algorithm 1.

The first step of the algorithm consists of a clas-
sical polynomial multiplication modulo the binomial
E(Y ) = (Y n− λ). The resulting polynomial C(t,Y )
satisfies C(t,γ) = A(t,γ)B(t,γ) mod P(t) since E(γ)≡
0 mod P(t) by definition of the DPS.

The second step computes an element R(t,Y ) such
that it becomes a valid DPS representation of A×B:

R(t,γ) = A(t,γ)B(t,γ) mod P(t) and degt(R) < r.
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Algorithm 1: DPS multiplication scheme.
Input : A,B ∈ B = (P,γ,n,r,λ)
Output: C = A×B ∈ B

1. Polynomial multiplication in Y :
C = AB mod (Y n−λ).

2. Coefficients reduction :
R = RedCoe f f (C).

It is clear from the DPS system and from the multi-
plication modulo a binomial Y n−λ that C has coef-
ficients ci(t) with degree in t bounded by 2(r− 2)+
degt λ. Therefore, these coefficients must be reduced
to get the result of the multiplication expressed in the
DPS representation.

3 MULTIPLICATION IN DPS

A straightforward method for the reduction phase in
t of Algorithm 1 is to perform an Euclidean division
C = Q×M + R where degt R < r. This reduction is
only valid if M(t,Y ) is monic in t and satisfies

M(t,γ)≡ 0 mod P(t) with degt(M) = r. (1)

Generally, one can easily compute a polynomial M
satisfying equation (1), e.g. Section 4, but ensuring
monicity is difficult.

Algorithm 2: DPS Multiplication.
Input : A,B ∈ B = (P,γ,n,r,λ)

with E = Y n−λ

Data : M such that M(γ)≡ 0 mod P,
a polynomial m ∈ F2[t] and
M′ =−M−1 mod (E,m)

Output: R such that
R(t,γ) = A(t,γ)B(t,γ)m−1 mod P

begin
C← A×B mod E;
Q←C×M′ mod (E,m);
R← (C +Q×M mod E)/m;

end

In order to avoid monicity attached to a divi-
sion strategy, we adapt the Montgomery trick (Mont-
gomery, 1985) to our DPS system. The idea is to re-
place the Euclidean division by few multiplications
and one exact division. This corresponds to annihi-
lating the lower part of the ci(t) instead of the higher
ones. This method is given in Algorithm 2 assuming
a polynomial M(t,Y ) satisfying M(t,γ)≡ 0 mod P(t)
is given.

Example 2. We consider the field F24 , with the DPS
B = (P = t4 + t3 + t2 + t +1,γ = t3 + t2 + t,n = 3,r =
2,λ = t). In Table 2, we give an example of trace of
DPS multiplication.

Table 2: DPS multiplication trace.

Operations Results
A tY 2 + tY
B (t +1)Y + t
M tY 2 +Y + t +1
M′ (1+ t)Y 2 +(1+ t)Y +1
m t2

C tY 2 + t2Y + t3 + t
Q tY 2

Q×M (t2 + t)Y 2 + t3Y + t2

C +Q×M t2Y 2 +(t3 + t2)Y + t3

R Y 2 +(t +1)Y + t

We can check that R(t,γ)≡ t2 + t mod P is equal
to A(t,γ)B(t,γ)t−2 mod P. ♦

Lemma 1. Algorithm 2 is correct.

Proof. We need to demonstrate that the output R of
the algorithm satisfies the following equation

R(t,γ) = A(t,γ)B(t,γ)m−1 mod P. (2)

From the definition 1 of DPS representation, we
know that E(γ)≡ 0 mod P. Thus, we have

C(t,γ)≡ A(t,γ)B(t,γ) mod P.

By definition of M, we have M(t,γ) ≡ 0 mod P and
consequently

C(t,γ)+Q(t,γ)M(t,γ) ≡ C(t,γ)
≡ A(t,γ)B(t,γ) mod P

We now need to prove that the division by m is ex-
act. This is equivalent to prove the following equiva-
lence C + Q×M mod E ≡ 0 mod m. By definition,
we have Q = C×M′ mod E and M′ = −M−1 mod
(E,m). We consider R′ = C + Q×M mod (E,m),
then the following equivalences hold

R′ ≡ C +C× (−M−1×M) mod (E,m)
≡ (C−C) mod (E,m)
≡ 0 mod (E,m).

Thus, division by m is exact. Hence, the algorithm
is correct since an exact division (the division by m)
is equal to the multiplication by an inverse modulo
P.
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At this level, we know that the resulting polyno-
mial R of the previous algorithm satisfies the equation
R(t,γ) = A(t,γ)B(t,γ)m−1 mod P but we do not know
whether it is expressed in the DPS, i.e., if the coeffi-
cients of R have degree in t smaller than r. This is the
goal of the following theorem.

Theorem 1. Let B = (P,γ,n,r,λ) a Double Poly-
nomial System, M be a polynomial of B such that
M(γ) ≡ 0 mod P and σ = degt(M). Let A,B be two
elements expressed in the DPS B . If r and the poly-
nomial m satisfy

r > σ+degt(λ) and degt(m) > degt(λ)+r (3)

then the polynomial R output by the Algorithm 2 is
expressed in the DPS B .

Proof. From the Definition 1, the polynomial R be-
longs to the DPS B = (P,γ,n,r,λ) if degY R < n and
if degt(R) < r. The fact that degY R < n is easy to see
since all the computation in the Algorithm 2 are done
modulo E = Y n−λ.

Hence, we have only to prove that degt R < r.
Since by definition degt A,degt B < r we have the fol-
lowing inequalities

degt R = degt((A×B+Q×M) mod E)/m
≤ max(degt A+degt B,degt Q+degt M)

+degt λ−degt m
≤ max(2r,σ+degt m)+degt λ−degt m.

According to our hypothesis in the equation (3), we
have both 2r + degt λ− degt m < r and σ + degt m +
degt λ− degt m < r. Hence, we get degt(R) < r as
required.

4 CONSTRUCTION OF THE
POLYNOMIAL M

The result of this section uses mathematical structures
involving module over the polynomial ring F2[t] in
order to prove existence of a suitable polynomial M.
The remaining of the paper is independent from this
section and readers who are not familiar with such
mathematical structure can skip this section without
misunderstanding.

Our goal is to construct a polynomial M such that
M(t,γ) ≡ 0 mod P and degt M is small. This polyno-
mial belongs to the set

M = {A(t,Y ) ∈ F2[t,Y ] with degY A < n}.

The set M has a natural structure of F2[t] module.
Recall that an F2[t]-module M is an (additive) abelian
group, with a scalar multiplication over F2[t]:

F2[t]×M →M .

In order to calculate the element M with low de-
gree in t, we will use a sub-module M ′ of M spanned
by the following linearly independent vectors.

Ω =


P 0 0 . . . 0
−γ 1 0 . . . 0
−γ2 0 1 . . . 0

...
. . .

...
−γn−1 0 0 . . . 1


← P
← Y − γ

← Y 2− γ2

...
← Y n−1− γn−1

Each of the polynomials V (t,Y ) defined by the rows
of Ω satisfy V (t,γ)≡ 0, and any F2[t]-linear combina-
tion of these polynomials satisfies also this property.
Therefore, one way to construct M consists to com-
pute a minimal basis of M ′ and define M as the basis
element with the smaller degree in t. The notion of
minimality is related to the degree in t of the basis
elements.

According to polynomial matrix properties, one
can find a minimal basis of Ω by computing its ma-
trix reduced form called the Popov form (Mulders and
Storjohann, 2003). In particular, the properties of the
Popov form (Villard, 1996, §1.2) tell us that there ex-
ists a minimal basis ( f1, f2, . . . , fn) of M ′ which sat-
isfies the following degree properties:

n

∑
i=1

degt fi = degt(det(Ω)) (4)

degt f1 ≤ degt f2 ≤ . . .≤ degt fn (5)

If we set M = f1 then the degree in t of M is min-
imal and satisfies the degree bound

degt M ≤ (degt P)/n (6)

Indeed, according to equations (4) and (5), we
have n× degt M < ∑

n
i=1 degt fi and since det(Ω) =

P(t) we get the announced bound.
Beside the fact that the calculation of M is only

needed once at the construction of the DPS rep-
resentation, one would need to efficiently compute
such polynomial. This can be achieve within a com-
plexity of O(n3k2) binary operations with Algorithm
WeakPopovForm of (Mulders and Storjohann, 2003)
or with an asymptotic complexity of O(n3k logk) bi-
nary operations with Algorithm ColumnReduction of
(Giorgi et al., 2003).

5 DPS-LAGRANGE
MULTIPLICATION

In this section, we present a version of Algorithm 2
using a Lagrange representation of the DPS elements.
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5.1 Lagrange Representation

Let R a ring, and R [Y ] the polynomial ring over R .
The Lagrange representation of a polynomial of de-
gree n− 1 in R [Y ] is given by its values at n dis-
tinct points. For us, these n points will be the roots
of a polynomial E = ∏

n
i=1(Y −αi) ∈ R [Y ]. From an

arithmetic point of view, this is related to the Chinese
Remainder Theorem which asserts that the following
application is an isomorphism

R [Y ]/(E(Y )) −̃→
n

∏
i=1

R [Y ]/(Y −αi) (7)

A 7−→ (A mod (Y −αi))i∈{1,...,n} .

The computation of A mod (Y −αi) is simply the
computation of A(αi). In other words, the image of
A(Y ) by the isomorphism (7) is nothing else than the
multi-points evaluation of A at the roots of E. This
fact motivates the following Lagrange representation
of the polynomials.

Definition 2 (Lagrange representation). Let A∈R [Y ]
with degA < n, and α1, . . . ,αn be the n distinct roots
of a polynomial E(Y ).

E(Y ) =
r

∏
i=1

(Y −αi) mod m

If ai = A(αi) for 1 ≤ i ≤ n, the Lagrange repre-
sentation (LR) of A(Y ) is defined by LR(A(Y )) =
(a1, . . . ,an).

Lagrange representation is advantageous to per-
form operations modulo E: this is a consequence of
the Chinese Remainder Theorem. Specifically the
arithmetic modulo E in classical polynomial repre-
sentation can be costly if E has a high degree. In
LR representation this arithmetic is decomposed into
n independent arithmetic units, each does arithmetic
modulo a very simple polynomial (X −αi). Further-
more, arithmetic modulo (X −αi) is the arithmetic in
R since the product of two zero degree polynomials
is just the product of the two constant coefficients.

5.2 Multiplication Algorithm

Let us go back to the Algorithm 2 and see how to use
Lagrange representation to perform polynomial arith-
metic in each step. The first two steps can be done
in Lagrange representation modulo m1(t) such that E
split modulo m1(t):

E =
n

∏
i=1

(Y −αi) mod m1(t),

The third step must be done modulo a second
polynomial m2(t), which also splits E = ∏

n
i=1(Y −

α′i) mod m2(t), since the division by m1 cannot be
performed modulo the polynomial m1(t).

We then need to represent the polynomials A and
B in Algorithm 2 with both their Lagrange represen-
tations modulo m1(t) and m2(t).

Notation 1. We will use in the sequel the following
notation. For a polynomial A of degree n−1 in Y we
will denote

• A the Lagrange representation in αi modulo m1(t)

• A the Lagrange representation in α′i modulo m2(t).

Hence, we can do the following modifications to
the Algorithm 2:

Algorithm 3: DPS-LR Multiplication.

Input : A,A,B,B
Data : M such that M(t,γ)≡ 0 mod P, M′

such that M′ =−M−1 (mod E,m1).
Output: R,R such that R ∈ B and R(t,γ) =

A(t,γ)B(t,γ)m−1
1 mod P(t)

begin
Q← A×B×M′;
Q←Convertm1→m2(Q);
R← (A×B)+Q×M)×m−1

1 ;
R←Convertm2→m1(R);

end

The operations to compute Q and R are performed
in Lagrange representation and then can be easily par-
allelized. It consists of n independent multiplications
in F2[t]/(m1(t)) and F2[t]/(m2(t)).

The major drawback of this algorithm is the con-
versions between Lagrange representations modulo
m1 and m2. It is necessary to perform these opera-
tions efficiently in order to get a multiplier yielding
our announced space complexity.

5.3 Conversion

In order to provide an efficient implementation of
conversions between Lagrange representations mod-
ulo m1 and m2, we rely on the binomial form of
E = Y n− λ. Indeed, if µ1 = α1 is a root of E mod-
ulo m1 then all others roots can be written

α j = µ1ωi
1 mod m1

where ω1 is a n-th primitive root of unity in
F2[t]/(m1). This property comes from the fact that
(α j/µ1)n = 1 mod m1 and thus there exists an inte-
ger i such that α j/µ1 = ωi

1 mod m1. This is still true
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modulo m2. Thus, the multi-point evaluation of the
polynomial A(Y ) in αi modulo m1 can be done as fol-
low :

1. set Ã(Y ) = A(µ−1
1 Y ) =

n−1

∑
i=0

aiµ−i
1 Y i

2. compute A = DFTm1(Ã,n,ω1),

where DFTm1(Ã,n,ω1) is the evaluations of the poly-
nomial Ã in the n-th roots of unity ωi

1.
Similarly the Lagrange interpolation which com-

pute A(Y ) from A can be done by reversing the previ-
ous process.

By gluing together this two processes we get the
following algorithm to perform conversion between
Lagrange representations.

Algorithm 4: Convertm1→m2 .

Input : A
Output: A
Ã(Y )← DFT−1

m1
(A,n,ω1) ;

A(Y )← Ã(µ−1
1 Y ) mod m1 ;

Ã(Y )← A(µ2Y ) mod m2 ;
A← DFTm2(Ã(Y ),n,ω2);

As a consequence, the conversion has a cost of
two Discrete Fourier Transforms. This can be done
efficiently by using FFT algorithm (Gathen and Ger-
hard, 1999, §8.2).

6 ARCHITECTURE FOR FFT
COMPUTATION

We present an architecture to perform the FFT calcu-
lation of a polynomial A(Y ) ∈ R [Y ] of degree n− 1,
keeping in mind our targeted Lagrange conversion
algorithm. We consider the ring R = F2[t]/(m(t))
where m(t) = t2n/3 +tn/3 +1 and n = 3s. Note that the
FFT process needs to be performed using the ternary
method since the binary one is not feasible over char-
acteristic 2 rings (Schonhage, 1977).

Let us denote ω a primitive n-th root of unity mod-
ulo m(t) and θ = ωn/3 a 3rd root of unity. The ternary
FFT process is based on the following three-way split-
ting of A

A1 = ∑
n/3−1
j=0 a3 jY 3 j,

A2 = ∑
n/3−1
j=0 a3 j+1Y 3 j,

A3 = ∑
n/3−1
i=0 a3 j+2Y 3 j,

such that A = A1 +YA2 +Y 2A3 .

2(i+n/3)
i+n/3

2i+n/3
i+2n/3

i
2i

Â[i+ n
3]

Â[i+ 2n
3 ]

Â[i]
Â1[i]

Â2[i]

Â3[i]

Figure 1: Ternary butterfly operator.

Let Â[i] = A(ωi) be the i-th coefficient of
DFTm(A,n,ω). Let us also denote by Â1[i], Â2[i] and
Â3[i] the coefficients of the DFT of order n/3 of re-
spectively A1,A2 and A3.

The following relations can be obtained by evalu-
ating A = A1 +YA2 +Y 2A3 in ωi,ωi+n/3 and ωi+2n/3

:

Â[i] = Â1[i]+ω
iÂ2[i]+ω

2iÂ3[i],

Â[i+n/3] = Â1[i]+θω
iÂ2[i]+θ

2
ω

2iÂ3[i], (8)

Â[i+2n/3] = Â1[i]+θ
2
ω

iÂ2[i]+θω
2iÂ3[i].

This operation is frequently called the butterfly
operation. It can be performed efficiently if we com-
pute modulo m(t)(tn/3 + 1) = tn + 1 instead of m(t).
Indeed, in this case ω = t and a multiplication a(t)×
ωi modulo tn +1 is a simple cyclic shift. The butterfly
circuit (Figure 1) is a consequence of this remark and
the relations given in (8).

In Figure 1, the � blocks refer to a simple shift
operations by the given value and the

L
blocks refer

to XOR operator. When no value is given, then shift
operation is not performed.

Within the FFT, the computations of Â1, Â2 and
Â3 are done in the same way. These polynomials are
split in three parts and butterfly operations are applied
again. This process is done recursively until constant
polynomial are reached.

If we entirely develop this recursive process we
obtain the schematized architecture in Figure 2.

Let us now evaluate the complexity of this archi-
tecture. It is composed of log3(n) stages where each
stage consists of n/3 butterfly operations. Each of
these butterfly operations requires 6n XOR gates, and
has a delay of 2TX , where TX is the delay of one XOR
gate. Consequently, this architecture has a space com-
plexity of

S(FFTm(t)) = (2n log3(n)+n) XOR (9)

and a delay of

D(FFTm(t)) = (2log3(n)+1)TX . (10)
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reverse bit ordering

... ... ... ... ... ... ... ... ...

coefficients reduction

s
st

ag
es

FF
T

3s−1 butterflies

3s−2 butterflies 3s−2 butterflies 3s−2 butterflies

ωi ω2i

A[0] , A[1] , A[2] , . . . , A[3s−3] , A[3s−2] , A[3s−1]

Â[0] , Â[1] , Â[2] , . . . , Â[3s−3] , Â[3s−2] , Â[3s−1]

Figure 2: Ternary FFT circuit.

7 ARCHITECTURE AND
COMPLEXITY

We now present a hardware architecture associated to
Algorithm 3 in the special case where m1 = t2n + tn +
1 and m2 = t2n/3 + tn/3 +1. This choice enables us to
use the FFT circuit presented in the previous section.
The architecture of our binary field multiplier is given
in Figure 3. It is constituted of FFT blocks and multi-
pliers modulo m1(t) and m2(t).

Table 3: Complexity of multipliers modulo m1 and m2.

Mulm1
Space Time

#AND 3nlog3(6) 1
#XOR 72

5 nlog3(6)−9n−7/5 3log3(n)+3

Mulm2
Space Time

#AND 1
2 nlog3(6) 1

#XOR 36
15 nlog3(6)−n/5+n−1 3log3(n)

These multipliers are referenced by blocks Mulm1
and Mulm2 in our architecture. Because of the special
form of m1(t) and m2(t) we can use the multiplier of
Fan and Hasan (Fan and Hasan, 2007) to perform this
operation. Therefore, the complexity (cf. Table 3) of
these blocks are easily deduced from (Fan and Hasan,
2007, Table 1).

The FFT blocks are designed using the ternary
method presented in previous section. Therefore,
their complexity are those given in (9) and (10). The
complexity of our multiplier can be evaluated with re-
spect to the numbers of each blocks and their cor-
responding space complexity denoted S , and time
complexity denoted D . For the space complex-
ity this gives 4nS(Mulm1)+5nS(Mulm2)+2S(FFTm1)+
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Figure 3: DPS-Lagrange Multiplier.

2S(FFTm2) + 2n2/3 XOR. Similarly, the critical path
of this architecture gives the delay 4D(Mulm1) +
4D(Mulm2)+2D(FFTm1)+2D(FFTm2)+TX .

Using these expressions, (9),(10) and Table 3, we
can compute the complexity with respect to the num-
ber of XOR and AND gates and their corresponding
delay TX and TA.

Let r be the degree in t of the coefficients in
the DPS representation then degt(m2) must satisfy
degt(m2)≥ r. Therefore, this implies that k≤ r×n =
2n2/3 and thus leads to use n ≈

√
k, where k is the

degree of the field F2k .
Finally, we obtain the complexity of the DPS-

Lagrange multiplier stated in Table 4. We also give in
this table the complexity of the best known method,
regarding space and time complexity, to perform bi-
nary field multiplication. One can remark that our ap-
proach decrease the space complexity from k1.58 to
k1.31, while it is slower by a factor roughly equals to
5.3.
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Table 4: Complexity comparison.

Space Complexity Time Complexity
Method # AND # XOR TA TX

This paper 14.5k1.31 69.6k1.31−31k + k0.5(8log3(k)+39) 8 16log3(k)+20
FH∗ binary k1.58 5.5k1.58−5k−0.5 1 2log2(k)+1
FH∗ ternary k1.63 4.8k1.63−4k−0.8 1 3log3(k)+1

FH∗ = (Fan and Hasan, 2007);

8 CONCLUSION

In this paper we have presented a novel algorithm to
perform multiplication in binary field, using a Dou-
ble Polynomial System of representation. This system
enables the use of Fast Fourier Transform in the mul-
tiplication according to Lagrange representation. The
resulting multiplier still achieves a logarithmic time
complexity, but asymptotically improves the space
complexity from O(k1.58) to O(k1.31),

Our method is a first approach to reduce the space
complexity of binary field multiplier. In particular,
some optimizations can be done to reduce the con-
stant factors in the complexity. For example, a lot of
multiplications by a constant are counted as full mul-
tiplication in the current complexity evaluation.

Furthermore, one can also reduce the exponent
in the space complexity by replacing Fan and Hasan
multipliers with a quasi-linear approach (e.g. Schön-
hage’s technique (Schonhage, 1977)).
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