
PRIVATE COMPUTING WITH BEEHIVE ORGANIZED AGENTS

Bartek Gedrojc, Jan C.A. van der Lubbe
Delft University of Technology, Mekelweg 4, 2628 CD, Delft, The Netherlands

Martin van Hensbergen
Fox-IT Forensic IT Experts, Delft, The Netherlands

Keywords: Mobile Agents, Secret Sharing, Threshold Signature, Hash Chaining, Untrustworthy Hosts, Private Comput-
ing.

Abstract: Consider the problem of using mobile agents within an e-commerce setting where the goal is to purchase a
desired item for a user. The problem is that the mobile agents visit a collection of hosts which are untrustworthy
and therefore could tamper with the correct execution of the agents. Our approach to the e-commerce problem
prevents the hosts to retrieve the price the user is willing to pay for a desired item, it prevents the hosts to
retrieve the offers given by other hosts (confidentiality) and it ensures the integrity of the agents’ code, the
query and itinerary. The key to our approach is the use of multiple agents for our goal; to purchase a desired
item for a user. Analogous to a beehive, the user creates Drone agents that can collect data but which do not
have the capability to process this data. Also, one Queen agent is deployed which uses the outputs of the
Drone agents and makes a decision on that data. Simplified, we let the Drone agents do the work, while the
Queen computes the result.

1 INTRODUCTION

Searching, comparing and buying e.g. airline tickets
on the Internet is still a major problem, especially if
this task has to be done on a mobile device. It takes
time to query various websites and to compare the
vast amount of offers of various e.g. airline compa-
nies. Also, due to the limited computational powers
of mobile devices and the limited bandwith of mobile
networks, it would be desireable to shift the compu-
tation cost from the mobile device to the server side
and to limit the communications between the mobile
device and the server.

Mobile software agents are based on mobile code
which performs a task for the owner of the agents.
Mobile code is code which can be transfered from
one computer (sender) to another (recipient) over a
network and which is executed on the recipient’s
side. Using techniques from artificial intelligence,
mobile code can be programmed to execute tasks au-
tonomously in behalf of his owner. A simple but clear
definition of agents has been given by Ted Selker of
the IBM Almaden Research Centre, “An agent is a
software thing that knows how to do things that you
could probably do yourself if you had the time”.

E-commerce scenarios, like buying airline tick-
ets on the Internet using a mobile device, could be
improved by using mobile software agents. Mobile
agents can be deployed on mobile devices with a task
given by its owner, the mobile device user, and sent
to various servers on the Internet. Because the mo-
bile agents are autonomous they require no interaction
with their owner, consequently, the owner can discon-
nect the mobile device from the network and go online
again to obtain the information collected by his agent.

The mobile software agent collects information
from various sources on the Internet and compares
this with the preferences of his owner. This prefer-
ence can contain, in the case of buying online airline
tickets, the maximum price the owner is willing to
pay, a list of prefered airline companies, destination,
et cetera. Which is private and sensitive information.
After processing all collected data and matching it
with the owners preference, the agents returns to his
owner where he presents the result of his comparison.

Execution of code on the recipient’s computer
poseses a number of security issues. From the re-
cipient point of view, the execution of untrustworthy
code can harm the recipients computer e.g. mobile
code can be a virus, a worm or a Trojan. A number

289
Gedrojc B., C.A. van der Lubbe J. and van Hensbergen M. (2007).
PRIVATE COMPUTING WITH BEEHIVE ORGANIZED AGENTS.
In Proceedings of the Second International Conference on Security and Cryptography, pages 289-294
DOI: 10.5220/0002127402890294
Copyright c© SciTePress

of techniques have been suggested, and used, to alle-
viate some of these issues, like sandboxing (Lai et al.,
1999) and the use of certificates (Tan and Moreau,
2002). From the sender of the agents point of view,
the execution of the mobile code on the recipients
computer can be manipulated or spied on because the
recipient has full control over the mobile code. The
latter issue is also called Private computing, where
the goal is to let a recipient compare private data of
the sender without learning any relevant information
about this private data of the sender which could in-
fluence the outcome of the comparison.

Literature on mobile software agents in e-
commerce settings provides a variety of solutions e.g.
sequential execution of a single agent or parallel dis-
tribution of multiple agents. E-commerce scenarios
with mobile devices should not be based on multi-
ple agents due to the computational and communica-
tional limitations of the mobile devices i.e. the more
agents that are deployed, the more agents that need
to be managed. Therefore, it is desirable to deploy
a single agent per owner which is able to query vari-
ous servers, compare this with the preferences of his
owner and return with his result to that owner. The
main problem with this latter approach is the exe-
cution of mobile code on untrustworthy computers
(Sander and Tschudin, 1998a; Sander and Tschudin,
1998b; Cachin et al., 2000; Algesheimer et al., 2001).

When a single agent is deployed on the Internet
to persue a task given by its owner, then this agent
is vulnerable and likely to be attacked by malicious
hosts e.g. with the replay attack, where an agent is
used as an oracle to extract private information from
it by executing it numerous times with different inputs
and observing the outputs.

In this paper, a number of issues are addressed in
an e-commerce setting where the mobile users has to
execute his mobile code on untrustworthy computers
(hosts). The focus of this paper lies on minimizing
the risk of losing private data of the owner, making
sure replay attacks are not worthwile and protecting
the pre-defined path the agents is willing to travel
(itinerary). In section 2 the problem is described to-
gether with the assumptions and requirements of the
solution. Section 3 explains the approach that was
chosen to solve the problem together with a brief
description of the main techniques that where used.
While section 4 explains the complete protocol, sec-
tion ?? makes a security analysis of the protocol. Fi-
nally this paper concludes with a conclusion in sec-
tion 6.

Figure 1: Agent model.

2 PROBLEM STATEMENT AND
ASSUMPTIONS

This paper addresses the problem of using mobile
agents within an e-commerce setting where the goal
is to purchase a desired item for a user. The issue
is that the mobile agents visit a collection of envi-
ronments (merchants) which are untrustworthy and
therefore could tamper with the correct execution of
the agents.

Figure 1 shows a schematic overview of the agent
model which is used in this paper. The model is di-
vided into three parts and shows the various environ-
ments an agent can operate, trusted, curious and ma-
licious. The user of an agent is located at an trusted
environment where he is able to create mobile agents
securely and where he is able to hide his private infor-
mation.

The curious environment will execute agents cor-
rectly and therefore will not tamper with the agents,
but it is interested in the agents’ code and memory in
order to find secrets. This environment can be com-
pared with an Internet Service Provider (ISP) which
is able to read all Internet traffic of his clients but it is
not in his interest to misuse this information (reputa-
tion or for a fee). Therefore, this curious environment
can also be named Agent Service Provider (ASP).

Malicious environments cannot only read the
agents’ code and memory, but are also able to alter
the agents code, clone it, or only partially execute
it. Agents that are executed by these environments
should not leak any private information. It is impos-
sible to prevent tampering of the agents by these en-
vironment but it should be possible to detect missuse.
It must be noted that merchants which are visited by
the agents are considered to be malicious.

SECRYPT 2007 - International Conference on Security and Cryptography

290

By assuming the use of mobile software agents the
scenario starts with the creation of the agent(s) by the
user. The user provides the agents the necessary infor-
mation which enables them to visit the prefered mer-
chants, be ability to collect information from those
merchients and make a decision on the collected in-
formation. After executing the agents they return to
the user with the computed result.

The solution to our agent model should fulfill the
following requirements. The collected information
from the merchants should be hidden for other mer-
chants. For example, in the case of collecting offers
from airline companies, these companies should not
be able to offer a price for a ticket based on already
collected offers from other companies. The goal is
therefore to have confidentiality of the retrieved of-
fers.

Agents should also not reveal the full list of mer-
chients they are planning to visit (itinerary), conse-
quently the itinerary should be tamper-proof.

Also, the amount of network traffic the agents gen-
erate should be minimized. Especially the interaction
with the users due to the use of a mobile device which
has minimum computational powers.

The final requirement is related to the tampering
of the malicious merchants. As stated, one cannot
prevent tampering of the agent by the merchant, but
it should be the case that any merchant should be able
to detect malicious activity.

The assumptions of this agent model are that there
is a Public Key Infrastructure (PKI) available for the
distribution of the public keys of all participants. This
agent model does not consider a denial of service at-
tack and it also assumes that not all merchants collude
with each another.

3 APPROACH

An optimal solution to the problem described in sec-
tion 2, in the sense of minimal network traffic, would
be to use a single mobile agent which hops from
one merchant to another without interacting with his
owner. The problem with this solution is that the
agent is carrying all private information of the user
and therefore it is likely to be reveal private infor-
mation if it is tampered with e.g. using a replay at-
tack. By deploying multiple agents and sending to
every merchant a different agent, tampering can be
deteceted and no private information will leak. The
downside to this solution is the increase in network
traffic. Considering the above solutions, it would be
desirable to develop a trade-off between these solu-
tions. How many agents are there needed to meet the

requirements of section 2?
The approach of this paper is based on beehive

organization where there is one queen who makes the
decisions and multiple drones that do the actual work.
These two types of agents can shortly be characterized
as:

• Drone An agent that can only collect data but does
not have any decision making logic

• Queen An agent that takes the output of the
drone(s) and makes a decision based on that data

By splitting up the tasks of the agents and letting a
drone collect information from various merchants, the
private information of the owner cannot be revealed,
because the drone is not able to process collected data
e.g. match with previously collected offers and decid-
ing which of the offers is the maximum. This process
in only available with the queen. The gathering of
information is a rather neutral activity however and
sending only a drone to collect the information will
keep the decision logic well away from the malicious
environments.

The queen, which does carry the decision logic,
will not pass any malicious hosts. Rather, it is exe-
cuted on a fixed host HQ and is quite immobile com-
pared to the drone. The queen will thus travel only to
a curious host where it waits for the drone’s arrival.
Once the drone and queen are together they will make
a decision on the best offer. See figure 1.

There is also a third agent involved, called the
helper-agent, which will be involved when the drone
cannot be sent to its next destination. This helper-
agent will also reside on a curious host (which can ei-
ther be the same or a different host as where the queen
resides) but will not move from there. The helper-
agent is only needed when a host Hi in the drone’s
itinerary does not function, otherwise the helper-agent
will just shut down after a pre-determined time.

This paper is based on (Singelée and Preneel,
2004) which present a mobile agents scenario that
can securely collect information, protect the collected
information against untrusted hosts, and it can digi-
tally sign transactions in an untrusted environment. In
order to protect different aspects of the agent model
a variety of cryptographic techniques and concepts
is needed. None of the protocols are described
at algorithm level, which means that a suitable
algorithm can be chosen whenever a hash-function
or encryption algorithm is used. The encryption of a
value v with a symmetric encryption algorithm using
key K is denoted as EK(v), whereas the encryption of
the value using the public key of a particular host Hi
is denoted as EHi(v) (or EPHi

(v)). A digital signature
over a value v with host H ′

i s private key will be

PRIVATE COMPUTING WITH BEEHIVE ORGANIZED AGENTS

291

denoted by SigHi(v).

Secret Sharing Scheme. For the storage of the secret
parameters in the queen a public key encryption
algorithm is used. Since this storage will need to be
decrypted once the drone has reached the queen, a
secret sharing algorithm is used to split the decryption
key in two parts; one which is given with the drone
and one which is given to the queen e.g. (Shamir,
1979; Blakely, 1979). Without the presence of the
drone, the host which executes the queen cannot
decrypt the secret data stored in the queen.

Threshold Signature Scheme. Since the agents need
to sign the best bid at the end of the journey, a signing
key must be stored by the agents. For obvious rea-
sons this key cannot be placed in the drone. Placing
the signing key in the encrypted storage of the queen,
while better suited, has the drawback that the signing
key will be reconstructed in its entirety on a curious
host.

To counter this a threshold signature scheme is
chosen e.g (Desmedt and Frankel, 1994). With a
threshold signature scheme, the signing key is split
into two parts. Each party in the signature process
can use its share to create a partial signature on a
message. These partial signatures can then later be
combined to create one complete signature. In our
model we let the merchants partially sign their bids
all with the same share and give that to the drone.
Once the queen finds the best offer, it creates a
partial signature of that same offer with its share and
combines the two partial signature to one complete
signature. This way, the complete signing key is
never reconstructed in one place.

Hash Chaining. Is a method of providing integrity
of data when this data is being augmented by mul-
tiple parties. The within this section described hash
chaining technique is taken from (Singelée and Pre-
neel, 2004). The protocol described here will need
some modifications for our agent model, but the prin-
ciples will remain the same. Each host Hi that the
drone visits will add its offer oi to an encrypted stor-
age in the agent. By using hash chaining, host Hi not
only adds its offer to the storage, but also makes a
commitment that he adds it to the proper storage, by
including a hash of the previous storage state. Each
host Hi will follow the following protocol for storing
its offer oi to the storage.

• Encapsulated offer:

Oi = SigHi(EPQ(oi,ri),hi),0 ≤ i ≤ n (1)

• Chaining relation:

h0 = h(o0,H1) (2)
hi = h(Oi−1,Hi+1),1 ≤ i ≤ n (3)

Here, o0 is initial information (e.g. identitiy of the
agent), oi the offer of host Hi, Oi the encapsulated
offer from host Hi, ri a random number generatated
by Hi, EPQ(v) is the encryption of value v with the
public key of the queen and h(.) a cryptographic hash
function. The encrypted storage will consist of the
chain O0,O1, . . . ,On.

The essence of the protocol is that a host Hi signs
both its offer and a hash value taken over the last en-
capsulated offer and the next destination of the agent.
If a malicious host Hi would like to delete, for exam-
ple, an offer Ok(k < m), from the storage, then this
will be detected during verification of the hash chain
because the committed value hk+1 will not verify.

4 PROTOCOL

This section will describe the complete protocol. It
must be noted that the complete process of creating
agents, sending them out and gaining the results is
called a mission.

4.1 Instantiation of the Agents

For each mission, three agents will be constructed.
Let the itinerary of the drone be given by the hosts
H1,H2,H3, . . . ,Hn,HQ where Hi(1 ≤ i ≤ n) are
merchants and HQ is the location of the host which
executes the queen. Let HP denote the location of
the host which hosts the helper-agent. Fix a security
parameter m ≤ 1 which denotes the maximum
amount of succeeding hosts that may fail so that the
drone can still continue its journey. The case m = 0
does not require a helper agent so we ignore this case.
Denote the parameters which describe the item(s)
that the agent seeks with Q and the secret decision
parameters or logic by F .

Mission instantiation.

• Generate a public key PQ, which will be used
to encrypt the Queen’s data, and split the corre-
sponding private key in two parts SQ1 and SQ2 us-
ing a secret sharing scheme.

• Generate a secret signing key S, which will be
used to sign the best offer by the merchants, and
split the signing key in two parts s1 and s2 using a
threshold signature scheme.

SECRYPT 2007 - International Conference on Security and Cryptography

292

Drone instantiation. In this protocol, h is a strong
cryptographic hash function which generates d bit
hashes (with d sufficiently large) and r|k means the
first k bits of the bit-string r.
1. Choose a k such that 2k = |{Hi}| and k < d/2.
2. For each host Hi to visit, generate a symmetric

encryption key Ki and a (small) random nonce ri
(1 ≤ i ≤ n), such that ri|k 6= r j|k for j < i and a
random nonce ni.

3. Calculate iteratively the itinerary as

In = HQ (4)

Ii = [EPHi
(Ki,ri),EKi(Hi+1,SQ2 , Ii+1)]

with i = n−1, . . . ,n−m
(5)

Ii = [EPHi
(Ki,ri),EKi(Hi+1, Ii+1)]

with i = n−m−1, . . . ,1
(6)

Store I1, PQ, SQ2 and the location of the helper-agent
in the drone and send it to H1.

Queen instantiation protocol.
• Calculate the encrypted storage:

EPQ(H1,n1,H2,n2, . . . ,Hn,nn,F,s2)
• Store the encrypted storage together with SQ1 in

the queen
Helper agent instantiation protocol. Calculate and
store the following lookup-table:

Table 1: Helper agent lookup-table.

look-up
key value verification

ri|k EKi(EPHi
(Ki+t ,ni+t))

hi,t =
h(ri||Hi+t)

with t = 1, . . . ,m and i = 1, . . . ,n−1.

4.2 Execution of the Agents

When the agents are initialized, the queen and
helper-agent are sent to their respective agent service
providers. The helper-agent awaits instantiations
of the helper protocol and is deactivated after a
pre-determined period, so helper agents will not
leave the ASP once they are there. The queen awaits
the coming of the drone or gets deactivated after a
pre-determined period whichever comes first. The
drone is sent to H1 and continues its journey from
there.

Offer collection protocol - drone at merchant.
When a drone is executed on a host Hi, the follow-
ing protocol is executed

1. Host Hi uses its private key to decrypt the first el-
ement of Ii, as given in (5) and (6), to obtain Ki,
which can be used to decrypt the second element
of Ii to obtain Hi+1 and the rest of the (encrypted)
itinerary.

2. Host Hi creates an offer oi and uses s2 to partially
sign its offer, denoted by ci,2

3. Host Hi calculates using PQ the encapsulated
offer using the following hash chaining relations:

If help-protool was not needed:

Oi = SigHi(EPQ(oi, r̂i,ci,2),hi),0 ≤ i ≤ n (7)

hi = h(Oi−1,Hi) (8)

If help-protocol was needed to skip t hosts:

Oi = SigHi(EPQ(oi, r̂i,ci,2),ni+1,ni+2, . . .

. . . ,ni+t),hi)
(9)

hi = h(Oi−1,Hi+t+1) (10)

4. The hash chain, Ii+1 and agent are sent to the next
destination.

In case step 4 fails, the help of the helper-agent is
called and the following help-protocol is used:

Help protocol - drone at merchant communicating
with helper-agent.
1. Hi sends a help request to the helper agent con-

sisting of the tuple ri, Ĥ1, Ĥ2, . . . , Ĥs where ri is
the value included in Ii and Ĥ1, Ĥ2, . . . , Ĥs are the
hosts it wishes to skip

2. P checks if 1 ≤ s ≤ m and if ri|k is part of its
lookup table. If not, it aborts.

3. For each k = 1, . . . ,s execute step 4

4. P verifies if h(ri||Ĥk) = hi,k

5. P returns EKi(EPHi
(Ki+s,ni+s)) to Hi

Decision protocol - drone and queen at HQ. Once
the drone reaches the queen, they will together decide
on the best offer. For this to work, the following steps
must be undertaken:

1. SQ1 from the drone and SQ2 from the queen are
combined to obtain SQ

2. The queens encrypted storage is decrypted using
SQ, thereby obtaining the decision logic, the other
half of the signing key s1 and the itinerary that the
drone should have followed

3. For each encapsulated offer that the drone has col-
lected execute steps 4 - 6

4. Decrypt Oi to get actual offer oi

PRIVATE COMPUTING WITH BEEHIVE ORGANIZED AGENTS

293

5. Verify if signed by a host which was included in
itinerary, if verification fails: abort

6. Verify if each signer is only represented once

7. For each host Hi ∈ ID that did not do an offer, ver-
ify if ni is present in encrypted storage. If verifi-
cation fails: abort.

8. Input the offers o1,o2, . . . ,on into F to determine
b offer ob

9. Use s2 to partially sign ob and combine with cb,1
to make the signature complete.

5 SECURITY ANALYSIS

With the construction of the itinerary a host Hi has
sufficient information to be able to determine the next
host in the agent’s itinerary but cannot get any hosts
beyond that without execution of the help-protocol.

Property 1 (Correctness). Suppose all the hosts Hi
are available and execute offer collection protocol
correctly. Then

i) each host Hi is able to obtain the next destination
Hi+1

ii) each host Hi cannot get destinations H j with j >
i+1

Proof. i) The case i = n are trivial. Take 0 < i < n: at
host Hi the itinerary consists of the tuple

[EPHi
(Ki,ri),EKi(Hi+1, Ii+1)]

Since host Hi has access to its private key, it can
decrypt the first part of the tuple to obtain Ki. With
this Ki it can decrypt the second part of the tuple to
get Hi+1 and Ii+1. Sending the latter to host Hi+1, the
process can be repeated by Hi+1 to obtain the location
of Hi+2, et cetera.

ii) In order for a host Hi to get knowledge of H j
with j > i + 1, it will need to decrypt the second en-
tries of the tuples Ii+1, . . . , I j−1. But, for any k, in or-
der to be able to decrypt the second entry of Ik one
will need Kk, which in turn is only available by de-
crypting EPHk

(Kk). But only Hk+1 (k = i, . . . , j − 2)
can decrypt these values.

�

6 CONCLUSION

This paper introduces a practical mobile agent sce-
nario which could be used as a basis for an e-
commerce setting. By defining strict tasks for each

agent, we prevent sensitive data from being exposed
to the possibly malicious merchants during the bid-
ding process. Even though we use a multi-hop agent
with fixed itinerary to travel to the different mer-
chants, merchants see only a very small part of the
agent’s itinerary. In case of failures in the agent’s
itinerary, a help protocol can be executed to overcome
this difficulty. If all of the hosts function properly
this help protocol is not needed. Protocols are de-
scribed in a general so that different algorithms could
be used depending on other (performance and stor-
age) factors.

REFERENCES

Algesheimer, J., Cachin, C., Camenisch, J., and Karjoth, G.
(2001). Cryptographic security for mobile code. In
Proceedings of the IEEE Symposium on Security and
Privacy, page 2. IEEE Computer Society.

Blakely, G. (1979). Safeguarding cryptographic keys. In
Proceedings AFIPS 1979 National Computer Confer-
ence, pages 313–317. AFIPS.

Cachin, C., Camenisch, J., Kilian, J., and Müller, J.
(2000). One-round secure computation and secure au-
tonomous mobile agents. In Proceedings of the 27th
International Colloquium on Automata, Languages
and Programming, pages 512–523. Springer-Verlag.

Desmedt, Y. and Frankel, Y. (1994). Perfect homomor-
phic zero-knowledge threshold schemes over any fi-
nite abelian group. SIAM J. Discret. Math., 7(4):667–
679.

Lai, C., Gong, L., Koved, L., Nadalin, A., and Schemers,
R. (1999). User authentication and authorization in
the Java platform. In 15th Annual Computer Security
Applications Conference, pages 285–290. IEEE Com-
puter Society Press.

Sander, T. and Tschudin, C. F. (1998a). Protecting mobile
agents against malicious hosts. Lecture Notes in Com-
puter Science, 1419:44–60.

Sander, T. and Tschudin, C. F. (1998b). Towards mobile
cryptography. In Proceedings of the IEEE Symposium
on Security and Privacy, Oakland, CA, USA. IEEE
Computer Society Press.

Shamir, A. (1979). How to share a secret. Commun. ACM,
22(11):612–613.

Singelée, D. and Preneel, B. (2004). Secure e-commerce
using mobile agents on untrusted hosts. Technical re-
port, COSIC Internal Report.

Tan, H. K. and Moreau, L. (2002). Certificates for mobile
code security. In SAC ’02: Proceedings of the 2002
ACM symposium on Applied computing, pages 76–81,
New York, NY, USA. ACM Press.

SECRYPT 2007 - International Conference on Security and Cryptography

294

