A HIGH-LEVEL ASPECT-ORIENTED BASED LANGUAGE FOR
SOFTWARE SECURITY HARDENING

Azzam Mourad, Marc-AndrLaverdire and Mourad Debbabi
Computer Security Laboratory
Concordia Institute for Information Systems Engineering
Concordia University, Montreal (QC), Canada

Keywords: Software Security Hardening, Aspect-Oriented Programming (AOP), Security Hardening Patterns, Security
Hardening Plans, Trusted and Open Source Software (FOSS), Aspect-Oriented Language.

Abstract: In this paper, we propose an aspect-oriented language, &HedSecurity Hardening Language), for speci-
fying systematically the security hardening solutions. This language constitutes our new achievement towards
developing our security hardening framewo8tLallows the description and specification of security harden-
ing plans and patterns that are used to harden systematically security into the code. It is a minimalist language
built on top of the current aspect-oriented technologies that are based on advice-poincut model and can also be
used in conjunction with them. The primary contribution of this approach is providing the security architects
with the capabilities to perform security hardening of software by applying well-defined solution and without
the need to have expertise in the security solution domain. At the same time, the security hardening is applied
in an organized and systematic way in order not to alter the original functionalities of the software. We explore
the viability and relevance of our proposition by applying it into a case study and presenting the experimental
results of securing the connections of open source software.

1 INTRODUCTION ever the source code is available, as it is the case
for Free and Open-Source Software (FOSS), a wide

In today’s computing world, security takes an increas- range of security improvements could be applied once
ingly predominant role. The industry is facing chal- @ focus on security is decided.

lenges in public confidence at the discovery of vul- As a result, integrating security into software is
nerabilities, and customers are expecting security to becoming a very challenging and interesting domain
be delivered out of the box, even on programs that of research. In this context, the main intent of our re-
were not designed with security in mind. The chal- search is to create methods and solutions to integrate
lenge is even greater when legacy systems must besystematically security models and components into
adapted to networked/web environments, while they FOSS. Our proposition, introduced in (Mourad et al.,
are not originally designed to fit into such high-risk 2007), is based on aspect-oriented programming AOP
environments. Tools and guidelines have been avail-and inspired by the best and most relevant methods
able for developers for a few years already, but their and methodologies available in the literature, in addi-
practical adoption is limited so far. Nowadays, soft- tion to elaborating valuable techniques that permit us
ware maintainers must face the challenge to improve to provide a framework for systematic security hard-
programs security and are often under-equipped to doening.

so. In some cases, little can be done to improve the The main components of our approach are the se-
situation, especially for Commercial-Off-The-Shelf curity hardening plans and patterns that provide an ab-
(COTS) software products that are no longer sup- straction over the actions required to improve the se-
ported, or their source code is lost. However, when- Curity of a program. They should be Specified and de-

*This research is the result of a fruitful collaboration veloped using an abstract, programming language in-
between CSL (Computer Security Laboratory) of Concor- dependent and aspect-oriented (AO) based language.
dia University, DRDC (Defense Research and Develop- 1he current AO languages, however, lack many fea-
ment Canada) Valcartier and Bell Canada under the NSERC tures needed for systematic security hardening. They
DND Research Partnership Program. are programming language dependent and could not

363

Mourad A., Laverdiere M. and Debbabi M. (2007).

A HIGH-LEVEL ASPECT-ORIENTED BASED LANGUAGE FOR SOFTWARE SECURITY HARDENING.
In Proceedings of the Second International Conference on Security and Cryptography, pages 363-370
DOI: 10.5220/0002128403630370

Copyright © SciTePress

SECRYPT 2007 - International Conference on Security and Cryptography

Security APIs |

Security
Hardening Pattern

be used to write and specify such high level plans
and patterns, from which the need to elaborate a lan-
guage built on top of them to provide the missing fea-
tures. In this context, we propose a language called
SHL for security hardening plans and patterns speci-
fication. It allows the developer to specify high level
security hardening plans that leverage priori defined |
security hardening patterns, which are also developed |
usingSHL |
I
[

Security

Requirements ‘

Security
Hardening Plan

This paper provides our new contributions in de-
veloping our security hardening framework. The ex-

perimental results presented together with the secu-

rity hardening plans and patterns, which are elabo-

rated usingSHL, explore the efficiency and relevance

of our approach. The remainder of this paper is or- Software * . Ay

ganized as follows. In Section 2, we introduce the —@—’

contributions in the field of AOP languages for secur-

ing software. Afterwards, in Section 3, we summa- Figure 1: Schema of Our Approach.

rize our approach for systematic security hardening.

Then, in Section 4, we present the syntax and seman-

tics of SHL After that, in Section 5, we illustrate the within applications. It is based on AOSD concepts

useability ofSHL into case studies. Finally, we offer to specify the behavior code to be merged in the ap-

concluding remarks in Section 6. plication and the location where this code should be
injected. In (Bodkin, 2004), Ron Bodkin surveyed the
security requirements for enterprise applications and
described examples of security crosscutting concerns,

2 RELATED WORK with a focus on authentication and authorization. An-

]] p other contribution in AOP security is the Java Security

In this Section, we only present an overview on some Aspect Library (JSAL), in which Huang et al. (Huang

AOP languages and the use of AOP for software se- gt g]., 2004) introduced and implemented, in AspectJ,

curity. The related work on the current approaches 3 reysable and generic aspect library that provides se-

for securing software (e.g. security design patterns, cyrity functions. These research initiatives, however,

secure coding) has been discussed in (Mourad et al. focys on exploring the usefulness of AOP for secur-

2007). There are many AOP languages that haveing software by security experts who know exactly

been developed. We distinguish from them Aspect yhere each piece of code should be manually injected

(Kiczales et al., 2001) built on top of the Java pro- ang/or proposing AOP languages for security. None

gramming language, AspectC (Coady et al., 2001) of them proposed an approach or methodology for

built on top of the C programming language, As- systematic security hardening with features similar to
pectC++ (Spinczyk et al., 2002) built on top of the oyr approach.

C++ programming language, AspectC# (Kim, 2002)

built on top of the C Sharp programming language

and the AOP version addressed for Smalltalk pro-

gramming language (Bollert, 1999). However, these 3 SECURITY HARDENING

languages are used for code implementation and can- APPROACH

not be used to specify abstract security hardening

plans and patterns, which is a requirement in our This section illustrates a summary of our whole ap-

proposition. proach for systematic security hardening. It also ex-
Regarding the use of AOP for security, the fol- plores the need and usefulnessSéiL to achieve our

lowing is a brief overview on the available contribu- objectives. The approach architecture is illustrated in

tions. Cigital labs proposed an AOP language called Figure 1.

CSAW (Cigital Labs, 2003), which is a small super- The primary objective of this approach is to al-

set of C programming language dedicated to improve low the developers to perform security hardening of

the security of C programs. De Win, in his Ph.D. the- FOSS by applying well-defined solutions and with-

sis (DeWin, 2004), discussed an aspect-oriented ap-out the need to have expertise in the security solu-

proach that allowed the integration of security aspects tion domain. At the same time, the security harden-

I
I
|
I
|

Security
Hardening
Aspects

364

A HIGH-LEVEL ASPECT-ORIENTED BASED LANGUAGE FOR SOFTWARE SECURITY HARDENING

ing should be applied in an organized and systematic
way in order not to alter the original functionalities of
the software. This is done by providing an abstraction
over the actions required to improve the security of
the program and adopting AOP to build and develop
our solutions. The developers are able to specify the
hardening plans that use and instantiate the security
hardening patterns using the proposed langi&idle

The abstraction of the hardening plans is bridged

by concrete steps defined in the hardening patterns us-

ing alsoSHL This dedicated language, together with
a well-defined template that instantiates the patterns
with the plan’s given parameters, allow to specify the
precise steps to be performed for the hardening, tak-
ing into consideration technological issues such as
platforms, libraries and languages. We b&HL on

top of the current AOP languages because we believe,
after a deep investigation on the nature of security
hardening practices and the experimental results we
got, that aspect orientation is the most natural and ap-
pealing approach to reach our goal.

Once the security hardening solutions are built,
the refinement of the solutions into aspects or low
level code can be performed using a tool or by pro-
grammers that do not need to have any security exper-
tise. Afterwards, an AOP weaver (e.g. AspectJ, As-

pectC++) can be executed to harden the aspects into

the original source code, which can now be inspected
for correctness. As a result, the approach constitutes,
a bridge that allows the security experts to provide the
best solutions to particular security problems with all
the details on how and where to apply them, and al-
lows the software engineers to use these solutions to
harden FOSS by specifying and developing high level
security hardening plans.

4 SHL LANGUAGE

Our proposed languag&HL, allows the description
and specification of security hardening patterns and
plans that are used to harden systematically security
into the code. It is a minimalist language built on
top of the current AOP technologies that are based on
advice-pointcut model. It can also be used in conjunc-
tion with them since the solutions elaboratedSHL

can be refined into a selected AOP language (e.g. As-
pectC++) as illustrated in Section 5. We developed
part of SHL with notations and expressions close to

following are the main features provided ByL:

e Automatic code manipulation such as code addi-
tion, substitution, deletion, etc.

Specification of particular code join points where
security code would be injected.

Modification of the code after the development
life cycle since we are dealing with already ex-
isting open source software.

Modification of the code in an organized way and
without altering its functional attributes.

Description and specification of security.

Dedicated to describe and specify reusable secu-
rity hardening patterns and plans.

[]

e Parameterized language to allow the instantiation
of the security hardening patterns through the se-

curity hardening plans.

e Programming language independent.

Highly expressive and easy to use by security non
experts.

e Intermediary abstractness between English and

programming languages.

Easily convertible to available AOP languages
(e.g. AspectJ and AspectC++).

°

4.1 Grammar and Structure

In this section, we present the syntactic constructs and
their semantics irSHL Table 1 illustrates th&NF
grammar ofSHL The language that we arrived at can
be used for both plans and patterns specification, with
a specific template structure for each of them. We im-
plemented this language specification using ANTLR
V3 Beta 6 and its associated ANTLRWorks develop-
ment environment. We were also able to validate the
syntax of different plan and pattern examples within
this tool. The work on the language implementation
is still in progress. Examples of security hardening
plans and patterns are elaborated ushti and pre-
sented in Section 5.

Hardening Plan Structure. A hardening plan
starts always with the keywor8l an, followed by

the plan’'s name and then the plan’s code that starts
and ends respectively by the keyworBeagi nPl an
andEndPl an. Regarding the plan’s code, it is com-

those of the current AOP languages but with all the posed of one or many pattern instantiations that al-
abstraction needed to specify the security hardeninglow to specify the name of the pattern and its pa-
plans and patterns. These notations and expressionsameters, in addition to the location where it should
are programming language independent and withoutbe applied. Each pattern instantiation starts with the
referring to low-level implementation details. The keywordPatter nName followed by a name, then the

365

SECRYPT 2007 - International Conference on Security and Cryptography

Table 1: Grammar oBHL

Start

SH.Plan
Plan_.Name
SH.Plan_.Code

PatternInstantiation

PatternName
PatternParameter
ParameterName
ParameterValue
Moduleldentification

SH Pattern

Matching Criteria
SH PatternCode

LocationBehavior

Behaviorlnsertion Point

Locationldentifier

Signature
Primitive

BehaviorCode

SH.Plan
SH Pattern

Pl an Plan_Name

SH. Plan_Code

Identifier

Begi nPl an

Patterninstantiation*

EndPI an

Pat t er nNane PatternName
(Paramet ers Pattern Parameter)?
Wher e Moduleldentification+
Identifier

ParameterName Paramete¥alue
Identifier

Identifier

Identifier

Pattern PatternName
Matching Criteria?

SH. PatternCode

Paranet er s PatternParameter+
Begi nPattern

LocationBehavior*

EndPattern

BehaviorInsertion Point+ Locationldentifier+
Primitive*?

BehaviorCode

Bef ore

After

Repl ace

FunctionCal | <Signature>

Functi onExecution <Si gnature>

W t hi nFunction <Si gnat ure>

CFl ow <Location_ldentifier>

GAf | ow <Location_ldentifier>

GDFl ow <Location_ldentifier>

Identifier
Export Parameter <ldentifier>
| nport Parameter <ldentifier>

Begi nBehavi or
CodeStatement
EndBehavi or

366

A HIGH-LEVEL ASPECT-ORIENTED BASED LANGUAGE FOR SOFTWARE SECURITY HARDENING

keyword Par anet er s followed by a list of parame- Behavi or _I nsertion_Poi nt can have the follow-

ters and finally by the keyworither e followed by ing three valuesBefore, After or Repl ace. The
the module name where the pattern should be appliedRepl ace means remove the code at the identified lo-
(e.g. file name). cation and replace it with the new code, while the

Before or After means keep the old code at the
Hardening Pattern Structure. A hardening pat- identified location and insert the new code before or

tern starts with the keywor8at tern, followed by &fter itrespectively.

the pattern’s name, then the keywadpdr anet ers

followed by the matching criteria and finally the Location_ldentifier. Identifies the joint point or
pattern's code that starts and ends respectively byseries of joint points in the program where the
the keywordsBegi nPatt ern andEndPattern. The changes specified in th&ehavi or Code should
matching criteria are composed of one or many pa- be applied. The list of constructs used in the
rameters that could help in distinguishing the patterns Locati on_l dentifi er is not yet complete and left
with similar name and allow the pattern instantiation. for future extensions. Depending on the need of the
The pattern code is based on AOP and composed ofsecurity hardening solutions, a developer can define
one or manyLocat i on_Behavi or constructs. Each his own constructs. However, these constructs should
one of them constitutes the location identifier and the have their equivalent in the current AOP technologies
insertion point where the behavior code should be in- or should be implemented into the weaver used. In the
jected, the optional primitives that may be needed in sequel, we illustrate the semantics of some important
applying the solution and the behavior code itself. A constructs used for identifying locations:

detailed explanation of the components of the pat-

tern’s code will be illustrated in Section 4.2. FunctionCal | <Signature> Provides all the join

points where a function matching the signature

42 Semantics specified is called.

Functi onExecution <Signature> Provides all

In this Section, we present the semantics of the im- the join points referring to the implementation of
portant syntactic constructs 8HL language. a function matching the signature specified.

W t hi nFunction <Si gnature> Filters all the join
Pattern_Instantiation. Specifies the name of the points that are within the functions matching the

pattern that should be used in the plan and all the Signature specified.
parameters needed for the pattern. The name andcr| ow <Location_l dentifier> Captures the join
parameters are used as matching criteria to iden- points occurring in the dynamic execution con-

tlfy the selected pattern. The module where the text of the join points Speciﬁed in the input
pattern should be applied is also specified in the Location_ldentifier.

Pattern_l nstantiation. This module can be the

whole application, file name, function name, etc. GAfl ow <Locationldentifier> Operates on the

control flow graph (CFG) of a program. Its
input is a set of join points defined as a

Matching _Criteria. Isa I_ist of parameter; added to Location_l dentifier and its output is a single
the name of the pattern in order to identify the pat- join point. It returns the closest ancestor join point
tern. These parameters may also be needed for the {5 the join points of interest that is on all their run-
solutions specified into the pattern. time paths. In other words, if we are considering
the CFG notations, the input is a set of nodes and
Location_Behavior. Is based on the advice- the output is one node. This output is the clos-
pointcut model of AOP. It is the abstract rep- est common ancestor that constitutes (1) the closet

resentation of an aspect in the solution part of common parent node of all the nodes specified in
a pattern. A pattern may include one or many the input set (2) and through which passes all the
Location_Behavior. Each Location_Behavi or possible paths that reach them.

is composed of theBehavi or _I nserti on_Poi nt,
Location_Identifier, one or manyPrinitive
andBehavi or _Code.

CGDFl ow <Location_l dentifier> Operates on the
CFG of a program. Its input is a set of join points
defined as docation_ldentifier and its out-
put is a single join point. It returns the closest

Behavior_Insertion_Point. Specifies the point of child join point that can be reached by all paths

code insertion after identifying the location. The starting from the join points of interest. In other

367

SECRYPT 2007 - International Conference on Security and Cryptography

words, if we are considering the CFG notations, following the approach’s methodology and using the
the input is a set of nodes and the output is one proposedSHL language. In this context, we devel-
node. This output (1) is a common descendant oped our own client application and selected an open
of the selected nodes and (2) constitutes the first source software called APT to secure their connec-
common node reached by all the possible pathstions using GnuTLS/SSL library. Our application,
emanating from the selected nodes. which is a client implemented in C, allows to connect
and exchange data with a selected server, typically an
HTTP request.

Regarding APT, it is an automated package down-
loader and manager for the Debian Linux distribu-

The Location_ldentifier constructs can be
composed with algebraic operators to build up other
ones as follows:

LocationIdentifier & Location.ldentifier tion. It is written in C++ and is composed of more
Returns the intersection of the join points speci- than 23 000 source lines of code (based on version
fied in the two constructs. 0.5.28, generated using David A. Wheeler's 'SLOC-

Location_ldentifier || Location_dentifier Count). It obtains packages via local file storage,
Returns the union of the join points specified in FTP, HTTP, etc. We have decided to add HTTPS sup-
the two constructs. port to these two applications. In the sequel, we are

going to present the hardening plan, pattern and as-

| . o - :
+ Locationldentifier Excludesthe join points pect elaborated to secure the connections of APT.

specified in the construct.

Primitive. Is an optional functionality that allows 5.1 Hardening Plan

to specify the variables that should be passed between = ;)
two Locati on_I denti fier constructs. The follow- I Listing 1, we include an example of effective secu-

ing are the constructs responsible of passing the pa-rity hardening plan for Secufing the connection Of. the

rameters: APT software. The hardening plan of the our client
o i application will be the same, except for the plan’s

ExportParanmeter <Identifier> Defined at the pame and the modules where the patterns should be

origin Location.Identifier. It allows to spec- gpplied (i.e. the files' names specified aftéer e).
ify a set of variables and make them available to

be exported. Listing 1: Hardening Plans for Securing Connection.
I nport paraneter <ldentifier> Defined at the Pl an APT_SecureConnectionPlan BeginPl an
destinationLocation_dentifier. It allows PatternName SecureConnectionPattern
to specify a set of variables and import them Paramet ers
from the originLocat i on_l dent i fi er where the Language C/C
Expor t Par anet er has been defined. API GNUTLS
Peer Client
Protocol SSL
Behavior_.Code. May contain code written in any Vhere http.cc connect.cc
programming language, or even written in English as| EndPl an

instructions to follow, depending on the abstraction

level of the pattern. The choice of the language and .

syntax is left to the security hardening pattern devel- 5.2 Hardening Pattern

oper. However, the code provided should be abstract

and at the same time clear enough to allow a devel- Listing 2 presents the solution part of the pattern for

oper to refine it into low level code without the need securing the connection of the two aforementioned

to high security expertise. Example of such code be- applications using GnuTLS/SSL. The code of the

havior is presented in Listing 2. functions used in theCode_Behavi or parts of the
pattern is illustrated in Listing 3. It is expressed in
C++ because our applications are implemented in this

5 CASE STUDY: SECURING programming language. However, other syntax and
programming languages can also be used depending
CONNECTION OF CLIENT on the abstraction required and the implementation
APPLICATIONS language of the application to harden.

In this section, we illustrate our elaborated solutions
for securing the connections of client applications by

368

A HIGH-LEVEL ASPECT-ORIENTED BASED LANGUAGE FOR SOFTWARE SECURITY HARDENING

Listing 2: Hardening Pattern for Securing Connection.

Parameters
Language C/C++
API GNUTLS
Peer Client
Protocol SSL

Begi nPattern

Before

FunctionExecution <main> // Starting Point

Begi nBehavi or
Il Initialize the TLS library
InitializeTLSLibrary;

EndBehavi or

Before

FunctionCal| <connect- //TCP Connection

Export Parameter <xcred>

ExportParameter <session>

Begi nBehavi or
/1 Initialize the TLS session resources
InitializeTLSSession;

EndBehavi or

After

FunctionCall <connect>

| mport Parameter <session>

Begi nBehavi or
!/l Add the TLS handshake
AddTLSHandshake;

EndBehavi or

Repl ace

FunctionCal | <send>

I mport Paramet er <session>

Begi nBehavi or
!/l Change the send functions using that
/I socket by the TLS send functions of the
// used APl when using a secured socket
SSLSend;

EndBehavi or

Repl ace

FunctionCal | <receive>

| mport Parameter <session>

Begi nBehavi or
I/l Change the receive functions using that
!l socket by the TLS receive functions of
!l the used APl when using a secured socket
SSLReceive;

EndBehavi or

Before

FunctionCal | <close> // Socket close

I mport Paramet er <xcred>

I mport Paramet er <session>

Begi nBehavi or
// Cut the TLS connection
CloseAndDealocateTLSSession;

EndBehavi or

After

Functi onExecution <main>

Begi nBehavi or
// Deinitialize the TLS library
DeinitializeTLSLibrary;

EndBehavi or

EndPattern

5.3 Hardening Aspect

We refined and implemented (using AspectC++)
the corresponding aspect of the pattern presented
in Listing 2. Due to space limitation, Listing

4 shows only an excerpt of the aspect, specifi-
cally the handshake code inserted after the function
connect. The reader will notice the appearance of
har deni ng_socki nf o_t . These are the data structure
(hash table) and functions that we developed to import
and export the parameters needed between the appli-
cation’s components at runtime (since the primitives

| mpor t Par ant er andExport Par anet er are not yet
deployed into the weavers).

Listing 4: Excerpt of Aspect for Securing Connections.

aspect SecureConnection {

advice call ("%,connect(...)") : around () {
hardening_sockinfo_t socketlnfo;

tjp->proceed(); //original connect

/1 TLS handshake

gnutls_transport_set_ptr (socketlnfo.session,

(gnutls_transport_ptr) (*(int*)tjp->arg(0)));

*tjp->result() = gnutls_handshake (socketlnfo.
session);

W g

Listing 3: Functions used in the pattern.

InitializeTLSLibrary
gnutls_global _init()
InitializeTLSSession
gnutls_init (session, GNUTLS_CLIENT)
gnutls_set_default_priority (session);

gnutls_certificate_type_set_priority (session, cert_type_priority);

gnutls_certificate_allocate_credentials(xcred);

gnutls_credentials_set (session, GNUTLS_CRD_CERTIFICATE, xcred);
AddTLSHandshake

gnutls_transport_set_ptr(session, socket)

gnutls_handshake (session);
SsLsend

gnutls_record_send(session, data, datalength);
SSLRecei ve

gnutls_record_recv(session, data, datalength);
Cl oseAndDeal ocat eTLSSessi on

gnutls_bye(session, GNUTLS_SHUT_RDWR);

gnutls_deinit(session);

gnutls_certificate_free_credentials(xcred);
DeinitializeTLSLibrary

gnutls_global _deinit();

5.4 Experimental Results

In order to validate the hardened applications, we
used the Debian apache-ssl package, an HTTP server
that accepted only SSL-enabled connections. We
populated the server with a software repository com-
pliant with APT’s requirements, so that APT can con-
nect automatically to the server and download the
needed metadata in the repository. Then, we weaved
(using AspectC++ weaver) the elaborated aspect with
the different variants of our application and APT. We
first executed our own hardened application and made
it connect successfully to our local HTTPS-enabled
web server using HTTPS. Then, after building and
deploying the modified APT package, we tested suc-
cessfully its functionality by refreshing APT’s pack-
age database, which forced the software to connect to
both our local web server (Apache-ssl) using HTTPS
and remote servers using HTTP to update its list of
packages.

The experimental results in Figure 2 show the
packet capture, obtained using WireShark software,
of the encrypted traffic between our version of APT
and its remote package repositories. The highlighted

369

SECRYPT 2007 - International Conference on Security and Cryptography

Time: Source

1 0.000000 127.0.0.
2 0. 000306 127.0.0.

Destination | Protocal | Info
TCP 1878 > https [SvN] Seqg=0 Len={
TCP https > 1878 [SvN, ACK] Seg=0
1878 > https [ACK] Seg=1 Ack=:

Seq i Ackf

on
https > 1878 [ACK] Seq=888 Acl

7 SV Application Data, Application
18 .1 TCR 1878 > https [ACK] Seq=807 Acl
19 7.607625 127.0.0.1 TCR 1878 > https [FIN, ACK] Seg=8(
20 7.649340 .0.0. 127.0.0.1 TCR https > 1878 [FIN, ACK] Seg=1;
21 7.649554 127.0.0.1 127.0.0.1 TCP 1878 > https [ACK] Seq=308 Acl

ame 17 (412 bytes on wire, 412 hytes captured)
aernet II, src: 00:00:00 00:00:00 (00:00:00:00:00:007, DsT: 00:00:00_00
ternet Protocol, Src: 127.0.0.1 (127.0.0.1), Dst: 127.0.0.1 (127.0.0. 1)

Src Port: https (443), Ds

Ensmission Control Protocol,

ure Sncket Layer
TLsvl Record Layer: application pata protocol: http
TLSv1 Record Layer: application Data Protocol: http
content Type: application Data (23)
wversion: TLS 1.0 (0x0301)
Length: 304
Encrypted application Data: SBGE300A45C27165BF3440D03A8A000014CESS34655:

Huang, M., Wang, C., and Zhang, L. (2004).

Cigital Labs (2003). An aspect-oriented security assurance

solution. Technical Report AFRL-IF-RS-TR-2003-

254,

Coady, Y., Kiczales, G., Feeley, M., and Smolyn, G. (2001).

Using aspectc to improve the modularity of path-
specific customization in operating system code. In
Proceedings of Foundations of software Engineering,
Vienne, Austria

DeWin, B. (2004).Engineering Application Level Security

through Aspect Oriented Software Developm&itD
thesis, Katholieke Universiteit Leuven.

Toward
a reusable and generic security aspect library. In
AOSD:AOSDSEC 04: AOSD Technology for Applica-
tion level Security

Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm,

J., and Griswold, W. (2001). Overview of aspectj.
In Proceedings of the 15th European Conference
ECOOP 2001, Budapest, Hunga§pringer Verlag.

Kim, H. (2002). An aosd implementation for c#. Tech-

Figure 2: Packet Capture of SSL-protected APT Traffic.

nical Report TCD-CS2002-55, Department of Com-
puter Science, Trinity College, Dublin.

Mourad, A., Lavercgre, M.-A., and Debbabi, M. (2007).

lines show TLSv1 application data exchanged in en-
crypted form through HTTPS connections, exploring
the correctness of the security hardening process.

Towards an aspect oriented approach for the secu-
rity hardening of code. IProceedings of the 21st
IEEE International Conference on Advanced Infor-
mation Networking and Applications, SSNDS Sympo-
sium, (AINA 07), Niagara, ON, Canadd&EE.

Spinczyk, O., Gal, A., and chroder Preikschat, W. (2002).

6 CONCLUSION

We proposed in this paper a language calfdL

for security hardening plans and patterns specifica-
tion. This contribution constitutes our new accom-
plishment towards developing our security hardening
framework. By using our approach, developers are
able to perform security hardening of software in a
systematic way and without the need to have exper-
tise in the security solution domain. At the same time,
it allows the security experts to provide the best solu-
tions to particular security problems with all the de-
tails on how and where to apply them. The exper-
imental results presented together with the security
hardening plans and patterns, which are elaborated
usingSHL, explore the efficiency and relevance of our
proposition.

REFERENCES

Bodkin, R. (2004). Enterprise security aspects.
http://citeseer.ist.psu.edu/702193. htm
(Accessed April 2007).

Bollert, K. (1999). On weaving aspects. Interna-
tional Workshop on Aspect-Oriented Programming at
ECOOP99

370

Aspectc++: An aspect-oriented extension to c++. In
Proceedings of the 40th International Conference on
Technology of Object-Oriented Languages and Sys-
tems, Sydney, Australia

