
A HIGH-LEVEL ASPECT-ORIENTED BASED LANGUAGE FOR
SOFTWARE SECURITY HARDENING

Azzam Mourad, Marc-AndŕeLaverdìere and Mourad Debbabi
Computer Security Laboratory

Concordia Institute for Information Systems Engineering
Concordia University, Montreal (QC), Canada

Keywords: Software Security Hardening, Aspect-Oriented Programming (AOP), Security Hardening Patterns, Security
Hardening Plans, Trusted and Open Source Software (FOSS), Aspect-Oriented Language.

Abstract: In this paper, we propose an aspect-oriented language, calledSHL(Security Hardening Language), for speci-
fying systematically the security hardening solutions. This language constitutes our new achievement towards
developing our security hardening framework.SHLallows the description and specification of security harden-
ing plans and patterns that are used to harden systematically security into the code. It is a minimalist language
built on top of the current aspect-oriented technologies that are based on advice-poincut model and can also be
used in conjunction with them. The primary contribution of this approach is providing the security architects
with the capabilities to perform security hardening of software by applying well-defined solution and without
the need to have expertise in the security solution domain. At the same time, the security hardening is applied
in an organized and systematic way in order not to alter the original functionalities of the software. We explore
the viability and relevance of our proposition by applying it into a case study and presenting the experimental
results of securing the connections of open source software.

1 INTRODUCTION

In today’s computing world, security takes an increas-
ingly predominant role. The industry is facing chal-
lenges in public confidence at the discovery of vul-
nerabilities, and customers are expecting security to
be delivered out of the box, even on programs that
were not designed with security in mind. The chal-
lenge is even greater when legacy systems must be
adapted to networked/web environments, while they
are not originally designed to fit into such high-risk
environments. Tools and guidelines have been avail-
able for developers for a few years already, but their
practical adoption is limited so far. Nowadays, soft-
ware maintainers must face the challenge to improve
programs security and are often under-equipped to do
so. In some cases, little can be done to improve the
situation, especially for Commercial-Off-The-Shelf
(COTS) software products that are no longer sup-
ported, or their source code is lost. However, when-

∗This research is the result of a fruitful collaboration
between CSL (Computer Security Laboratory) of Concor-
dia University, DRDC (Defense Research and Develop-
ment Canada) Valcartier and Bell Canada under the NSERC
DND Research Partnership Program.

ever the source code is available, as it is the case
for Free and Open-Source Software (FOSS), a wide
range of security improvements could be applied once
a focus on security is decided.

As a result, integrating security into software is
becoming a very challenging and interesting domain
of research. In this context, the main intent of our re-
search is to create methods and solutions to integrate
systematically security models and components into
FOSS. Our proposition, introduced in (Mourad et al.,
2007), is based on aspect-oriented programming AOP
and inspired by the best and most relevant methods
and methodologies available in the literature, in addi-
tion to elaborating valuable techniques that permit us
to provide a framework for systematic security hard-
ening.

The main components of our approach are the se-
curity hardening plans and patterns that provide an ab-
straction over the actions required to improve the se-
curity of a program. They should be specified and de-
veloped using an abstract, programming language in-
dependent and aspect-oriented (AO) based language.
The current AO languages, however, lack many fea-
tures needed for systematic security hardening. They
are programming language dependent and could not

363
Mourad A., Laverdière M. and Debbabi M. (2007).
A HIGH-LEVEL ASPECT-ORIENTED BASED LANGUAGE FOR SOFTWARE SECURITY HARDENING.
In Proceedings of the Second International Conference on Security and Cryptography, pages 363-370
DOI: 10.5220/0002128403630370
Copyright c© SciTePress

be used to write and specify such high level plans
and patterns, from which the need to elaborate a lan-
guage built on top of them to provide the missing fea-
tures. In this context, we propose a language called
SHL for security hardening plans and patterns speci-
fication. It allows the developer to specify high level
security hardening plans that leverage priori defined
security hardening patterns, which are also developed
usingSHL.

This paper provides our new contributions in de-
veloping our security hardening framework. The ex-
perimental results presented together with the secu-
rity hardening plans and patterns, which are elabo-
rated usingSHL, explore the efficiency and relevance
of our approach. The remainder of this paper is or-
ganized as follows. In Section 2, we introduce the
contributions in the field of AOP languages for secur-
ing software. Afterwards, in Section 3, we summa-
rize our approach for systematic security hardening.
Then, in Section 4, we present the syntax and seman-
tics of SHL. After that, in Section 5, we illustrate the
useability ofSHL into case studies. Finally, we offer
concluding remarks in Section 6.

2 RELATED WORK

In this Section, we only present an overview on some
AOP languages and the use of AOP for software se-
curity. The related work on the current approaches
for securing software (e.g. security design patterns,
secure coding) has been discussed in (Mourad et al.,
2007). There are many AOP languages that have
been developed. We distinguish from them AspectJ
(Kiczales et al., 2001) built on top of the Java pro-
gramming language, AspectC (Coady et al., 2001)
built on top of the C programming language, As-
pectC++ (Spinczyk et al., 2002) built on top of the
C++ programming language, AspectC# (Kim, 2002)
built on top of the C Sharp programming language
and the AOP version addressed for Smalltalk pro-
gramming language (Bollert, 1999). However, these
languages are used for code implementation and can-
not be used to specify abstract security hardening
plans and patterns, which is a requirement in our
proposition.

Regarding the use of AOP for security, the fol-
lowing is a brief overview on the available contribu-
tions. Cigital labs proposed an AOP language called
CSAW (Cigital Labs, 2003), which is a small super-
set of C programming language dedicated to improve
the security of C programs. De Win, in his Ph.D. the-
sis (DeWin, 2004), discussed an aspect-oriented ap-
proach that allowed the integration of security aspects

Figure 1: Schema of Our Approach.

within applications. It is based on AOSD concepts
to specify the behavior code to be merged in the ap-
plication and the location where this code should be
injected. In (Bodkin, 2004), Ron Bodkin surveyed the
security requirements for enterprise applications and
described examples of security crosscutting concerns,
with a focus on authentication and authorization. An-
other contribution in AOP security is the Java Security
Aspect Library (JSAL), in which Huang et al. (Huang
et al., 2004) introduced and implemented, in AspectJ,
a reusable and generic aspect library that provides se-
curity functions. These research initiatives, however,
focus on exploring the usefulness of AOP for secur-
ing software by security experts who know exactly
where each piece of code should be manually injected
and/or proposing AOP languages for security. None
of them proposed an approach or methodology for
systematic security hardening with features similar to
our approach.

3 SECURITY HARDENING
APPROACH

This section illustrates a summary of our whole ap-
proach for systematic security hardening. It also ex-
plores the need and usefulness ofSHL to achieve our
objectives. The approach architecture is illustrated in
Figure 1.

The primary objective of this approach is to al-
low the developers to perform security hardening of
FOSS by applying well-defined solutions and with-
out the need to have expertise in the security solu-
tion domain. At the same time, the security harden-

SECRYPT 2007 - International Conference on Security and Cryptography

364

ing should be applied in an organized and systematic
way in order not to alter the original functionalities of
the software. This is done by providing an abstraction
over the actions required to improve the security of
the program and adopting AOP to build and develop
our solutions. The developers are able to specify the
hardening plans that use and instantiate the security
hardening patterns using the proposed languageSHL.

The abstraction of the hardening plans is bridged
by concrete steps defined in the hardening patterns us-
ing alsoSHL. This dedicated language, together with
a well-defined template that instantiates the patterns
with the plan’s given parameters, allow to specify the
precise steps to be performed for the hardening, tak-
ing into consideration technological issues such as
platforms, libraries and languages. We builtSHL on
top of the current AOP languages because we believe,
after a deep investigation on the nature of security
hardening practices and the experimental results we
got, that aspect orientation is the most natural and ap-
pealing approach to reach our goal.

Once the security hardening solutions are built,
the refinement of the solutions into aspects or low
level code can be performed using a tool or by pro-
grammers that do not need to have any security exper-
tise. Afterwards, an AOP weaver (e.g. AspectJ, As-
pectC++) can be executed to harden the aspects into
the original source code, which can now be inspected
for correctness. As a result, the approach constitutes
a bridge that allows the security experts to provide the
best solutions to particular security problems with all
the details on how and where to apply them, and al-
lows the software engineers to use these solutions to
harden FOSS by specifying and developing high level
security hardening plans.

4 SHL LANGUAGE

Our proposed language,SHL, allows the description
and specification of security hardening patterns and
plans that are used to harden systematically security
into the code. It is a minimalist language built on
top of the current AOP technologies that are based on
advice-pointcut model. It can also be used in conjunc-
tion with them since the solutions elaborated inSHL
can be refined into a selected AOP language (e.g. As-
pectC++) as illustrated in Section 5. We developed
part of SHL with notations and expressions close to
those of the current AOP languages but with all the
abstraction needed to specify the security hardening
plans and patterns. These notations and expressions
are programming language independent and without
referring to low-level implementation details. The

following are the main features provided bySHL:

• Automatic code manipulation such as code addi-
tion, substitution, deletion, etc.

• Specification of particular code join points where
security code would be injected.

• Modification of the code after the development
life cycle since we are dealing with already ex-
isting open source software.

• Modification of the code in an organized way and
without altering its functional attributes.

• Description and specification of security.

• Dedicated to describe and specify reusable secu-
rity hardening patterns and plans.

• Parameterized language to allow the instantiation
of the security hardening patterns through the se-
curity hardening plans.

• Programming language independent.

• Highly expressive and easy to use by security non
experts.

• Intermediary abstractness between English and
programming languages.

• Easily convertible to available AOP languages
(e.g. AspectJ and AspectC++).

4.1 Grammar and Structure

In this section, we present the syntactic constructs and
their semantics inSHL. Table 1 illustrates theBNF
grammar ofSHL. The language that we arrived at can
be used for both plans and patterns specification, with
a specific template structure for each of them. We im-
plemented this language specification using ANTLR
V3 Beta 6 and its associated ANTLRWorks develop-
ment environment. We were also able to validate the
syntax of different plan and pattern examples within
this tool. The work on the language implementation
is still in progress. Examples of security hardening
plans and patterns are elaborated usingSHLand pre-
sented in Section 5.

Hardening Plan Structure. A hardening plan
starts always with the keywordPlan, followed by
the plan’s name and then the plan’s code that starts
and ends respectively by the keywordsBeginPlan
andEndPlan. Regarding the plan’s code, it is com-
posed of one or many pattern instantiations that al-
low to specify the name of the pattern and its pa-
rameters, in addition to the location where it should
be applied. Each pattern instantiation starts with the
keywordPatternName followed by a name, then the

A HIGH-LEVEL ASPECT-ORIENTED BASED LANGUAGE FOR SOFTWARE SECURITY HARDENING

365

Table 1: Grammar ofSHL.

Start ::= SH Plan
| SH Pattern

SH Plan ::= Plan Plan Name
SH Plan Code

Plan Name ::= Identifier
SH Plan Code ::= BeginPlan

Pattern Instantiation*
EndPlan

Pattern Instantiation ::= PatternName PatternName
(Parameters PatternParameter*)?
Where Module Identification+

PatternName ::= Identifier
PatternParameter ::= ParameterName ParameterValue
ParameterName ::= Identifier
ParameterValue ::= Identifier
Module Identification ::= Identifier

SH Pattern ::= Pattern PatternName
MatchingCriteria?
SH PatternCode

MatchingCriteria ::= Parameters PatternParameter+
SH PatternCode ::= BeginPattern

LocationBehavior*
EndPattern

LocationBehavior ::= BehaviorInsertionPoint+ LocationIdentifier+
Primitive*?
BehaviorCode

BehaviorInsertionPoint ::= Before
| After
| Replace

Location Identifier ::= FunctionCall <Signature>
| FunctionExecution <Signature>
| WithinFunction <Signature>
| CFlow <Location Identifier>
| GAflow <Location Identifier>
| GDFlow <Location Identifier>
| ...

Signature ::= Identifier
Primitive ::= ExportParameter <Identifier>

| ImportParameter <Identifier>
| ...

BehaviorCode ::= BeginBehavior
CodeStatement
EndBehavior

SECRYPT 2007 - International Conference on Security and Cryptography

366

keywordParameters followed by a list of parame-
ters and finally by the keywordWhere followed by
the module name where the pattern should be applied
(e.g. file name).

Hardening Pattern Structure. A hardening pat-
tern starts with the keywordPattern, followed by
the pattern’s name, then the keywordParameters
followed by the matching criteria and finally the
pattern’s code that starts and ends respectively by
the keywordsBeginPattern andEndPattern. The
matching criteria are composed of one or many pa-
rameters that could help in distinguishing the patterns
with similar name and allow the pattern instantiation.
The pattern code is based on AOP and composed of
one or manyLocation Behavior constructs. Each
one of them constitutes the location identifier and the
insertion point where the behavior code should be in-
jected, the optional primitives that may be needed in
applying the solution and the behavior code itself. A
detailed explanation of the components of the pat-
tern’s code will be illustrated in Section 4.2.

4.2 Semantics

In this Section, we present the semantics of the im-
portant syntactic constructs inSHL language.

Pattern Instantiation. Specifies the name of the
pattern that should be used in the plan and all the
parameters needed for the pattern. The name and
parameters are used as matching criteria to iden-
tify the selected pattern. The module where the
pattern should be applied is also specified in the
Pattern Instantiation. This module can be the
whole application, file name, function name, etc.

Matching Criteria. Is a list of parameters added to
the name of the pattern in order to identify the pat-
tern. These parameters may also be needed for the
solutions specified into the pattern.

Location Behavior. Is based on the advice-
pointcut model of AOP. It is the abstract rep-
resentation of an aspect in the solution part of
a pattern. A pattern may include one or many
Location Behavior. Each Location Behavior
is composed of theBehavior Insertion Point,
Location Identifier, one or manyPrimitive
andBehavior Code.

Behavior Insertion Point. Specifies the point of
code insertion after identifying the location. The

Behavior Insertion Point can have the follow-
ing three values:Before, After or Replace. The
Replace means remove the code at the identified lo-
cation and replace it with the new code, while the
Before or After means keep the old code at the
identified location and insert the new code before or
after it respectively.

Location Identifier. Identifies the joint point or
series of joint points in the program where the
changes specified in theBehavior Code should
be applied. The list of constructs used in the
Location Identifier is not yet complete and left
for future extensions. Depending on the need of the
security hardening solutions, a developer can define
his own constructs. However, these constructs should
have their equivalent in the current AOP technologies
or should be implemented into the weaver used. In the
sequel, we illustrate the semantics of some important
constructs used for identifying locations:

FunctionCall <Signature> Provides all the join
points where a function matching the signature
specified is called.

FunctionExecution <Signature> Provides all
the join points referring to the implementation of
a function matching the signature specified.

WithinFunction <Signature> Filters all the join
points that are within the functions matching the
signature specified.

CFlow <Location Identifier> Captures the join
points occurring in the dynamic execution con-
text of the join points specified in the input
Location Identifier.

GAflow <Location Identifier> Operates on the
control flow graph (CFG) of a program. Its
input is a set of join points defined as a
Location Identifier and its output is a single
join point. It returns the closest ancestor join point
to the join points of interest that is on all their run-
time paths. In other words, if we are considering
the CFG notations, the input is a set of nodes and
the output is one node. This output is the clos-
est common ancestor that constitutes (1) the closet
common parent node of all the nodes specified in
the input set (2) and through which passes all the
possible paths that reach them.

GDFlow <Location Identifier> Operates on the
CFG of a program. Its input is a set of join points
defined as aLocation Identifier and its out-
put is a single join point. It returns the closest
child join point that can be reached by all paths
starting from the join points of interest. In other

A HIGH-LEVEL ASPECT-ORIENTED BASED LANGUAGE FOR SOFTWARE SECURITY HARDENING

367

words, if we are considering the CFG notations,
the input is a set of nodes and the output is one
node. This output (1) is a common descendant
of the selected nodes and (2) constitutes the first
common node reached by all the possible paths
emanating from the selected nodes.

The Location Identifier constructs can be
composed with algebraic operators to build up other
ones as follows:

Location Identifier && Location Identifier
Returns the intersection of the join points speci-
fied in the two constructs.

Location Identifier || Location Identifier
Returns the union of the join points specified in
the two constructs.

! Location Identifier Excludes the join points
specified in the construct.

Primitive. Is an optional functionality that allows
to specify the variables that should be passed between
two Location Identifier constructs. The follow-
ing are the constructs responsible of passing the pa-
rameters:

ExportParameter <Identifier> Defined at the
origin Location Identifier. It allows to spec-
ify a set of variables and make them available to
be exported.

Importparameter <Identifier> Defined at the
destinationLocation Identifier. It allows
to specify a set of variables and import them
from the originLocation Identifier where the
ExportParameter has been defined.

Behavior Code. May contain code written in any
programming language, or even written in English as
instructions to follow, depending on the abstraction
level of the pattern. The choice of the language and
syntax is left to the security hardening pattern devel-
oper. However, the code provided should be abstract
and at the same time clear enough to allow a devel-
oper to refine it into low level code without the need
to high security expertise. Example of such code be-
havior is presented in Listing 2.

5 CASE STUDY: SECURING
CONNECTION OF CLIENT
APPLICATIONS

In this section, we illustrate our elaborated solutions
for securing the connections of client applications by

following the approach’s methodology and using the
proposedSHL language. In this context, we devel-
oped our own client application and selected an open
source software called APT to secure their connec-
tions using GnuTLS/SSL library. Our application,
which is a client implemented in C, allows to connect
and exchange data with a selected server, typically an
HTTP request.

Regarding APT, it is an automated package down-
loader and manager for the Debian Linux distribu-
tion. It is written in C++ and is composed of more
than 23 000 source lines of code (based on version
0.5.28, generated using David A. Wheeler’s ’SLOC-
Count’). It obtains packages via local file storage,
FTP, HTTP, etc. We have decided to add HTTPS sup-
port to these two applications. In the sequel, we are
going to present the hardening plan, pattern and as-
pect elaborated to secure the connections of APT.

5.1 Hardening Plan

In Listing 1, we include an example of effective secu-
rity hardening plan for securing the connection of the
APT software. The hardening plan of the our client
application will be the same, except for the plan’s
name and the modules where the patterns should be
applied (i.e. the files’ names specified afterWhere).

Listing 1: Hardening Plans for Securing Connection.

Plan APT Secure Connec t ion P lan BeginPlan

PatternName S e c u r e C o n n e c t i o n P a t t e r n

Parameters

Language C/C++

API GNUTLS

Peer C l i e n t

P r o t o c o l SSL

Where h t t p . cc connec t . cc

EndPlan

5.2 Hardening Pattern

Listing 2 presents the solution part of the pattern for
securing the connection of the two aforementioned
applications using GnuTLS/SSL. The code of the
functions used in theCode Behavior parts of the
pattern is illustrated in Listing 3. It is expressed in
C++ because our applications are implemented in this
programming language. However, other syntax and
programming languages can also be used depending
on the abstraction required and the implementation
language of the application to harden.

SECRYPT 2007 - International Conference on Security and Cryptography

368

Listing 2: Hardening Pattern for Securing Connection.

Parameters
Language C/C++
API GNUTLS
Peer C l i e n t
P r o t o c o l SSL

BeginPattern

Before
FunctionExecution <main> / / S t a r t i n g Po i n t
BeginBehavior

/ / I n i t i a l i z e t h e TLS l i b r a r y
I n i t i a l i z e T L S L i b r a r y ;

EndBehavior
Before
FunctionCall <connect> / / TCP Connec t ion
ExportParameter <xcred>
ExportParameter <s e s s i o n>
BeginBehavior

/ / I n i t i a l i z e t h e TLS s e s s i o n r e s o u r c e s
I n i t i a l i z e T L S S e s s i o n ;

EndBehavior
After
FunctionCall <connect>
ImportParameter <s e s s i o n>
BeginBehavior

/ / Add t h e TLS handshake
AddTLSHandshake ;

EndBehavior
Replace
FunctionCall <send>
ImportParameter <s e s s i o n>
BeginBehavior

/ / Change t h e send f u n c t i o n s us i ng t h a t
/ / s o c k e t by t h e TLS send f u n c t i o n s o f t h e
/ / used API when us i ng a secu red s o c k e t
SSLSend ;

EndBehavior
Replace
FunctionCall <r e c e i v e>
ImportParameter <s e s s i o n>
BeginBehavior

/ / Change t h e r e c e i v e f u n c t i o n s us i ng t h a t
/ / s o c k e t by t h e TLS r e c e i v e f u n c t i o n s o f
/ / t h e used API when us i ng a secu red s o c k e t
SSLRece ive ;

EndBehavior
Before
FunctionCall <c lose> / / S o c k e t c l o s e
ImportParameter <xcred>
ImportParameter <s e s s i o n>
BeginBehavior

/ / Cut t h e TLS c o n n e c t i o n
C loseAndDea loca teTLSSess ion ;

EndBehavior
After
FunctionExecution <main>
BeginBehavior

/ / D e i n i t i a l i z e t h e TLS l i b r a r y
D e i n i t i a l i z e T L S L i b r a r y ;

EndBehavior

EndPattern

Listing 3: Functions used in the pattern.

InitializeTLSLibrary
gnutls_global_init ();

InitializeTLSSession
gnutls_init (session , GNUTLS_CLIENT);
gnutls_set_default_priority (session);
gnutls_certificate_type_set_priority (session , cert_type_priority);
gnutls_certificate_allocate_credentials(xcred);
gnutls_credentials_set (session , GNUTLS_CRD_CERTIFICATE , xcred);

AddTLSHandshake
gnutls_transport_set_ptr(session , socket);
gnutls_handshake (session);

SSLSend
gnutls_record_send(session , data , datalength);

SSLReceive
gnutls_record_recv(session , data , datalength);

CloseAndDealocateTLSSession
gnutls_bye(session , GNUTLS_SHUT_RDWR);
gnutls_deinit(session);
gnutls_certificate_free_credentials (xcred);

DeinitializeTLSLibrary
gnutls_global_deinit ();

5.3 Hardening Aspect

We refined and implemented (using AspectC++)
the corresponding aspect of the pattern presented
in Listing 2. Due to space limitation, Listing
4 shows only an excerpt of the aspect, specifi-
cally the handshake code inserted after the function
connect. The reader will notice the appearance of
hardening sockinfo t. These are the data structure
(hash table) and functions that we developed to import
and export the parameters needed between the appli-
cation’s components at runtime (since the primitives
ImportParamter andExportParameter are not yet
deployed into the weavers).

Listing 4: Excerpt of Aspect for Securing Connections.

aspect SecureConnection {

...

advice call("% connect (...)") : around () {

hardening_sockinfo_t socketInfo;

...

tjp ->proceed(); //original connect

...

//TLS handshake

gnutls_transport_set_ptr (socketInfo.session ,

(gnutls_transport_ptr) (*(int*)tjp ->arg(0)));

*tjp ->result() = gnutls_handshake (socketInfo.

session);

}... };

5.4 Experimental Results

In order to validate the hardened applications, we
used the Debian apache-ssl package, an HTTP server
that accepted only SSL-enabled connections. We
populated the server with a software repository com-
pliant with APT’s requirements, so that APT can con-
nect automatically to the server and download the
needed metadata in the repository. Then, we weaved
(using AspectC++ weaver) the elaborated aspect with
the different variants of our application and APT. We
first executed our own hardened application and made
it connect successfully to our local HTTPS-enabled
web server using HTTPS. Then, after building and
deploying the modified APT package, we tested suc-
cessfully its functionality by refreshing APT’s pack-
age database, which forced the software to connect to
both our local web server (Apache-ssl) using HTTPS
and remote servers using HTTP to update its list of
packages.

The experimental results in Figure 2 show the
packet capture, obtained using WireShark software,
of the encrypted traffic between our version of APT
and its remote package repositories. The highlighted

A HIGH-LEVEL ASPECT-ORIENTED BASED LANGUAGE FOR SOFTWARE SECURITY HARDENING

369

Figure 2: Packet Capture of SSL-protected APT Traffic.

lines show TLSv1 application data exchanged in en-
crypted form through HTTPS connections, exploring
the correctness of the security hardening process.

6 CONCLUSION

We proposed in this paper a language calledSHL
for security hardening plans and patterns specifica-
tion. This contribution constitutes our new accom-
plishment towards developing our security hardening
framework. By using our approach, developers are
able to perform security hardening of software in a
systematic way and without the need to have exper-
tise in the security solution domain. At the same time,
it allows the security experts to provide the best solu-
tions to particular security problems with all the de-
tails on how and where to apply them. The exper-
imental results presented together with the security
hardening plans and patterns, which are elaborated
usingSHL, explore the efficiency and relevance of our
proposition.

REFERENCES

Bodkin, R. (2004). Enterprise security aspects.
http://citeseer.ist.psu.edu/702193.html
(Accessed April 2007).

Bollert, K. (1999). On weaving aspects. InInterna-
tional Workshop on Aspect-Oriented Programming at
ECOOP99.

Cigital Labs (2003). An aspect-oriented security assurance
solution. Technical Report AFRL-IF-RS-TR-2003-
254.

Coady, Y., Kiczales, G., Feeley, M., and Smolyn, G. (2001).
Using aspectc to improve the modularity of path-
specific customization in operating system code. In
Proceedings of Foundations of software Engineering,
Vienne, Austria.

DeWin, B. (2004).Engineering Application Level Security
through Aspect Oriented Software Development. PhD
thesis, Katholieke Universiteit Leuven.

Huang, M., Wang, C., and Zhang, L. (2004). Toward
a reusable and generic security aspect library. In
AOSD:AOSDSEC 04: AOSD Technology for Applica-
tion level Security.

Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm,
J., and Griswold, W. (2001). Overview of aspectj.
In Proceedings of the 15th European Conference
ECOOP 2001, Budapest, Hungary. Springer Verlag.

Kim, H. (2002). An aosd implementation for c#. Tech-
nical Report TCD-CS2002-55, Department of Com-
puter Science, Trinity College, Dublin.

Mourad, A., Laverdìere, M.-A., and Debbabi, M. (2007).
Towards an aspect oriented approach for the secu-
rity hardening of code. InProceedings of the 21st
IEEE International Conference on Advanced Infor-
mation Networking and Applications, SSNDS Sympo-
sium, (AINA 07), Niagara, ON, Canada. IEEE.

Spinczyk, O., Gal, A., and chroder Preikschat, W. (2002).
Aspectc++: An aspect-oriented extension to c++. In
Proceedings of the 40th International Conference on
Technology of Object-Oriented Languages and Sys-
tems, Sydney, Australia.

SECRYPT 2007 - International Conference on Security and Cryptography

370

