MATCHING FOR MOBILE USERS
IN THE PUBLISH/SUBSCRIBE PARADIGM

A. M. Roumani and D. B. Skillicorn
School of Computing, Queen’s University, Kingston, Canada

Keywords: Mobile publish/subscribe, nearest neighbor problem, high-dimensional search, singular value decomposition.

Abstract: In a mobile publish/subscribe paradigm, user service discovery and recommendation requires matching user
preferences with properties of published services. For example, a user may want to find if there is a moderately
priced Chinese restaurant that does not require reservations close by. To generate accurate recommendations,
the properties of each user subscription must be matched with those of existing services as accurately as

possible. This is a difficult problem when users are mobile, wirelessly connected to a network, and dynamically
roaming to different locations. The available data is very large, and the matching must be computed in real
time. Existing heuristics are quite ineffective.

We propose novel algorithms that use singular value decomposition as a dimension-reduction technique.

We introduce “positive” nearest-neighbor matching to find services whose attribute eateed those of
a new user subscription. Making this idea effective requires careful attention to details such as normaliza-

tion. Performance and quality of matches are reported for datasets representing applications in the mobile

publish/subscribe paradigm. Forservices anan preference attributes, reasonable matches can be found in
time o (mlogn), usingo (nm) storage.

1 INTRODUCTION tions (events). Subscribers indicate interests in events
by maintaining a set of subscriptions at the broker.

Publish/subscribe is an asynchronous messagin}jhey also indicate situations in which they would like
paradigm for connecting information providers (pub-to be notified. The broker acts as a mediator between
lishers) with interested information consumers (sub-ublishers and subscribers, deciding when to send no-
scribers) in a distributed environment, providing a dy-tifications and who should receive them.
namic network topology and scalability. The pub/sub In a pub/sub paradigm, user service discovery re-
paradigm extends, in a natural way, to other kindsquires matching user preferences to available pub-
of service discovery, where service providers play thdished services in a timely fashion. Hence, the sys-
role of publishers, and users with preferences are suiem must find an efficient solution to the problem of
scribers. In a mobile setting, services are provided irmatching each subscription against a large number of
a geographical region, perhaps one cell of a mobilgublications, or matching a publication (event) against
phone system. Hence there are multiple pub/sub sys large number of subscriptions. Take, for example,
tems. Users’ service requests are contextualized bg user with a handheld mobile device that uploads
and satisfied within the current region. User mobil-his preference vector to an advertising server. The
ity implies that new service requests can appear at angerver will match the preference vector with compa-
time, and that they must be satisfied quickly before thenies’ advertisements, and offers the user a coupon that
user moves on. Either a push model or a pull model ofs valid for X time. Although there have been stud-
service is possible. In the pull model, a user requests #&s on matching algorithms in these systems, the prob-
matching service; in the push model, a service finds &m of finding accurate matchings in a timely manner
matching user preference and provides a service, peamongst multiple possible publications is new.
haps a discount coupon contextualized for the particu- This paper presents two efficient matching algo-
lar location of the user. rithms for mobile user services in pub/sub systems,
The central component of pub/sub systems is thaising Singular Value Decomposition (SVD) (Golub
broker (event dispatcher), which facilitates the mes-and Loan, 1989) as a dimension reduction technique.
sage staging and routing in the system. Publisher&nown service (publication) data is transformed, in
send information to the broker in the form of publica- a preprocessing stage, so that the high-dimensional

173

M. Roumani A. and B. Skillicorn D. (2007).

MATCHING FOR MOBILE USERS IN THE PUBLISH/SUBSCRIBE PARADIGM.

In Proceedings of the Second International Conference on Wireless Information Networks and Systems, pages 173-180
DOI: 10.5220/0002147401730180

Copyright © SciTePress

WINSYS 2007 - International Conference on Wireless Information Networks and Systems

space of preferences for many possible services is pr@and notifies subscribers only when the states of their
jected into a low-dimensional space. When a match isubscriptions change. An example of a content-based
to be found, the user’s preferences are mapped into thmatching algorithm for state-persistent pub/sub sys-
same low-dimensional space, producing values thaiems was proposed in (Leung and Jacobsen, 2003).
can be rapidly compared to available service profiles. The matching problem in a state-persistent pub/sub
The first algorithm implements this idea using a singlesystem requires storing information about publications
singular value decomposition, while the second useand subscriptions, indexing the relationships between
projections from randomly weighted versions of thethem, and detecting state transitions.
global preference data. We evaluate the performance In this paper we are targeting users (subscribers)
and quality of our algorithms using two datasets repwho are mobile, with handheld devices, wirelessly
resenting applications in the mobile publish/subscribeconnected to a network, and dynamically roaming to
paradigm. In practice, reasonable matches can beifferent environments. For mobile users, service dis-
found in timeo (mlogn), usingo (nm) storage space, covery requires matching user preferences to available
wheren is the number of services (publications) andservices as accurately as possible (For work on mo-
m the number of attributes or preference possibilitiesbile pub/sub see (Burcea et al., 2004)). This is a diffi-
This is in contrast to “approximate” nearest-neighborcult problem since users are mobile and matches must
techniques, which require either time or storage expobe done in real-time. The magnitude of the problem
nential inm. increases with respect to the number of attributes in
the preference criteria for each user. Take, for exam-
ple, a user with a handheld mobile device who is in
Montreal and would like to eat Chinese food. Such
2 EXISTING APPROACHES a user might submit a service request (subscription)

)) _with the attributes: Chinese restaurant, Montreal, non-

There have been many designs proposed in the “ter%'moking, within 15 minutes walking, under 10 min-
ture to model a pub/sub system. The earliest systeMges seating time, with buffet option, and below a cer-
were channel-based, with the broker componentactingin price. In addition, there could be several possible
as a broadcast channel (Babu and Widom, 2001). Thgssiayrants that match the user’s criteria, and we might
most significant limitation of these systems is the |aCkrequire the system to send one, some, or all of such
of flexibility and expressiveness, leading to high net-yaiches. The selection process in this environment
work traffic, and necessitating additional subscriber ;s 1 find the best matching service(s) (a restaurant in
side filtering. A refinement over the channel-based apg example) that match the user’s request from among
proach is the topic-based pub/sub model that categqﬁany possible matches.
rizes events into hierarchical subjects (topics), provid- The values used for attributes can be classified into
ing a finer granularity of events (TIBCO, 2006). This 0 types as follows.Binary values (0 and 1), de-
model uses a tree-like structure to categorize eVGm%cribing the presence or absence of particular prop-
and the matching process is basically a tree traversal ties of services that a user may require. For ex-
The dr:_aw.back of this model is t.he Ii.mited selectivity Of,ample, a user may submit a subscription query for
subscriptions. Today, companies like Netscape, Radiqeather reports consisting of the attributes (earth-
Userland, and Moreover use RSS (RSS, 2006) to disyyakes, tsunamis, tornadoes, local weather, etc.). The
tribute and syndicate article summaries and headlineggong type isernary values (1, —1, and 0), describ-
to web users who wish to subscribe to them. _ing a preference faor against a particular attribute, as

The latest pub/sub systems have the ability to filtefye| as a neutral value. This could be, for example, the
information using the contents of a published event. Inegstaurant property for “non-smoking”. There is little
this model subscriptions are specified as expressionsoint in trying for an absolute best fit because the in-
evaluated over the published event contents. This afiprmation available to the system can become stale, or
proach provides greater expressiveness to filter publigye yser might change location. Such a dynamic envi-

cations and is more easily customized for individualyonment benefits more from finding approximate best
subscribers. The information filtering process require$natches instead.

an efficient matching algorithm with high through-
put and scalability. Many algorithms proposed for
content-based matching (Fabret et al., 2001; Fabr
et al., 2000) attempt to optimize algorithms by Iimitingeé THE NEAREST-NEIGHBOR
the expressiveness of subscriptions. PROBLEM
There is also a proposed state-persistent model for
pub/sub systems (Leung, 2002) that stores the stateéset the number of services lmeand the number of at-
of both publications and subscriptions in the systentributes bem. n could be in the thousands antn the

174

MATCHING FOR MOBILE USERS IN THE PUBLISH/SUBSCRIBE PARADIGM

tens to hundreds. There is an obvious geometric intelinfeasible objects (service tuples). This suggests using
pretation of the problem in which each service descripa technique that can transform the high-dimensional
tion tuple and each query (request) tuple are points irspace of the data into lower-dimensional subspaces.
anm-dimensional space. One obvious technique is Singular Value Decomposi-

When finding a match in the case of binary-valuedtion (SVD). We have already noted the natural geomet-
attributes, the goal is to find the nearest neighbor ofic interpretation of a list of tuples describing services.
the query tuple — but with the extra difficulty that the If we regard such a list as anx m matrix, then a sin-
value of each of the service-tuple attributes must be ngular value decomposition can be regarded as trans-
smaller than the value of the corresponding attributdorming the original geometric space into a new one
for the query. We refer to such a service tuple as feawith the following useful property: the first axis of the
sible. We are only interested in points that are fur-New space points along the direction of maximal vari-
ther away from the origin than the point correspond-ation in the original data; the second axis along the di-
ing to the query, but we want to find, among them,rection of maximal variation remaining, and so on. Let
the point that is nearest to the query. Call this the be thenx m matrix representing the services. Then
“positive nearest-neighbor”. This guarantees that ghe singular value decomposition of matAxs given
service tuple contains all the required preferences iRy A=USVT where' indicates matrix transpose. If
the query tuple (represented by ‘1’). In the case ofmatrix A hasr linearly-independent columns {s the
ternary-valued attributes, the goal is to find the ordi-rank ofA), thenU is ann x r orthogonal matrix (i.e.,
nary nearest-neighbor of the query tuple, where thé&) " U =1), Sis anr xr non-negative diagonal ma-
match can be near to the query point in any direction. rix whose elements (called singyl_ar values) are non-

Given a query tuple, there is an obvious brute-"créasings; > > § > 0, ar_1dV IS an orthogonal
force algorithm for finding the nearest neighbor with [X M matrix, E?‘Ch ro% op gives the.coordmates of
time complexityo (nm). For a small number of di- the correspondlng_rowdtmthe coordlnate system of
mensionsn, simple solutions suffice, but for largen; the new axes (defined). The complexity of com-

saym > 10, the complexity of most methods grows puting the SVD of a matrix isj(nzm) and ”;e space
exponentially as a function ah. Dobkin and Lip- required to store the data structureigmr 4 r<+rn).

ton (Dobkin and Lipton, 1976) give an upper bound One of the most useful properties of an SVD is that
for the time required to search for a nearest neigh-the matrices on the right-hand side can be truncated by

bor, 0(2™logn) query time, and)(nzml) preprocess- choosing thek largest singular values and the corre-

ing time and storage space. Most of the subsequen} ondinek columns of) andk rows ofV! . We show
Ing g€ space. . €q at a tuple ofm properties can be encoded by coordi-
improvements and extensions require a query time o

. : ates in aingle dimension using SVD, given suitable
fwzo(tfefsnglr?ge)r(l) ,o\rlwvgrftzgl ffgg)cti(sgr&et'gﬁj :;Ctigsnn)w(?s‘?c- normalization of the data. Matching a query tuple to
idel sedpal orithms relies on. tthed tree (Samet appropriate service tuples requires encoding the query
wigely u gori ' : — . . attributes, and then searching a ranked list of projected
1990). The average gese analys!s ofieuristics USINGervice values. We also propose a technique that pro-
k-d treesor fixed dlmen3|ormreql_ureso(nlogn) . duces highly accurate matches by usingoHection
preprocessing and(logn) query time. Althougtk-d

. e, g ;) . of SVD decompositions, in which each decomposition
trees are efficient in low dimensions, their query time

increases exponentially with increasin dimensional-uses data independently weighted by random scalars,
itv. The cons'gmt factorg hidberintfe ags moptotic run_This provides several different projections of the data,

Y- 1hn ymp which tends to reveal the most important latent struc-
ning time grow at least as fast a%,2lepending on the

. . ture. Hereafter we will refer to nearest-neighbor as

distance metric used. n-n.
The complexity of exact nearest neighbor search

led to the “approximate” nearest-neighbor problem:
finding a point that may not be the nearest-neighbor to
the query point, but is not significantly further away 4 ALGORITHMS
from it than the true nearest neighbor. Several ap-
proximate nearest-neighbor algorithms have been déAle propose two SVD-based Search (SVDS) tech-
veloped (Kleinberg, 1997)but they either use substanniques for solving the positive and the ordinary n-n
tial storage space, or have poor performance whematching problem: basic SVD®$%vDS) and random-
the number of dimensions is greater thanriogrhe weighted SVDS wSVDS). The bSVDS algorithm
positive-nearest-neighbor requirement means that theorks in two stages: a preprocessing stage and a run-
performance of such algorithms becomes even worsdime stage. The natural similarity (proximity) metric
For example, the positive nearest neighbor may bés Euclidean distance — a service tuple is a good match
quite far from the query point, with many closer but for a request tuple if the Euclidean distance between

175

WINSYS 2007 - International Conference on Wireless Information Networks and Systems

them is small (and the service-tuple attributes meet oformly randomly). We normalize the data by zero-
exceed the request requirements in the original spaceentering each column. Each experiment result is the
for the positive n-n case). We first preprocess the sedverage of 70 runs. For comparison purposes, we also
of service tuples by computing the SVD of the origi- consider a ranking algorithm that uses the sum of the
nal matrixA after normalization, then truncate the re- attributes. We call it the SUM-based Search algorithm
sult to one dimension. The resulting list is sorted by(SUMS). The advantage of the sum is that any service
increasing values aify, the first column ofJ. When tuple whose sum is smaller than the sum of the require-
a new query arrives, it must be mapped into the corments of a query tuple cannot possibly be feasible. We
responding space &J, and a value created that can compute the sum of attributes for each service tuple
be compared to the encoded values. By re-arrangingnd sort the list based on the sum of ratings. The
the SVD decomposition equation we ¢gét=A/S™ 1. sum is then computed for each query tuple, and bi-
This multiplication can be applied to new queries with nary search is used to find the feasible service closest
the shape of rows oA to compute their coordinates in sum to it. When applying th8UMS algorithm to

in the transformed space. Since we have truncated thibe ternary-valued data, there is a special handling to
SVD, this mapping requires only the first column of accommodate for the negative valuesl(s); the sum

V and the first singular value, and therefore takes timés computed by first incrementing the attributes’ val-
o(m). After the transformation maps the query tupleues. The same handling is done for the queries before
to a single value, the value is compared to service’ valthe search starts.

ues using binary search to find the service with the goth our SYDS algorithms andSUMS algorithm
closest value. This service tuple may not be feasiblg,gye similar properties: both requite(nm) storage
(itis similar to the query tuple in the originAlmatrix for the ranking information (since the full set of at-
but one or more of its attributes is smaller than the coryriputes must be checked for feasibility); for both, the
responding value of the query). In this case, the rankeggst of binary search is(logn); and for both the cost
list is searched by choosing the next closest value ogg computing the fit between a query tuple and a ser-
either side of the original entry, until a feasible tuple is;ice tuple iso(m). The preprocessing required for
found. SVDSis more expensive. However, this cost is amor-
Algorithm rwSVDSiis an extension 0bSVDS; in- tized over all the matches of queries to services. The
stead of using a single search list to predict the posperformance difference between the two rankings de-
itive n-n point, it uses multiple search listswaSVDS pends on how many list elements must be examined
uses a set of three decision lists to predict the nearesfy find a feasible match, and on the quality of such a
neighbor point. To create each list, the attributes of thenatch. We also compare our algorithms’ effectiveness
original dataset are weighted with different (randomlywith that of randomly selecting services until a feasi-
chosen) scalars in the range (0,1] to create a neWle one is found (call this simple algorithRAND),
We|ghted matrix (nOte that the Original input data is and W|th exhaustive searcl‘RAND provides a base-
not changed, since is later used for feasibility check)|ine for the number of probes required to find a good

This process is repeated three times to generate thregjution, while exhaustive search provides a baseline
differently weighted matrices. SVD is then applied for how good a solution is possible.

to each. matilg mdepenqently, igryenglale three one- The main performance measures of interest are:
dimensional spaces, which are then each sorted. The .~ " 4" \umber of probes needed to find
Se'e.c“o.” process transforms.each query tuple '(afteé match, including the cost of binary search (where
scaling it with the corresponding weight vector) into applicable): sub-quality — the Euclidean distance
t_he spage of each SVD, t_hen sgarches all three rank%gm the match point found by the algorithm to the
lists in a concurrent fashion to find a common matc:h.query point (A higher value represents a lower-quality

The first feasible service-tuple to have been found Onrpatch; andsub-optimality ratio — the ratio of the so-

all three lists is reported as the best match. The use Yition found by an algorithm to the optimal solution.

three lists i.s based on exte_nsive gxperiments that ShoVlvhe lower the value the better the quality of the match
that more lists adds cost without improving matches. found

In our experiments, we search for the positive n-n

in binary-valued datasets, and for the ordinary n-n in

5 EXPERIMENTAL SETTING ternary-valued datasets. For each combination of ex-

periments, the fraction of objects that are feasible for

We generate artificial datasets to represent properach query are held to approximately 5%. If feasible
ties of services in the pub/sub paradigm, with binary-objects are extremely scarce, then exhaustive search is

valued attributes (selected randomly with 20% den-probably the best matching technique; if the fraction
sity of 1's) and ternary-valued attributes (selected uni-of feasible objects is large, then the system does not

176

MATCHING FOR MOBILE USERS IN THE PUBLISH/SUBSCRIBE PARADIGM

provide much discrimination in services which is also bSVDS
an unlikely scenario. o

6 RESULTSAND DISCUSSION o

o67
mss
o4s
034
m23
o12

We study the effect of varying the number of objects 6
(services) and attributes on the search cost and quality s

of the solutions.

1000

6.1 Binary-valued Datasets

500

20 Objects

40
Attributes 60 %

First, we test the basigvDS algorithm pSVDS). Fig-
ure 1 plots the number of probes (cost) required to find_.) o _—
a feasible object for a query (left column), and the Sub_F|gure 2: Positive n-n in binary-valued datage$VDS sub-

: ; : : timality ratio.
quality of this match (right column) when attributes optimatty ratio

are binary values. Plots (a) and (b) show the number ofith the best results observed for small numbers of at-
probes required and the sub-quality fiVDS plots riputes. As forRAND, rwSVDS requires only 33%

(c) and (d) show the same fBUMS and plots (e) and 35 many probes, and finds better-quality matches of
(f) show them forRAND. _ 40% the sub-quality of those found HSAND. Fig-

We see in Figure 1 th&iSVDS requires the low- yre 3(b) shows that the sub-quality of the match found
est number of probes to find a match. Although thepy rwSyDS increases with increasing numbers of at-
cost and sub-quality of the match found by all al-tripytes, but starts to plateau as these become large.
gorithms increases with increasing numbers of ob- Algorithm rwSVDS finds the best-quality matches
jects and attributes, the number of probes requiregitn petter overall performance thas8VDS Com-
by SUMS increases rapidly. However, this increasepared toSUMS it also achieved, by far, lower search
comes at a tradeoff with sub-quality. Neverthelesscogt and better match quality for small numbers of

for what might be considered the most practical casesyriputes. For higher numbers of attributes, it still
i.e., those where the number of attributes is relatively;chieved near-optimal results.

small,bSVDSis a clear winner in both cost and quality
of matchesbSVDSrequires, on average, only 11% of
the probes oBUMS, and finds better-quality matches
that are 78% of the sub-quality 8UMS,

In comparison toRAND, algorithm bSVDS re- Figure 4 plots the number of probes required by al-
quires 77% of the probes th&®AND requires, espe- gorithm ©SVDS) to find a match (ordinary n-n) for
cially for small numbers of attributes, and finds better-each query, and the sub-quality of this match when at-
quality matches that are 38% of the sub-quality oftributes are ternary values.

RAND, for a moderate number of attributes. On the Figure 4 shows that, in comparison to the positive
other hand,SUMS requires many more probes than n-n case, algorithmbSvDS and SUMS require many
RAND in almost all settings, except for small numbersfewer probes to find a match when the feasibility con-
of objects and attributes. This comes at a tradeoff wittdition is relaxed, whereaRAND, by definition, takes
match quality for all parameter settings. Although theonly one probe. SUMS requires slightly more probes
sub-quality ofbSVDSincreases with the number of at- than random matching (mainly due to the overhead of
tributes, it actually gets closer to the optimal solution,the initial binary search) but maintains almost constant
as shown in Figure 2. cost. AlgorithmbSVDS comes last in terms of per-

Figure 3 plots the number of probes (left column)formance, with slightly more probes th&JMS, but
and the sub-quality (right column) forWSvDS). only a constant number of probes are required after
It achieves better performance and better-qualitythe binary search (see Figure 4(a)). As for the qual-
matches thamSvDS for all parameter settings — an ity of the solution bSVDSfinds better-quality matches
average of 19% lower probes and 10% better qualthan SUMS and RAND — an average of 67% of the
ity. This improvement affects, in its turn, the cost andsub-quality ofSUMS, and 64% of the sub-quality of
quality ratios taSUMSandRAND. AlgorithmrwSVDS ~ RAND, with the best quality for small numbers of at-
now requires, on average, only 15% of the probedributes.
of SUMS and finds slightly better-quality matches, Algorithm rwSVDSresults are shown in Figuf.
of 94% the sub-quality of matches found BYMS ~ rwSVDS requires more probes thavSvDS but, on

6.2 Ternary-Valued Datasets

177

WINSYS 2007 - International Conference on Wireless Information Networks and Systems

40
Attributes 60 100

40
Attributes 60 108

RAND

T e e
4500 ‘77777777777777777777777‘
4000- "7 I W N g N e 77:
3500 ‘77 - e 77J
3000 1 ‘ " 4 A “
Cost g \ i

g

A=

100

40
Attributes 60

(e)

W4000-4500
03500-4000
B3000-3500
©2500-3000
20002500
015002000
01000-1500
B500-1000

20500

Objects

W4000-4500
03500-4000
B3000-3500
©2500-3000
B2000-2500
01500-2000
01000-1500
B500-1000

D0-500

40
Attributes

100

03540
3035
02530
2025
01520
01015
0510

00005

cts

W4000-4500
03500-4000
B3000-3500
©2500-3000
B2000-2500
01500-2000
01000-1500

B500-1000

20500

Objects

4.0
. 03540
83035
4 02530
b 2025
Quality
25 01520
01,015
a0l B05-1.0
00005
1517
O
1000
Objects
40
Attributes 60 ‘00
RAND
////!' 7777777777777777“
40 — |
I — o
N S ‘ 3540
. 83035
y . 02530
b) 2025
Quality g T
254" - l 1520
. i 01015
20 B051.0
90,005
1547
1.047
o054 1000
00 500
Objects

40
Attributes 60

®

Figure 1: Positive n-n in binary-valued dataset: Search cost anduiliy for: (a) and (bpSVDS, (c) and (d)SUMS (e) and

(f) RAND.

the other hand, it finds matches of twice the quality.search cost and match quality.

This improvement in match quality, consequently, af-
fects the quality ratios to matches found8yMSand

Itis not so obvious which algorithm is best in terms

RAND, with more emphasis on the tradeoff betweenOf cost and qualitybSVDS has slightly worse perfor-

178

mance tharBUMS and RAND, but it achieves better

MATCHING FOR MOBILE USERS IN THE PUBLISH/SUBSCRIBE PARADIGM

rwSVDS

W4000-4500

03500-4000

B3000-3500

©2500-3000

20002500

015002000

01000-1500

B500-1000

20500

1000

Objects
100

40
Attributes 60

(a) Cost

40
Attributes 60

(b) Sub-quality

100

1000

03540
3035
02530
2025
01520
01015
0510

00005

Objects

Figure 3: Positive n-n in binary-valued dataset: Search cost andwallty for rwSVDS.

match quality, which would justify some sacrifice in Dobkin, D. and Lipton, R. (1976). Multidimensional search
performance. Relative tawvSVDS, the tradeoff on per- problems.SIAM Journal on Computing, 5:181-186.
formance and quality is much more apparent. Algo-Fabret, F., Jacobsen, H.-A., Llirbat, F., Pereira, J., Ross,

rithm bSVDS has better performance, but lower match KA., and Shasha, D. (2001). Filtering algorithms and
implementation for very fast publish/subscribe sys-

quality. tems. INACM SIGMOD, pages 115-126, CA, USA.
Fabret, F., Llirbat, F., Pereira, J., and Shasha, D.
(2000). Efficient matching for content-based pub-

lish/subscribe systems. Technical report, INRIA.
http://wwwcaravel.inria.fr/pereira/matching.ps.
Golub, G. H. and Loan, C. F. V. (1989Matrix Computa-
One of the critical research challenges in the devel- ~ tons. Johns Hopkins Pres_s’ MD, USA. _
opment of pub/sub systems that support services fofleinberg, fwll'(lk?gp' Two a'gorlthm?] for nearest-neighbour
mobile-user interactive applications is the discovery — 2g3'%ne M9 dimensions. B9th ACM STOC, pages
of an efficient matching algorithm that is scalable) .) .

d blv effective. andMrovidesfiood matcheléeung' H. (2002). Subject space: A state-persistent model
and reasonably , proy gooad for publish/subscribe systems. GASCON, pages 7—
between user requests and available services. As 17, Toronto, Canada.
the number of services and their attributes increas,eung, H. and Jacobsen, H.-A. (2003). Efficient matching
solutions that are cheap to implement are required. for state-persistent publish/subscribe system€AS8-
We have presented two projection and search tech- CON, pages 182-196, Toronto, Canada.
niques based on SVD, using SVD as a preprocessingSS (2006). RSS: RDF site summawwv 106. i bm cont
step to project service properties into low-dimensional ~ deVvel operworks/library/w rss. htm ?dwzone=
spaces. Careful normalization, and the use of multipleSamet H (1990)The Design and Analysis of Spatial Data
projections baged on randqm weighting of attributes™ g | iires Addison-Wesley, Boston, MA, USA.
result in one-dimensional lists that can be searched], .

.) - IV a constant number of probes be- IBCO (2006). TIBCO rendezvous.wmw. tibco. con
In practice, in only _ P _ sof t war e/ messagi ng/ r endezvous. j sp.

yond the basic binary search required to find the right

part of the list. The overall complexity of matching is

o (mlogn) time ando (nm) storage space.

7 CONCLUSIONS

REFERENCES

Babu, S. and Widom, J. (2001). Continuous queries over
data streams. I1ACM SSGMOD, pages 109-120, NY,
USA.

Burcea, ., Jacobsen, H.-A., DelLara, E., Muthusam, V., and
Petrovic, M. (2004). Disconnected operations in pub-
lish/subscribe. IhREEE MDM, pages 39-50, CA, USA.

179

WINSYS 2007 - International Conference on Wireless Information Networks and Systems

40
Attributes 60 100

Cost

40
Attributes 60 100

100

40
Attributes 60

(e)

Figure 4: Ordinary n-n in ternary-valued dataset: Search cost anrduglity for: (a) and (bpSVDS, (c) and (d)SUMS, (e)

and (f)RAND.

180

o]

12

034

o5

o78

B9-10

bjects

12

034

o5

078

@910

Objects

o2

034

056

o7

B9-10

(o]

bjects

D01 ®m1-2
023 034

Sub
Quality W45 @56
m67 O7.8

w59 o-10|

Objects

40
Attributes 60 120

001 W12
D23 034

Sub
Quality 45 @56
W67 O7-8

mg9 M9-10|

1000

Objects

40
Attributes 60 100

o1 mi2

023 D34
Sub
Quality m45 B56

m67 078

g9 mo-10|

1000

Objects

100

40
Attributes 60

®

