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Abstract: The problem of binary hypothesis testing in a wireless sensor network is studies in the presence of noisy
channels and for non-identical sensors. We have devised an energy allocation scheme for individual sensors
in order to optimize a cost function with a constraint on the total network energy. Two cost functions were
considered; the probability of error and the J-divergence distance measure. We have also designed a mathe-
matically tractable fusion rule for which optimal energy allocation can be achieved. Results of optimal energy
allocation and the resulting probability of error are presented for different sensor network configurations.

1 INTRODUCTION

In recent years wireless sensor networks (WSN) have
attracted a great deal of attention from the research
community. Typical applications of WSNs include
environmental monitoring, surveillance, intruder de-
tection and denial of access, target tracking, and struc-
ture monitoring, among others. Wireless sensor net-
works can also serve as the first line of detection for
various types of hazards, such as toxic gas or radia-
tion.

The nodes in wireless sensor networks are pow-
ered by batteries for which replacement, if at all pos-
sible, is very difficult and expensive. Thus in many
scenarios, wireless sensor nodes are expected to oper-
ate without battery replacement for many years. Con-
sequently , constraining the energy consumption in
the nodes is a very important design consideration.
In (Luo and Giannakis, 2004), the authors consider
quantization of sensor data and energy allocation for
the purpose of estimation under a total energy con-
straint. Optimal modulation with minimum energy
requirements to transmit a given number of bits with
a prescribed bit error rate (BER) is considered in (Cui
et al., 2005).

In this paper we consider the problem of binary
hypothesis testing using wireless sensor networks un-
der energy constraint. Traditionally, the decentral-

ized detection problem has been investigated assum-
ing identical sensor nodes. For example the work re-
ported in (Zhang et al., 2002; Tsitsiklis, 1988; Varsh-
ney, 1997), considers identically distributed observa-
tions for all the sensor nodes and error-free transmis-
sions from the nodes to the fusion center. In this
paper we do not assume identically distributed ob-
servations. In particular the observation noise expe-
rienced by each sensor may be different. Further-
more, the wireless channels between the sensor nodes
and the fusion center is assumed to be a noisy chan-
nel. Specifically, it is assumed that the nodes’ deci-
sion is transmitted using a modulation scheme over
an AWGN channel. Our goal is to design a fusion
rule and an energy allocation for the nodes so as to
minimize a cost function subject to a limit on the total
energy of all the nodes. We consider two types of cost
functions. The probability of error at the fusion center
as well as the divergence distance measure.

The remainder of this paper is organized as fol-
lows. In Section 2 we present the system model. The
problem of energy allocation for the probability of er-
ror and theJ-divergence cost functions is studied in
Sections 3 and 4, respectively. The results are pre-
sented in Section 5 and the conclusions are drawn in
Section 6.
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2 SYSTEM MODEL

Let H be a binary random variable with prior prob-
ability distribution given byP(H = H0) = q0 and
P(H = H1) = q1. We consider a network ofn wire-
less sensors with sensork acquiring a measurement
Xk about the state ofH. Gaussian observations are as-
sumed although the results can be extended to other
cases. With this assumption we have

pXk(x|H0) ∼ N (0,σ2
k)

pXk(x|H1) ∼ N (d,σ2
k) (1)

Sensork computes a local binary decisionuk ac-
cording to

uk =







1, if ln(
pXk

(x|H1)

pXk
(x|H0)

) ≥ λk

0, if ln(
pXk

(x|H1)

pXk
(x|H0)

) < λk

For the given distribution in (1) the optimal value
of λk is given by

λk =
d2 +σk

2(q0−q1)

2d
(2)

The channel between sensork and the fusion cen-
ter is modeled by a binary symmetric channel with
cross over probabilityεk. The value ofuk is trans-
mitted to the fusion center over this channel andzk
denotes the received bit. LetET denote the total en-
ergy available to all the sensors. The fraction of en-
ergy allocated to sensork is given by xkET where
0≤ xk ≤ 1 and∑n

i=1xi = 1. For the sake of concrete-
ness we assume that the sensors use a BPSK modu-
lation scheme. The value ofεk is then given byεk =

Q(
√

2ETxk/N0) whereQ(x) = 1√
2π

R ∞
x e−x2/2 dx.

3 ERROR PROBABILITY
CRITERION

The fusion center receives the sequencez =
(z1,z2, · · · ,zn) and must decide on the state ofH.
Finding the optimum decision rule forH based onz is
mathematically intractable. We therefore choose the
following fusion rule.

ψ(z) =

{

H1, ∑n
i=1 αizi ≥ τ

H0, ∑n
i=1 αizi < τ (3)

Our motivation here is that forαi =
1

σ2
i
, i = 1,2, · · · ,n,

this is the optimal rule if the fusion center had ac-
cess to the observations{Xk}. Our goal is to choose
the values ofαi ,xi , i = 1,2, · · · ,n, andτ such that the
probability or error is minimized subject to the con-
straint that the total energy of the sensor network for

a single measurement and transmission does not ex-
ceedET .

Evaluation of the performance of this rule requires
the distribution ofZ = ∑αizi . We invoke the central
limit theorem and assume that, given either hypothe-
sis,Z is a Gaussian random variable (Eremin, 1999).
The conditional moments ofZ are then evaluated as
follows.

E(Z|Hℓ) = ∑αiE(zi |Hℓ), ℓ = 0,1 (4)

and

var(Z|Hℓ) = ∑αivar(zi |Hℓ), ℓ = 0,1 (5)

Now

E(zi |H0) = P(zi = 1|H0)

= P(zi = 1|ui = 0,H0)P(ui = 0|H0)

+P(zi = 1|ui = 1,H0)P(ui = 1|H0)

= εi

[

1−Q

(

λiσi

d
+

d
2σi

)]

+(1− εi)Q

(

λiσi

d
+

d
2σi

)

(6)

whereεi = Q(
√

2ETxi/No) is the crossover probabil-
ity for the ith channel. LetE(zi |H0) = ωi0. Then

var(zi |H0) = ωi0(1−ωi0) (7)

Similarly for hypothesisH1, we have

E(zi |H1) = P(zi = 1|H1)

= εi

[

1−Q

(

λiσi

d
− d

2σi

)]

+(1− εi)Q

(

λiσi

d
− d

2σi

)

(8)

Let E(zi |H1) = ωi1. Then

var(zi |H1) = ωi1(1−ωi1) (9)

Let var(zi |Hℓ) = γiℓ
2. The probability of false

alarm is now given by

Pf = P(Z ≥ τ|H0) = Q

(

τ−∑n
i=1 αiωi0

√

∑n
i=1 αi

2γi0
2

)

(10)

and the probability of detection is given by

Pd = P(Z ≥ τ|H1) = Q

(

τ−∑n
i=1 αiωi1

√

∑n
i=1 αi

2γi1
2

)

(11)

Finally the probability of error is given by

Pe = q0Pf +q1(1−Pd) (12)
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Let x = (x1,x2, · · · ,xn) andy = (α1,α2, · · · ,αn).
Under the probability of error criteria, we can formu-
late the following optimization problem.

Minimize Pe(τ,x,y)
Subject to ∑xi = 1

xi ≥ 0
(13)

Now the Lagrangian is given by

L(τ,x,y,{κi},µ) =

Pe(τ,x,y)+
n

∑
i=1

κixi +µ(
n

∑
i=1

xi −1) (14)

The Karush-kuhn-Tucker(KKT) (Boyd and Van-
denberghe, 2004) conditions dictate that there must
exist{κi}n

i=1 andµ such that

xi ≥ 0,γi ≥ 0,κixi = 0, i = 1,2, ..,n. (15)
n

∑
i=1

xi = 1 (16)

∇Pe(τ,x,y)+∇
n

∑
i=1

κixi +∇µ(
n

∑
i=1

xi −1) = 0 (17)

where∇ denotes gradient. By solving this problem
we can obtain the optimal energy allocationx, and
the decision rule(τ,y).

4 DISTANCE MEASURE
CRITERION

In general we would like to perform the energy alloca-
tion using the probability of error as the cost function.
However, as noted in the previous section obtaining
the optimal detection rule may be intractable. In ad-
dition, while currently we are only considering a one
bit quantization of the sensor observations, we would
like to extend our results allowing the sensors to use
more generalized quantizers. In this case obtaining an
expression for the error probability that is suitable for
energy allocation is difficult. Therefore, in this sec-
tion we opt for an alternative cost function, namely
the J-divergence distance measure which belongs to
the class of Ali-Silvey distance measures between
probability measures. Theorems relating the maxi-
mum distance to the minimum probability of error
justify the application of distance measures in our set-
ting (Poor and Thomas, 1977). A lower bound for the
error probability in terms of the J-divergence distance
measure is given in (Kailath, 1967). For more discus-
sion on the Ali-Silvey class of distance measures and
their application for the design of generalized quan-
tizer we refer the reader to (Poor and Thomas, 1977).

The J-divergence distance measure is given by

J(x) = EH1 [T(z)]−EH0 [T(z)] (18)

whereT(z) is the log-likelihood ratio function given

by ln p(z|H1)
p(z|H0)

and EHℓ
is expectation operation under

the hypothesisHℓ. We can write

T(z) = ln
p(z|H1)

p(z|H0)
=

n

∑
i=1

ln
p(zi |H1)

p(zi |H0)
(19)

ThusJ(x) = ∑n
i=1 j(xi), where

j(xi) = (ωi1−ωi0) ln
ωi1

ωi0
+(νi1−νi0) ln

νi1

νi0

and whereνiℓ = P(zi = 0|Hℓ) = 1−ωiℓ, for ℓ = 0,1.
The optimization problem is now formulated as

follows.

Maximize
n

∑
i=1

j(xi) (20)

Subject to
n

∑
i=1

xi = 1 (21)

xi ≥ 0 (22)

The Lagrangian is given by

L(x,{κi},µ) = −
n

∑
i=1

J(xi)+
n

∑
i=1

κixi +µ(∑xi −1)

(23)
The KKT conditions dictate that there must exist

{κ}n
i=1 andµ such that:

x1 ≥ 0,κi ≥ 0,κxi = 0, i = 1,2, ....,n
n

∑
i=1

xi = 0

−∇(
n

∑
i=1

J(xi))+∇(
n

∑
i=1

κixi)+∇(µ(
n

∑
i=1

xi −1)) = 0

(24)
By solving this problem we can obtain the opti-

mal energy allocationx. In this case the fusion rule is
given by

ψ(z) =







H1, T(z) > τ
P(H1) = a, T(z) = τ
H0, T(z) < τ

(25)

whereH1 is chosen with probabilitya whenT(z) = τ.

5 NUMERICAL RESULTS

5.1 Error-Free Channels

To show the efficacy of the prediction rule in (3), we
consider the case of error free channels. The WSN is
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assumed to have five sensors with the noise variances
given in Table 1. We plot the error probability for the
optimal values of{αi} (given in Table 2) as a function
of τ in Figure 1. For comparison we have also plotted
the error probability forαi = 1/σ2

i . It can be seen that
both cases result in similarly small error probabilities
albeit for different values ofτ. This indicates that if
optimization overτ is performed thenαi = 1/σ2

i re-
sults in good performance.

Table 1:σ values for different sensor index.

Sensor node index(i) 1 2 3 4 5
σ 1 2 3 4 5

Table 2: Optimumα values for different sensor index.

Sensor 1 2 3 4 5
α 2.023 0.52 0.33 0.26 0.23
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Figure 1: Probability of error vs global threshold.

5.2 Energy Allocation for Noisy
Channels

In this case ,we are interested in optimal energy al-
location for non-identical sensors. For sensori the
channel is a binary symmetric channel with crossover
probabilityεi = Q(

√

2ETxi/N0). The WSN configu-
rations are given in Tables 1 and 3. The optimal value
of energy fractions obtained through analytical for-
mulation are depicted in Figures 2 and 3. In these
figures we also show the resulting error probabilities.
As expected the sensors with smaller noise variance
are allocated a higher fraction of the energy.

We obtained similar results for the case N=8, with
following σi values.

Fig.3 shows the results for the case N=8.
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Figure 2: Optimal energy fractions allocated for N=5.

Table 3:σ values for different sensor index.

Sensor 1 2 3 4 5 6 7 8
σ 1 2 3 4 5 4 3 2

5.3 Energy Allocation Using the
Distance Measure

For the WSN configurations in Tables 1 and 3 we have
obtained the optimal energy allocation using the J-
divergence distance measure. The energy allocations
are shown in Figures 4 and 5, respectively. It is in-
teresting to note that in these cases the nodes with a
large noise variance are not allocated any energy and
thus are prevented from transmitting their decision to
the fusion center. These nodes are censored. In these
figures we also show a lower bound on the error prob-
ability obtained from the J-divergence distance mea-
sure.

6 CONCLUSION

We have studied the problem of binary hypothesis
testing in a wireless sensor network in the presence
of noisy channels and for non-identical sensors. We
have designed a mathematically tractable fusion rule
for which optimal energy allocation for individual
sensors can be achieved. The objective is to opti-
mize a cost function with a constraint on the total
network energy. Two cost functions were considered;
the probability of error and the J-divergence distance
measure. Results of optimal energy allocation and the
resulting probability of error are presented for differ-
ent sensor network configurations.
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Figure 3: Optimal energy fractions allocated for N=8.
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Figure 4: Optimal energy fractions allocated for N=5 using
Distance Measure.
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