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Abstract: Most of the research in database integration have focussed on matching schema-level information to determine
the correspondences between data concepts in the component databases. Such research relies on the availabil-
ity of schema experts, schema documentation, and well-designed schemas – items that are often not available.
We propose a method of initial instance-based correspondence discovery that greatly reduces the manual effort
involved in the current integration processes. The gains are accomplished because the ensuing method uses
only instance data (a body of database knowledge that is always available) to make its initial discoveries.

1 INTRODUCTION

The need to integrate information from different
databases arise in many scenarios. For instance, the
latest trend for organizations is to purchase applica-
tions from a outside software company targeted at
specific business functions and then integrate these
multiple business applications into an organization-
wide operations support system. The result is the par-
titioning of the data of the organization along with
the partitioning of the business functionality. These
applications will work with their own data and data
models, optimized for the specific business function-
ality. Although these different applications use their
own data models, they will most likely work on data
representing the same real-world concepts and there-
fore will contain some intersection of similar data.
Since these applications were developed by indepen-
dent vendors, they will not share the same schema.
Ultimately, the schemas and data of these various
component databases must be integrated in some
manner before the data can be accessed and manip-
ulated across the greater domain at the organization-
wide level.

In the database integration research (Aslan and
Mcleod, 1999; Chua et al., 2003; Lawrence and
Barker, 2001; Lenzerini, 2002; Parent and Spaccapi-
etra, 1998; Rahm and Bernstein, 2001; Schmitt and

Trker, 1998; Yan et al., 2002; Zhang, 1994), much
effort has gone into developing automated solutions
to integrating the schema (and then, afterwards, the
data itself). In most of the research literature, the so-
lutions and approaches have concentrated on match-
ing schema-level information to determine the corre-
spondences between data concepts in the component
databases. If instance-level information is even uti-
lized, it is used only to augment the correspondences
found using the schema-level information, to catch
what the schema-level matching missed.

In most of the relevant research, the schema trans-
formation step occursbeforecorrespondence inves-
tigation. It is argued that the schemas must be
transformed into a canonical data model before the
schemas can be analyzed for correspondences (Aslan
and Mcleod, 1999; Parent and Spaccapietra, 1998;
Rahm and Bernstein, 2001). Schema transformation
itself can be an involved process, and although there
are a few tools available, this too is a manual process
relying again on the expert knowledge of the schemas
involved.

This paper challenges both these mainstream
positions by considering an instance-based initial
inter-database correspondence discovery method that
greatly reduces the manual effort involved over the
entire integration process. Because this method is ap-
plied beforeschema transformation, it saves effort by
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providing for an more efficient transformation pro-
cess at a later step. Because it initially uses instance-
level information, lack of expert schema-knowledge
and poor schema designs do not hinder its progress.

We propose that schema transformation occuraf-
ter correspondence discovery. If one determines (dis-
covers) the relationships between the schemas of only
those portions of the databases that are to be inte-
grated, then one has determined the portions of the
schemas that must be integrated. Once those portions
of the schemas have been identified and related, they
can be transformed to meet the integration model de-
sired. There is now less schema to transform, and the
actual transformation process is simpler because there
is know exacting knowledge of the schemas involved.
The main contribution of this paper is to propose a
method of initial instance-based correspondence dis-
covery that greatly reduces the manual effort involved
in the current integration processes. The gains are ac-
complished because the ensuing method uses only in-
stance data (a body of database knowledge that isal-
waysavailable) to make its initial discoveries.

The rest of this paper is organized as follows: sec-
tion 2 explains the method; and section 3 concludes
our paper and provides some pointer to future work.

2 THE METHOD

The proposed method focuses on correspondence in-
vestigation – determining correspondences between
two or more databases. We require that the target
databases beintersectedas we will be searching the
intersection area for (nearly) exact matches of infor-
mation. Two databases are said to be intersected if the
real world concepts they represent have some com-
mon elements or are otherwise interrelated. An ex-
ample of intersected databases would be two separate
applications, one an order management system and
the other a billing system, that each need to integrate
the concept of a customer. In such cases two elements
from two databasescorrespond to each other(Par-
ent and Spaccapietra, 1998) because they describe the
same real world concept or fact.

Our approach basically involves two activities:
defining potential correspondences and accepting
those correspondences validated by the method. But
first, we need to discuss the matching of instance data.

2.1 Instance Matching

Our goal is to find out if two attributes are related to
each other. For this, we need to compare, ormatch,
these sets of instance values using only the type of

data andnot its meaning (semantics). We execute our
initial matching on raw instance dataspecificallyig-
noring any schema information.

We define a function called theRawMatchthat
checks whether the the attributes of tables belong-
ing to heterogeneous databases are equal or not. This
function compares the data in the tables looking for
exact or nearly exact matches. Nearly exact matches
are defined as similar data that meets a specified confi-
dence factor.Confidence factor, expressed as a value
in the range [0..1], defines the amount of difference
that can be tolerated when comparing two itemsA
and B, whereA and B can be simple instance data,
attributes, or sets of attributes. The confidence fac-
tor is selected by the integration specialist based upon
his/her idea as to the similarities between the data in
the databases.

Algorithm 1 Determine if two instance data match.
Input: (i) di , d j – instance data and (ii)f – confi-
dence factor.
Output: boolean – indicates whether or not a match
has been found
Proc RawMatch(di , d j , f )
if compare(di , d j ) > f return true
else return false

The procedurecomparecompares between two
data instances and calculates a matching factor.
Matching factor, expressed as a value in the range
[0..1], indicates the amount by which two elements
A andB match whereA andB can be simple instance
data, attributes or sets of attributes. For exact matches
between two data instancesdi andd j , mequals 1. For
no match,m equals 0. The exact procedurecompare
depends on the type of data instances. We show what
this procedure does for string type and numeric data.
Comparing String Type Instance DataFor charac-
ter string based data, comparisons are made string-to-
string, case insensitive, with and without spaces re-
moved. If a difference is detected,RawMatchwill
attempt to re-establish alignment (shift) in the strings
(e.g., a simple case where the first string uses a space
to separate characters and the second string does not).
For each comparison, a matching factor,m, is calcu-
lated. For exact matches,m = 1.000. For nearly exact
string matches,m is calculated as a percentage of the
string that was similar. For example, when comparing
the two strings:

s1 = ”1024 West Valley View Rd.” and
s2 = ”1024 West Valleyview Rd”,

RawMatch will find an initial difference at posi-
tion 17, wheres1 = ’ ’ ands2 = ’v’. It will the try to
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re-establish alignment, finding it again at the next po-
sition (so now it has reset itself and is comparings1 =
’V’ ands1 = ’v’. It finds the next difference whens1
= ’.’ (becauses2 doesn’t have anymore characters).
Now the strings are exhausted.

So, with strings of length 25 (maximum of the
two), and with 2 mismatches, thecomparefunction
computes the matching factorm in the following way:
it calculates the percentage of matching characters in
the string, that is,m = (23/25) = .920. If this value
is above the pre-determined confidence factorf , then
RawMatch counts this as a match between 2 instances
of attributes for tables from different databases.
Comparing Numeric Instance DataNumeric values
are either exact matches or can be a near match. The
matching factor can be calculated by using statistical
functions.

2.2 Correspondence Investigation

We try to find the relationships between the attributes
belonging to tables in different databases. An exam-
ple will help to illustrate this. Let elemente1 refer
to an instance value for the attributeName in a table
in database A, and let elementse2 ande3 refer to in-
stance values for the attributesFName andLName re-
spectively, in a table in database B. If the values ofe1,
e2, ande3 are ”John Henry”, ”John”, and ”Henry”, re-
spectively, then we would say thate1 corresponds in
an equal mannerto the concatenation ofe2 ande3.

Instance Data
Selection

Raw Matching
Function

Initial
pICAs

Correspondence
Matrices ->

Accepted ICAs

Matching Rules and
Information Derivation

Updated
pICAs

Complex Matching
Functions

Partially Integrated
Schema

Initial
Correspondence
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Figure 1: Instance-based Correspondence Discovery
Method.

If we get enough of such instance to instance
matches, then we can become more confident that
the tables containing those fields correspond to each
other. The “enough” is specified by the value of the
confidence factorF , supplied by an integration spe-
cialist. The task is to determine how many times
values from attributes in one database matches val-

Table 3: Table Type in DB2.

id T1 T2 TxCd
1 1 0 1
2 1 1 1
3 2 0 3
4 2 1 4
5 3 0 8
6 3 1 12
7 4 0 2
8 4 1 2

ues from those in another database. Sometimes trans-
formation functions need to be applied to the at-
tributes before they can be compared. The function
trans f ormchanges the data to the correct form before
they are input to theRawMatchalgorithm for com-
parison. Using the functionRawMatchwe count the
number of instance matches over the total number of
instance (number of rows in the tables). This will gen-
erate a raw percentage: if 87 out of 100 instance pairs
matched then the matching factorM for the attributes,
is given by,M = .870 (87/100). If the matching factor
M is greater thanF , then a correspondence does exist
between the sets of attributes.

Algorithm 2 Correspondence Discovery Algorithm.
Input: (i) {A} – set of instance data corresponding to
attributes of one database, (ii){B} – set of instance
data corresponding to attributes of second database,
and (iii) F – Confidence factor
Output: boolean – indicating whether a correspon-
dence exists between the two sets of attributes

Proc CorrespondenceInvestigate(A, B, F)
matchInstance = 0
totalInstance = 0
for eachai in A do

totalInstance = totalInstance + 1
for eachb j in B do

if RawMatch(trans f orm(ai), trans f orm(b j), f )
matchInstance = matchInstance + 1

M = matchInstance/totalInstance
if M > F return true
else return false

2.3 Method Synopsis

Our method is described in Figure 1.

2.3.1 Instance Data Selection

The initial step is the selection of the initial instance
data which needs to be matched to discover corre-
spondences. When looking at the areas of interest in
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Table 1: Table CustType in DB1.

id Type Cname Fname Mname Xname NamePrfx PriAddr
0 Res Smith David A Mr 1
1 Res Johnson Elaine A Ms 3
2 Bus Redding Alan D DDS Dr 8
3 Edu Dept CS CSU 15

Table 2: Table Addr in DB1.

id Cid Num Prefix Street Type AptT AptN City State Post
1 0 123 West 57th Ave Ft. Col. CO 80524
2 0 4167 North Reading Way Apt B Ft. Col. CO 80521
3 14 8008 Hampden Rd Suite 101 Ft. Col. CO 80523
4 1 1001 East Main St Suite 220 Laporte CO 80544

the component databases to be integrated, one must
identify which portions of these databases havepoten-
tial intersections of data. If, for example, the choice
has been made to integrate customer and product in-
formation, one only needs to concern themselves with
those portions of the databases that contain informa-
tion (instance data) about those topics (concepts). A
high-level perusal of the schemas and data in these
databases should yield a reliable idea of which tables
contain data concerning customer and product. For
instance, we see that the Tables 1 and 2 in Database 1
have an intersection with Tables 3 and 4 in Database
2. This step should identifyany tables that contain
relevant information. This step does not have to be
an exacting, exhaustive search in a particular database
for all customer or product instances. This is not an
initial step of inter-database relationship discovery.
All that is being accomplished here is the identifica-
tion of specific portions of a database that contains
tables that are of interest to the concept areas we are
trying to integrate.

Once these areas have been identified, the next
step is to find correspondences at the table (relation)
level because it will be these relations that will pro-
vide the initial data for comparison. We will not dis-
cuss this as it has been addressed by other researchers.

2.3.2 Inter-Database Correspondence Assertions

Using the information obtained during information
discovery, we develop inter-database correspondence
assertions (ICAs) over which our matching algo-
rithms can operate. Initially, we do not have any pre-
viously matched relationships, so we can only specify
tests. These tests are referred to aspotentialICAs or
p-ICAs. A typical p-ICA consists of two parts that are
separated by the symbol♦. This basically indicates
that all the data in the tables (relations) to the left of

the♦ should be compared to all the data in the tables
to the right of the♦. An example p-ICA that asks to
match data in the tables CustType and Addr in DB1
to the tables Type and Cust in DB2 is given below.
{DB1 :: CustType,DB1 :: Addr}♦{DB2 :: Type,DB2 ::
Cust}

The data is then analyzed by our matching al-
gorithms. The output is acorrespondence matrix
that contains the confidence factors comparing the at-
tributes of two tables. Using the data from Tables 1,
2, 4 and 3, one of the correspondence matrices pro-
duced by our matching algorithms is given in Table
2.3. (The factorf for string matches was set at 0.50).

2.3.3 Matching Rules

The next step is to analyze the correspondence ma-
trix to identify relationships. At the completion of
the analysis, more ICAs will have been discovered.
These new ICAs will be the input for the next round
of matching.
Analysis The integration specialist must analyze the
correspondence matrices and decide which relation-
ships are genuine, which are false, and more impor-
tantly, which potential relationships are worth pursu-
ing. This will help in determining the new ICAs. Ac-
cepted correspondences become new ICAs; rejected
matches are explicitly stated as inequality ICAs. This
will prevent the match functions from ”revealing”
these matches again in subsequent processing. By an-
alyzing Table 2.3 above, we can gather that there are
strong relationships between the following attributes:

DB1::CustType::ID ∼= DB2::Cust::ID
DB1::CustType::Cname ∼= DB2::Cust::Lname
DB1::CustType::Fname ∼= DB2::Cust::Fname
DB1::CustType::Mname ∼= DB2::Cust::M
DB1::CustType::Xname ∼= DB2::Cust::Other
DB1::CustType::NamePrfx ∼= DB2::Cust::Sal
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Table 4: Table Cust in DB2.

id ty Sal Fname M Lname Oth Num StrNam Apt City St Zip
1 1 Mr David Smith 123 57th Ft. Col. CO 80524
2 1 Ms Elaine Johnson 1001 Main 220 Laporte CO 80544
3 7 Dr Alan D Redding DDS 321 Medical 200 Ft. Col. CO 80522
4 8 Howard X Hughes 1 Hughes Bellevue CO 80558

Table 5: Correspondence Matrix between DB1::CustType and DB2::Cust.

DB2:Cust
DB1::CustType ID Type Sal Fname M Lname Other Num ...
ID 0.750 0.425 0.000 0.000 0.035 0.000 0.000 0.025 ...
Type 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 ...
Cname 0.000 0.000 0.000 0.000 0.000 0.750 0.000 0.000 ...
Fname 0.000 0.000 0.000 0.750 0.000 0.000 0.000 0.000 ...
Mname 0.000 0.000 0.250 0.000 0.750 0.000 0.000 0.000 ...
Xname 0.000 0.000 0.000 0.000 0.000 0.000 0.750 0.000 ...
NamePrfx 0.000 0.000 0.750 0.000 0.250 0.000 0.000 0.000 ...
PriAddr 0.315 0.425 0.000 0.000 0.000 0.000 0.000 0.175 ...

while there exist some possible relationships be-
tween the following:

DB1::CustType::ID ∼= DB2::Cust::Type
DB1::CustType::ID ∼= DB2::Cust::M
DB1::CustType::ID ∼= DB2::Cust::Num
DB1::CustType::Mname ∼= DB2::Cust::Sal
DB1::CustType::NamePrfx ∼= DB2::Cust::M
DB1::CustType::PriAddr ∼= DB2::Cust::ID
DB1::CustType::PriAddr ∼= DB2::Cust::Type
DB1::CustType::PriAddr ∼= DB2::Cust::Num

Creation of More Match ”Rules” In our analysis,
we will determine which discovered matches we will
accept. For those for which a strong correspondence
was found, we need to add these as ICAs. This will
yield statements like:
{DB1 ::CustType:: CName} = {DB2 ::Cust:: Lname}
These statements must be added to the input file for
the match function. If there was a match that we
would like to not be used by the match algorithm (a
match that we do not accept), for example to apparent
match between the ID fields, then we need to place
create an ICA indicating an inequality:
{DB1::CustType::ID} 6= {DB2::Cust::ID}
This inequality specification will indicate to the match
functions that this relationship need not be processed.
This will save some time in processing. We must an-
alyze the weaker matches too, to see if there is a pos-
sibility that there are indeed good candidates for po-
tential matches here. For the example given, there are
no such situations.

More complex comparison ”rules” can now also
be added. For example, in the correspondence ma-
trix comparingDB1::CustType with DB2::Type, we no-

tice that there is no relationship established between
the attributes (other than ID which we have already
discounted). We notice thatCustType uses a character
field to indicate customer type whileType uses integer
values. To overcome this, an ICA can be developed to
give the match processing hints:
{DB1 ::CustType}♦{{DB2 :: Type}AND
{(”Res” = 1, ”Bus” = 4, ”Gov” = 2, ”Edu” = 3)}}

This specification lets the match processing know that
there may be a relationship between these values. An-
other situation that must be matched would be looking
for relationships between tables based on a single key
field that pulls all the information together from mul-
tiple tables. This might be the case for the following
specification:
{DB2 ::Cust}♦{{DB1 ::CustType,DB1 :: Addr}
WHERE
{DB1 ::CustType:: ID=DB1 :: Addr :: CID}}

One could also search for a relationship amongst ta-
bles by keying on the particular value of an instance
of an attribute:
{{DB2 ::Cust}WHERE
{DB2 :: Cust = ”Smith”}}♦{{DB1 :: CustType,DB1 ::
Addr}
WHERE
{DB1 ::CustType:: ID = DB1 :: Addr :: CID}}

These ICAs can be come quite complex, allowing for
a powerful correspondence discovery method.

2.3.4 More on Matching Algorithms

As the match processing progresses and the ICAs
become more complex, we no longer find matches
based solely on the instance data. Early corre-
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spondence discoveries lead to true knowledge about
the relationships between the actual schemas from
both databases. This relationship knowledge is ex-
tremely reliable because it has been extracted from
the database themselves, through the instance data.
As our knowledge of these relationships increases,
we can specify more exacting and detailed ICAs, re-
sulting in even more knowledge. As the ICAs be-
come more complex, and begin to rely increasingly on
schema-level information, the match functions must
grow in complexity accordingly. There are several
good match algorithms (Aslan and Mcleod, 1999;
Chua et al., 2003; Castano et al., 2001; Gal et al.,
2003; Lawrence and Barker, 2001; Li and Clifton,
2000; Schmitt and Trker, 1998) that could be used
at this stage in the process.

2.4 The Result

The correspondence investigation method proposed
provides an initial discovery of inter-database rela-
tionships. During the implementation of the method,
both information about the individual schemas of the
component databases as well as initial inter-schema
relationship are discovered. Accepted ICAs provide
direct inter-schema relationship information. With
only a portion of the component databases schemas
needing transformation, the information in the ac-
cepted ICAs can be used in building this partial inte-
grated schema. The existence of a partially integrated
schema aids the integration specialist in detecting new
assertions (pICAs) as well as errors with the existing
ICAs. The result is enough information to make the
approaches based on schema integration more viable
and efficient.

3 CONCLUSIONS

This paper has proposed a method for correspondence
investigation that does not suffer if there is a lack of
expert knowledge of the schemas involved nor does it
assume that those schemas are well designed. Imple-
mentation of this method will greatly reduce the man-
ual effort involved in the integration process, which
currently heavily dependent upon such efforts.

In future, we plan to integrate existing match func-
tions developed in the artificial intelligence field with
our work. Sophisticated and efficient match functions
used in comparing instance data may give us more
correspondence than would be otherwise possible. In
future we would also like to develop a language to
formally specify the inter-correspondence assertions.
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