
A NOVEL APPROACH FOR ROBUST WEB SERVICES
PROVISIONING

Quan Z. Sheng
School of Computer Science, The University of Adelaide, Adelaide, SA 5005, Australia

Anne H. H. Ngu
Department of Computer Science, Texas State University, San Marcos, TX, USA

Keywords: Web services, mobile agent, computing resource, matchmaking, resource planning.

Abstract: Availability and reliability of Web services are important issues for developing many electronic business appli-
cations. Unfortunately, it is hard to guarantee the availability of a service given that the number of its requests
might be potentially huge. In this paper, we propose a novel approach for robust Web service provisioning
based on mobile agent and resource discovery technologies. With our approach, new service instance can be
instantiated at appropriate idle computing resources on demand, therefore reducing the risk of service being
unavailable. We present a matchmaking algorithm for resources selection, as well as a multi-phase resource
planning algorithm for composite Web services.

1 INTRODUCTION

Web services, and more in general Service-Oriented
Architectures (SOAs), are gathering considerable mo-
mentum as the technologies of choice to implement
distributed systems and perform application integra-
tion (Alonso et al., 2004). Recently, more and more
enterprises are encapsulating their applications as
Web services so that service consumers (either end
users or applications) are able to locate and invoke
those applications.

Some important issues for Web service provision-
ing that have deterred its wide adoption arerespon-
sivenessandrobustness(Curbera et al., 2003; Ingham
et al., 2000; Keidl et al., 2003). It is costly for an en-
terprise if its services are down, for even a few min-
utes. Situations like service delay and unavailability
could be vital and are not acceptable for many im-
portant Web applications (e.g., mission-critical appli-
cations of companies). Unfortunately, given that the
number of requests of a Web service can potentially
be large, a single service host may not be sufficient to
provide quick response time and high availability. It
is advantageous for a service to be initialized at multi-
ple hosts and for the invocation request of the service
to be always directed to the host with the lowest work-
load.

Code mobility is a powerful concept in general for
handling load balancing, performance optimization,
fault tolerance, and network disconnections (Fuggetta
et al., 1998). Code mobility can contribute signifi-
cantly to prompt service responses in the sense that
heavily loaded or unavailable service hosts can be re-
placed dynamically by lightly loaded service hosts.
Many available mobile code technologies like Aglets,
Java, and Sumatra (Acharya et al., 1997) can provide
the foundation for the development of novel solutions
for robust Web services provisioning.

In this paper, we propose an approach for robust
Web services provisioning that builds upon our ear-
lier work in (Benatallah et al., 2003). The core part
of our design is a service container component called
service migrator. A service migrator, which is associ-
ated with a Web service, can instantiate a new copy of
the service at an idle computing resources on demand
or during runtime and therefore, reduces the risk of
the service being unavailable when the number of re-
quests to a specific service are becoming very large.
Furthermore, with load balancing, faster processing
of service requests can be achieved. To facilitate dy-
namic resource selection for migration, we introduce
a matchmakingalgorithm for selecting computing re-
sources that meet the requirements of Web services.
To achieve optimized overall performance of a com-

121
Z. Sheng Q. and H. H. Ngu A. (2007).
A NOVEL APPROACH FOR ROBUST WEB SERVICES PROVISIONING.
In Proceedings of the Ninth International Conference on Enterprise Information Systems - SAIC, pages 121-128
DOI: 10.5220/0002357901210128
Copyright c© SciTePress

posite Web service, we also propose a multi-phase
resource planning approach where resources are se-
lected for the components of the composite service
based on a number of criteria such as communication
cost, or availability.

The paper is organized as follows. In Section 2,
we introduce our model for robust services provision-
ing, in particular the functionalities of service migra-
tors and their interactions with other components such
as service controllers, matchmaker, and computing re-
sources. Then, in Section 3, we present our algorithm
for resource matchmaking. In Section 4, we propose a
multi-phase resource planning algorithm for compos-
ite Web services. Finally, in Section 5, we discuss the
related work and outline future research directions.

2 THE MODEL FOR ROBUST
SERVICE PROVISIONING

In this section, we first introduce the concept of mo-
bile Web services and followed by the description of
our model for robust services provisioning.

2.1 Mobile Web Services

We distinguish betweenstationary and mobile ser-
vices. Stationary services are location dependent.
Such a service cannot move because e.g., the ser-
vice needs to access a DBMS that is only available
on its dedicated server. Meanwhile, mobile Web ser-
vices are services with migration ability (Keidl et al.,
2003). They are similar to mobile agents which have
the ability to interact locally with a service or se-
lect a specific computing resource to use. In addi-
tion, mobile Web services can function just like sta-
tionary Web services. They can dynamically interact
with other services or clients (e.g., accepting invoca-
tion requests, form part of a composite service). Mo-
bile Web services are location independent. They are
stateless (i.e., the internal state of such a service is
discarded after a request is processed) and do not re-
quire special resources or permissions. A mobile Web
service can therefore be executed on arbitrary service
hosts whose capabilities satisfy the requirements of
the service.

Mobile Web services provide a number of distinct
features. Firstly, mobile Web services can migrate
to the client sites where services are invoked as local
calls. It is extremely useful when the data (input and
output of the services) are huge since the data do not
have to be streamed over on the network. Secondly,
mobile Web services can dynamically select a host to
migrate so that they can use the selected computing

resources to accomplish their tasks or to achieve load
balancing. Thirdly, mobile Web services have pro-
vided a solution to the robust service provisioning in
mobile computing environment in which limited re-
sources and unstable connections are a norm. Ser-
vices can always be migrated to more stable hosts.

Mobile Web services have recently attracted a
significant interest (Chen and Petrie, 2003; Liu and
Lewis, 2005; Ishikawa et al., 2004; Keidl et al., 2003).
The work proposed in (Ishikawa et al., 2004) consid-
ers mobile Web services as synthesis of Web services
and mobile agents. While the work in (Liu and Lewis,
2005) develops an XML-based mobile code language
called X# and presents an approach for enabling Web
services containers to accept and run mobile codes. It
should be noted that proposing tools for the develop-
ment of mobile Web services is not the focus of our
work. Instead, we use the concept of mobile Web ser-
vices in our model as the basis for the robust services
provisioning.

2.2 System Design

Central to our design toward a robust provisioning
of Web services are a set ofservice hosts, a moni-
toring service, and a service container that consists
of two components, namelyexecution controllerand
service migrator. A service host is a computing re-
source that is running an engine where service codes
can be executed. Service hosts can register them-
selves at a UDDI registry using appropriate tModel1

(e.g.,ServiceHost) so that they can be found by ser-
vice requesters. A monitoring service monitors the
status of a computing resource or the server of a Web
service (e.g., CPU and memory usage). The execu-
tion controller interacts with the monitoring services
and coordinates the execution of the corresponding
Web service. If the value of a monitored item is
beyond a threshold —which can be set by the ser-
vice provider—and the service is mobile, the con-
troller sends a migration request to the service migra-
tor, which moves the execution of the service to an-
other service host. If no such a service host is avail-
able or the Web service cannot move, the controller
triggers an exception handling policy, if such a policy
has been specified by the service provider.

A service migrator is a light weight scheduler that
helps the controller to execute the associated mobile
Web service in other computing resources whenever
it is necessary. In particular, the service migrator is
responsible for:

1In UDDI, a tModel provides a semantic classification
of the functionality of a service or a resource, together with
a formal description of its interfaces.

ICEIS 2007 - International Conference on Enterprise Information Systems

122

Match
 Maker

Service

Service Container

migrate
service Mobile agent

Service host

Service Migrator

Computing resource
registration

Legend

2

3

4

5

6 1

7

register

Resource
Repository

Execution Controller

Monitoring service

Computing
Resources

Figure 1: Interactions of system components.

• Receiving service migration requests from the ex-
ecution controller and sending a matchmaking re-
quest to thematchmakerto find an appropriate
computing resource. The matchmaking request
includes the relevant information (e.g., ability to
book airline tickets) that will be used by the
matchmaker for the resource selection.

• Loading the service codes (of mobile Web ser-
vices) onto the computing resource recommended
by the matchmaker,

• Dispatching a mobile agent to the site of the re-
source for invoking the service. Upon completion
of the invocation, the results are carried back by
the mobile agent to the service migrator, which in
turn, notifies the service controller about the com-
pletion of the invocation.

Figure 1 gives an overview of the interactions
among different components during the service mi-
gration. When a monitored item reaches a particular
threshold (e.g., the CPU usage of the server is higher
than 90%, see step 1), the controller of a service sends
a migration request to the service migrator (step 2).
The migrator interacts with the matchmaker for the
recommendation of an appropriate service host (steps
3 and 4). If such a service host exists, the migrator
loads the service code to the host and dispatches a mo-
bile agent for the service invocation and result collec-
tion (steps 5 and 6). Otherwise, the migrator informs
the controller, which then may trigger exception han-
dling policies (e.g., forward the service invocation to
an alternative Web service).

The selection of computing resources is based on
a matchmaking algorithm that is implemented in the
matchmaker. We will give a detailed description of
the resource matchmaking in Section 3.

The overall performance of a composite Web ser-
vice, which is an aggregation of several Web services
to fulfil a complex task (e.g., travel planning), can be
improved by code mobility (Casati and Shan, 2001).
For example, multiple component services in a com-
posite service could be gathered in a single site or sev-

eral sites in the same domain for the invocation to re-
duce the communication cost. In Section 4, we will
present an execution planning approach to optimally
select resources on which the execution of the com-
ponent services take place.

3 RESOURCE MATCHMAKING

The resource matchmaking consists of two main
steps: 1) service migrators and resource providers ad-
vertise their requirements and characteristics of the
Web services and resources; a designated matchmak-
ing service (i.e.,matchmaker) matches the advertise-
ments in a manner that meets the requirements and
constraints specified in the respective advertisements.

The descriptions of Web services and resources
consist of two parts:attributesandconstraints. The
attributes part includes characteristics of a service
(e.g., service location, mobility, input and output pa-
rameters) or a resource (e.g., CPU usage, free mem-
ory, price). While the constraints part includes con-
straint expressions defined by a service or a resource
provider, indicating the requirements to select or al-
locate resources. For example, the provider of a re-
source may specify that the resource will not be of-
fered to any request from company A because e.g., it
always delays the payments. Similarly, the provider
of a (mobile) Web service may specify that only re-
sources with more than 200K bytes of free disk space
and at least 128K bytes of free memory are eligible to
invoke the service.

Resources can be described using W3C’s RDF
(Resource Description Framework)2, while Web ser-
vices can be described using WSDL (Web Service
Description Language)3. We will not give detailed
description of RDF and WSDL due to space limita-
tions. In the rest of this section, we will focus on the
introduction of our approach on resources matchmak-
ing and selection.

3.1 Matchmaking Process

Matchmaking is defined as a process that requires
a service description as input and returns a set of
matchedcomputing resources. A computing resource
is matched with a service if both the requirement ex-
pressions of the service and the constraints of the re-
source are evaluated to true.

2http://www.w3.org/TR/REC-rdf-syntax.
3http://www.w3.org/TR/wsdl.

A NOVEL APPROACH FOR ROBUST WEB SERVICES PROVISIONING

123

Figure 2: Interactions in the matchmaking process.

Matchmaking Interactions. Figure 2 shows the in-
teractions in a matchmaking process. Service mi-
grators and resource providers construct advertise-
ments describing their requirements and attributes
and send them to the matchmaker (step 1). The
matchmaker then invokes amatchmaking algorithm
by which matches are identified (step 2). The invo-
cation includes finding service-resource description
pairs that satisfy the constraints and requirements of
resources and services. We will describe this step in
more detail later. After the matching step, the match-
maker notifies the service migrator and the resource
providers (step 3). The service migrator and the re-
source provider(s) then contact each other and estab-
lish a working relationship (step 4). It should be noted
that a matched resource of a service does not mean
that the resource is allocated to the service. Rather,
the matching is a mutual introduction between ser-
vices and resources and the real working relationship
can be consequently built after the successful initial
communication between the two partners.

The separation of matching and claiming has
some significant advantages. The most important
benefit from the separation is the resilience to changes
of resources and services. As we mentioned be-
fore, the state of Web services and resources may
be changing continuously in dynamic environments.
There is a possibility that the matches made by the
matchmaker are based on out-dated advertised infor-
mation. Claiming allows the provider of services and
resources toverify their requirements and constraints
in terms of their current states. In addition, a more
secure system has resulted from the separation in the
sense that in the claiming phase, the providers of re-
sources and services could verify their identities using
cryptographic techniques before building the working
relationship.

Expression Evaluation. Expression evaluation
plays an important role in the matchmaking process.
To evaluate a constraint expression in a advertisement

(service description), the attribute of the expression
is replaced with the value of the corresponding
attribute of the resource. If the corresponding
attribute does not exist in the resource advertisement,
the attribute of the expression is replaced with the
constantundefined. In our matchmaking algorithm,
expressions containingundefined are eventually
evaluated asfalse. The constraints of the resource
advertisement have the similar evaluation process.

For example, assume that a consultation booking
service needs at least 128K bytes free memory to run
the service (i.e.,memoryfree>=128K). The match-
maker scans the advertisement of the computing re-
source for the attributememoryfree. The value of
the attribute (e.g., 512000K bytes) is used to replace
the attribute in the expression (i.e., 512000>= 128),
which is in turn evaluated totrueby the matchmaker.

When receiving a request from a service migrator,
the matchmaker takes the advertisement, evaluates all
the resources advertised in the resource repository us-
ing the matchmaking algorithm described above, and
returns a set of matched resources to the service mi-
grator. To express it more precisely, we present a
piece of pseudo code of the algorithm in Figure 3.

3.2 Resources Selection

For a specific service, there could be multiple comput-
ing resources matched for executing the service. The
service provider, therefore, should be able to choose
the best resource (or top N best resources) that satis-
fies her particular needs from the matched resources.

To specify preferences over resources of a partic-
ular Web service, we exploit amulti-criteria utility
function,

U (r) = ∑
i∈S A

wi · S corei(r)

where i) r is a resource, ii)S corei(r) is an attribute
scoring function, iii)S A is the set of selection at-
tributes, and iv)wi is the weight assigned to attribute
i. The scoring service computes the weighted sum
of criteria scores using the weight property of each
selection criterion. It selects the resource of a service
that produces the higher overall score according to the
multi-criteria utility function. Several criteria—such
asprice, availability, reliability, andreputation—can
be used in the function.

By using multi-criteria selection function, the best
computing resource can be selected from the matched
resources, which will be contacted by the service mi-
grator for the consequent operations (e.g., migrate
service code and invoke the service at the resource).

ICEIS 2007 - International Conference on Enterprise Information Systems

124

doMatchMaking(serviceDescription){
SET matchedResourcesto empty
FOR every advertised resource in RepositoryDO {

matchR=matchRequirements(serviceRequirements,
resourceDescription)

matchC=matchConstraints(resourceConstraints,
serviceDescription)

IF (matchRandmatchC)
addResource(matchedResources, resource)

}
RETURN matchedResources

}

matchRequirements(S R , R D){
SET matchRequirementsto false
FOR every requirement expression inS R DO {

IF evaluation(requirement)
SET matchRequirementsto true

ELSE
SET matchReuirementsto false
BREAK

}
RETURN matchRequirements

}

matchConstraints(R C , S D){
SET matchConstraintsto false
FOR every constraint expression inR C DO {

IF evaluation(constraint)
SET matchConstraintsto true

ELSE
SET matchConstraints to false
BREAK

}
RETURN matchConstraints

}

Figure 3: Pseudocode for resource matchmaking.

A service migrator may also select a number of
matched resources (e.g., top N best resources) to
form a pool of service hostsfor that service. If the
server where the service is currently running is heav-
ily loaded, the migrator generates a new instance of
the service (i.e., migrate a copy of the service and in-
voke it) on a service host with low workload in the
pool. Obviously, multiple service hosts of a service
can significantly increase the service availability.

4 RESOURCE SELECTION FOR
COMPOSITE SERVICES

So far, we only consider the resource selection for an
individual service where the selection is determined
solely on the requirements of the service. Although
this approach is sound enough to improve the avail-
ability of the individual (component) service (e.g.,
move the service to a new resource for the invoca-

tion in case the current server is overloaded), theover-
all performanceof a composite Web service may not
be optimized. For example, component services in
a composite service may choose various resources.
From a particular component service point of view,
the performance is the best. Whereas from the com-
posite service point of view, the performance might
not be the best because these component services
could all be put in a single service host or multiple
service hosts of the same domain where the commu-
nication cost can be dramatically reduced.

In this section, we first introduce the concept of
execution planand then present an approach for se-
lecting optimal execution plans for composite ser-
vices.

4.1 Execution Plans

As stated before, the components of a composite ser-
vice can be executed using several resources. There-
fore, there can be multipleexecution plansfor a com-
posite service. By execution plan, we mean those re-
sources which can be used to execute a composite
service. In other words, an execution plan indicates
which resource is used for each component of a com-
posite service.

Assume a composite serviceC S hasmcomponent
services,C S c = {s1,s2, · · · ,sm}, an execution planp
of C S is defined as follows:

Definition 1 (Execution plan). p = {<s1, r1>, <s2,
r2>, · · · , <sm, rm>} is an execution plan of compos-
ite serviceS if:

•
Sm

i=1si = C S c, and

• for each 2-tuple<si , r i> (i ∈[1,m]) in p, the ser-
vicesi is executed in resourcer i . �

4.2 A Multi-phase Execution Planning

Building an optimal execution plan consists of several
phases. In the following, we will describe and illus-
trate the phases using an example.

Phase 1: Matching Resources.The purpose of this
phase is to search for the resources on which the com-
ponent services could be executed. It should be noted
that only those component services that are movable,
their codes can be transferred to other computing re-
sources, are involved in this stage4.

The matchmaker evaluates the requirement and
constraint expressions of the services and resources.

4The component services that can not move (i.e., sta-
tionary services) have only one “matched” resource (i.e.,
their own service servers).

A NOVEL APPROACH FOR ROBUST WEB SERVICES PROVISIONING

125

If all the requirements of a component servicesi are
evaluated totrue using the attributes of a resourcer i ,
and all the constraint expressions of the resourcer i
are evaluated totrue using the attributes of the ser-
vice si , we sayr i is amatched resourceof si . A ref-
erence to a non-existent attribute evaluates to the con-
stantundefined which is treated asfalse. Since there
could be multiple matched resources of a specific ser-
vice, for each component servicesi of a composite
serviceC S , the result of the matching phase ofC S is
represented as:M ={<s1, R1>, <s2, R2>, · · · , <sm,
Rm>}, whereR i is the set of matched resources of
servicesi ∈ C S c, represented asR i={r i1, r i2, · · · , r ik}.

For example, imagine a composite service con-
sists of 8 component services (s1, s2, · · · , s8) and the
matching results of the composite service are given in
Figure 4 (a). From the table we can see that resources
r1, r2 and r3 can be used to execute services1. The
resourcer1 can also be used to execute services2, s4,
s6, ands8. Figure 4 (b) gives the domain information
of these matched resources. For instance, resources
r1, r2, r3, andr4 belong to a domain namedK-17.

Phase 2: Pruning Phase.For component services
which are supposed to run concurrently, if a resource
r is shared by several such services, arematch proce-
dure must be performed to ensure that these compo-
nent servicescanbe executed inr concurrently.

For example, supposes2 and s3 are executed in
parallel and require at least 150K bytes and 120K
bytes of free memory to carry out their executions,
respectively. Also suppose that resourcer4 has 260K
bytes of free memory. Intuitively,r4 meets the re-
quirements of boths2 ands3 separately. However,r4
does not meet the requirements whens2 ands3 are ex-
ecuted at the same time because they need 270K bytes
of free memory totally. As a result, the resourcer4 is
removed from the sets of the matched resource ofs2
ands4.

Phase 3: Generating Execution Plan.Since each
component servicesi (si ∈ C S c) has a set of matched
resources (R i), the association of a component service
with a specific resource must be completed in order to
build an execution plan for composite serviceC S .

Initially, the work starts with the first component
servicesi (i=1) of the composite serviceC S. In this
step, the best resource will be selected fromR i us-
ing the multi-attribute (e.g., price, availability) utility
function (see Section 3.2). End users can customize
the weights for the selection criteria in order to find a
desired resource for the component service. For ex-
ample, if the price is the most important factor to a
customer, she can set its weight to 1. For each re-
source, a score is computed using the above utility

function and the resource with the maximal value is
selected. If there is more than one resource which
have the same maximal value, then a resource will be
chosen randomly from them. Suppose that resource
r i is finally selected to execute servicesi , the plan for
executing servicesi is represented as<si , r i>.

After the preparation of the first component ser-
vice si (i=1) is finished, the resources should be se-
lected for the remaining component servicessi (i=2
. . . m). The location criterion is considered at this
stage. Obviously, the resource that is going to be as-
signed to a component servicesi (i=2 . . . m) depends
on the location of the resource that is assigned to its
predecessorsi−1. In particular, if the resourcesR i of
servicesi contains the resource selected forsi−1 (i.e.,
r i−1), the resource should also be selected forsi . Oth-
erwise, a number of resourcesRdomain that have the
same domain asr i−1 are selected fromR i . The best
resource is selected from theRdomainby using the util-
ity function in Step 1. If there is no resource having
the same domain withr i−1, a resource will be selected
using the utility function by going to Step 1. For ex-
ample, suppose thatr9 is selected fors6, a resource
will be selected fromr10 and r11 for s7 becauser9,
r10, andr11 has the same domain (see Figure 4 (b)).

After the optimized execution plan ofC S is built,
when the composite serviceC S is invoked, the migra-
tor of its component services are in charge of migrat-
ing and invoking the services in the assigned comput-
ing resources.

5 DISCUSSIONS

The work presented in this paper is related to robust
provisioning of Web services. Regarding the reliabil-
ity and availability of Web services, several proposals
have been presented in the literature (Casati and Shan,
2001; Keidl et al., 2003). The eFlow system (Casati
and Shan, 2001) provides a dynamic service selection
technique. With dynamic service selection, a com-
posite service searches for component services based
on available metadata, its own internal state, and a
rating function. In contrast, our work allows Web ser-
vices to be highly available by moving the execution
of services to other service hosts dynamically. The
dispatcher servicethat is capable of automatic service
replication presented in (Keidl et al., 2003) is most
similar to our work. However, the strategies on ser-
vice hosts selection have not been discussed. Instead,
a dispatcher is responsible for a set of service hosts
that are known a priori. In addition, their approach
only considers individual services, not composite ser-
vices. Comparing to their work, we not only present

ICEIS 2007 - International Conference on Enterprise Information Systems

126

Service Matched resources
s1 {r1, r2, r3}
s2 {r1, r4}
s3 {r4, r5, r6}
s4 {r1, r7, r8}
s5 {r4, r8, r9}
s6 {r1, r9}
s7 {r3, r7, r10, r11}
s8 {r1, r10, r8, r12}

(a)

K-17
r1 r2

r3 r4

J-10
r5 r6

r7 r8

C-8
r9 r10

r11 r12

(b)
Figure 4: (a) Matched resources of the composite service; (b) domains of the matched resources.

an approach for resources matchmaking where appro-
priate service hosts are selected dynamically, but also
present a multi-phase execution planning mechanism
for the high availability and best overall performance
of composite Web services. It is also worth mention-
ing that the Web Service Reliability (WS-Reliability)
specification (Iwasa et. al.,) is an industry effort
for open, reliable Web services messaging including
guaranteed delivery, duplicate message elimination
and message ordering. However, although the spec-
ification was named as “Web service reliability”, it
deals less with the overall reliability of Web services
than with “Web services reliable message delivery”.

With regard to the matchmaking approaches, In-
foSleuth (Nodine et al., 2003) is an agent-based in-
formation discovery and retrieval system that adopts
broker agentsto perform the syntactic and seman-
tic matchmaking. The broker agent matches agents
that require services with the agents that can provide
such services. In InfoSleuth, the service capabilities
is written in LDL++ (Chimenti et al., 1990), a logical
deduction language. RETSINA (Sycara et al., 1999)
is a multiagent system for dynamic service match-
making on the Web. The authors distinguished three
kinds of agents in Cyberspace:service provider, ser-
vice requester, andmiddle agent. An appropriate ser-
vice provider is matched to a requester through the
middle agent. A language is designed for the descrip-
tion of agents capabilities. In contrast, our matchmak-
ing between services and resources is based on an ap-
proach where providers of services and resources can
express their constraints and requirements. In addi-
tion, we propose a multi-criteria utility function for
selecting optimal resources for particular services.

The techniques presented in this paper have been
implemented in Self-Serv system (Sheng, 2006) as an
extension to Web services development. In particular,
UDDI is used as the service and resource repository.
We defined an XML schema using RDF for resource
description. The HP Jena Toolkit 1.6.15 is used to ma-

5http://jena.sourceforge.net/.

nipulate RDF documents. WSDL is used to specify
Web services. Since WSDL focuses on how to invoke
a Web service, some of the attributes (e.g., stationary
or mobile service) in our approach are not supported.
To overcome this limitation, such attributes are spec-
ified as tModels. The keys of these tModels are in-
cluded into thecategoryBag of the tModel of a Web
service. Finally,µCode 1.036 is used to implement
mobile agents for service invocation at service hosts
as well as results collection.

Our ongoing work includes the performance study
of the proposed techniques on service migration. We
are also planning to examine the support of dynamic
information of resources and services that changes
over the time such as amount of free memory.

REFERENCES

Acharya, A., Ranganathan, M., and Saltz, J. (1997). Suma-
tra: A Language for Resource-Aware Mobile Pro-
grams. Mobile Object Systems: Towards the Pro-
grammable Internet, pages 111–130.

Alonso, G., Casati, F., Kuno, H., and Machiraju, V. (2004).
Web Services Concepts, Architectures and Applica-
tions. Springer Verlag.

Benatallah, B., Sheng, Q. Z., and Dumas, M. (2003). The
Self-Serv Environment for Web Services Composi-
tion. IEEE Internet Computing, 7(1):40–48.

Casati, F. and Shan, M.-C. (2001). Dynamic and Adap-
tive Composition of E-Services.Information Systems,
26(3):143–162.

Chen, Y.-F. R. and Petrie, C. (2003). Ubiquitous Mobile
Computing.IEEE Internet Computing, 7(2):16–17.

Chimenti, D., Gamboa, R., Krishnamurthy, R., Naqvi,
S. A., Tsur, S., and Zaniolo, C. (1990). The LDL Sys-
tem Prototype.IEEE Transactions on Software Engi-
neering, 2(1):76–90.

Curbera, F., Khalaf, R., Mukhi, N., Tai, S., and Weer-
awarana, S. (2003). The Next Step in Web Services.
Communications of The ACM, 46(10):29–34.

6http://mucode.sourceforge.net/.

A NOVEL APPROACH FOR ROBUST WEB SERVICES PROVISIONING

127

Fuggetta, A., Picco, G. P., and Vigna, G. (1998). Under-
standing Code Mobility.IEEE Transactions on Soft-
ware Engineering, 24(5):342–361.

Ingham, D. B., Shrivastava, S. K., and Panzieri, F. (2000).
Constructing Dependable Web Services.IEEE Inter-
net Computing, 4(1):25–33.

Ishikawa, F., Yoshioka, N., Tahara, Y., and Honiden, S.
(2004). Toward Synthesis of Web Services and Mo-
bile Agents. InProc. of AAMAS’2004 Workshop
on Web Services and Agent-based Engineering (WS-
ABE2004), New York, USA.

Iwasa et. al., K. Web Service Reliability Specification.
http://www.oasis-open.org/specs/index.php.

Keidl, M., Seltzsam, S., and Kemper, A. (2003). Reliable
Web Service Execution and Deployment in Dynamic
Environments. InProc. of the 4th VLDB Workshop on
Technologies for E-Services (VLDB-TES03), Berlin,
Germany.

Liu, P. and Lewis, M. J. (2005). Mobile Code Enabled Web
Services. InProc. of IEEE International Conference
on Web Services (ICWS’05), Orlando FL, USA.

Nodine, M. H., Ngu, A. H. H., Cassandra, A. R., and
Bohrer, W. (2003). Scalable Semantic Broker-
ing over Dynamic Heterogeneous Data Sources in
InfoSleuthTM. IEEE Transactions on Knowledge and
Data Engineering, 15(5):1082–1098.

Sheng, Q. Z. (2006).Composite Web Services Provisioning
in Dynamic Environments. PhD thesis, The University
of New South Wales, Sydney, NSW, Australia.

Sycara, K., Klusch, M., Widoff, S., and Lu, J. (1999). Dy-
namic Service Matchmaking Among Agents in Open
Information Environments.ACM SIGMOD Record,
28(1):47–53.

ICEIS 2007 - International Conference on Enterprise Information Systems

128

