
A FRAMEWORK FOR MODEL-DRIVEN PATTERN MATCHING

Ignacio García-Rodríguez de Guzmán, Macario Polo and Mario Piattini
ALARCOS Research Group

Information Systems and Technologies Department
UCLM-Soluziona Research and Development Institute

University of Castilla-La Mancha
Paseo de la Universidad, 4 – 13071 Ciudad Real, Spain

Keywords: MDA, pattern-matching, QVT, transformation.

Abstract: Today, software technology is evolving to model engineering. Standards such as MOF and MDA and
languages such as QVT and ATL are emerging to support this evolution from object paradigm to model
engineering. At times, these standards and languages give rules and advices at a high level of abstraction,
and concrete solutions and implementations are difficult to perform. As a consequence of this technological
immaturity and the lack of documentation, many capabilities in this new field are not exploited. To this end,
the authors in this paper propose a first step of providing a framework for performing Model-Driven Pattern
Matching operations. Pattern matching based on models is an evolution of a traditional concept adapted to
the model realm. In this respect, this kind of pattern matching seems to be promising not only for finding
occurrences of given models in others, but also for giving meaning or sense to these patterns in order to
undertake actions over the resulting matchings.

1 INTRODUCTION

Today, software engineering is going through a
change of paradigm from object orientation to model
driven development (Bézivin, 2006). Perhaps one of
the reasons for this evolution is the growth of
current platform complexities, which has evolved
faster than the ability of general-purpose language to
face it (Schmidt, 2006).

MDE brings many other standards such as MDA
(OMG, 2003a), QVT (OMG, 2005a), UML2 (OMG,
2005b) among others.

One of the most ambitious bets is QVT, a model
transformation language. QVT makes it possible to
perform different kinds of operations over models
such as query, transformation and views generation.

This paper focuses on QVT capabilities for
performing pattern matching. QVT uses pattern
matching to carry out most operations. Since both
the pattern and the data are models, this pattern
matching technique can be seen as a Model-Driven
Pattern Matching (MDPEM from now on) process.

MDPEM has been conceived as an important
element inside an MDA process intended to infer

and to extract services from relational databases
(García-Rodríguez de Guzmán et al., 2006a). In this
process, MDPEM is also used to perform additional
tasks over matchings.

This paper is organized as follows: Section 2
depicts the recent history of QVT; Section 3
describes the proposed framework using a working
example; after the introduction of the approach,
Section 4 outlines a possible use for matchings;
Section 5 provides some conclusions and introduces
future lines of work in this field.

2 STATE OF THE ART

Perhaps the soundest MDE-related technology is
MDA (OMG, 2003a). Model transformation is an
important part of MDA, and OMG proposes QVT to
perform this operation.

OMG published the QVT RFP in 2002. In
March 2003, the QVT-Partners published the “Initial
submission for MOF 2.0
Query/Views/Transformations RFP” (OMG, 2003b).

553
García-Rodríguez de Guzmán I., Polo M. and Piattini M. (2007).
A FRAMEWORK FOR MODEL-DRIVEN PATTERN MATCHING.
In Proceedings of the Ninth International Conference on Enterprise Information Systems - DISI, pages 553-557
DOI: 10.5220/0002360905530557
Copyright c© SciTePress

In November 2003, QVT-Partners published the
“Revised submission for MOF 2.0 Query / Views /
Transformations RFP” (OMG, 2003c) (showing a
more complete specification along with the
declarative and imperative QVT´s languages). In
November 2005, OMG published the “MOF QVT
Final Adopted Specification” (OMG, 2005a).

On the other hand, up to now there is no
available any QVT engine implementing the
declarative QVT language. In order to solve this
problem, some projects in the academic world
(Queralt et al., 2006) are now underway.

3 MDPEM FRAMEWORK

3.1 An Overview to the Framework

This framework is used to provide information
about: (1) where the patterns can be located in the
MOF architecture; (2) how these patterns are
represented; (3) the target model against which
patterns are matched and (4) what the resulting
matchings are and where they are located.

Figure 1: Generic framework for MDPEM.

Both patterns and models (against which
patterns are matched) have their own metamodel.
Thus Level M2 (MetaModel Level) represents all
these metamodels, as well as transformations among
them to perform the MDPEM process.

Patterns, models and matchings make up a
particular metamodel (from level 2). So Level M1
level (Model Level) represents all the models
involved in the MDPEM process.

3.2 Elements Involved in the Process

In order to make the framework clear, a description
of all the elements is given:

 Pattern MModel: To generate valid patterns to
do the MDPEM against a target model, a
pattern metamodel is given together with the
target metamodel. Pattern Model is the model
actually describes the pattern to be found in
the target model

 QVT Pattern MModel: QVT provides a
metamodel (OMG, 2005a) to express any
searching pattern (template in QVT
terminology). The QVT Pattern Model is
obtained applying the PatternToQVTPattern
transformation over the Pattern Model.

 PIM/PSM MModel: This metamodel is used to
represent the target model. PIM/PSM Model is
actually the target model.

 PatternToQVTPattern: Because a QVT
Template is required to perform the MDPEM
process, a transformation between the pattern
metamodel and the QVT template should be
given for each pair <pattern metamodel, QVT
template>. The transformation is defined in a
metamodel level, but applied to models.

 MDPEM: represents that the QVT template
metamodel is the basis to perform the
MDPEM over the instance of the target model
metamodel. The matching process is executed
by a QVT Engine.

 Matching: Represents the result (if any) from
the MDPEM execution using the specified QVT
template over the given target model. These
matchings are also models from the target
model.

3.3 MDPEM Process

The MDPEM process is divided in the following
steps:

1. Pattern model and target model are given.
2. QVT Template instance is obtained from

Pattern Model.
3. MDPEM is carried out.
4. Matchings (sub-models) are returned to the

invoker

According to (QVTP, 2003), “The essential idea
behind pattern matching is to allow the succinct

ICEIS 2007 - International Conference on Enterprise Information Systems

554

expression of complex constraints on an input data
type; data which matches the pattern is then picked
out and returned to the invoker”. In our context, the
pattern model specifies the complex constraints, and
the target model represents the data.

In addition to these elements (and according to
the framework shown in Figure 1), another element
is required to perform the MDPEM process: the
transformation between the pattern model and the
QVT template.

FK
+name: String

Table
+name: String

Column
+name: String
+isPK: Boolean

+column
+mMainTable

+mSecTable

Figure 2: Very simple metamodel.

:Table
+name = Client

:Column
+isPK = T
+name = idClient

:Column
+isPK = T
+name = idFilm

:Column
+isPK = F
+name = Title

:FK
+name = User_Renting_FK

:Column
+isPK = F
+name = FullName

:Table
+name = Film

Clase
+isPK = T
+name = idClient

:Column
+isPK = T
+name=RentDate

:Table
+name = Rent

:Column
+isPK = T
+name = FilmName

:FK
+name = Rented_Film_FK

+mMainTable

+mSecTable

+mMainTable

+mSecTable

:FK
+name = Penalized_client_FK

:Table
+name = Penalty

+mMainTable

+mSecTable

:Column
+isPK = T
+name = idClient

:Column
+isPK = T
+name = From

:Column
+isPK = T
+name = To

:Table
+name = Actor

:FK
+name = Actor_In_Film_FK

+mMainTable

+mSecTable :Column
+isPK = idFilm
+name = idFilm

:Column
+isPK = T
+name = Actor

:Column
+isPK = F
+name=RoleInFilm

Figure 3: Working example.

As noted above, any model representing a
searching pattern must be compatible in the context
of the target model. Therefore, to specify a pattern,
it may be useful to use the target model metamodel.
Consequently, any pattern will be compatible with
the target model and thus, MDPEM applicable. In
this section, the process depicted in Section 3.3 will
be explained using the working example of Figure 3.
Both target model and pattern will conform to the
metamodel in Figure 2.

3.3.1 Pattern Model and Target Model

As a first step in the MDPEM process, the definition
of both the target model and the pattern is
mandatory. Figure 3 contains the target model. This

example represents a (very simple) database for a
video store. This database keeps information about
clients, films, rents, penalties and actors. This model
conforms to the metamodel in Figure 2.

Once we have the target model, the pattern must
be specified. Because the example in Figure 3 is a
simple database, the pattern must specify the
constraints in terms of tables, foreign keys, columns
and so on. Figure 4 (a) represents the double foreign
key pattern (DFK) (García-Rodríguez de Guzmán et
al., 2006b). The DFK pattern relates three tables (a,
b and M) by means of two foreign keys (fk1 and fk2).
Figure 4 (b) represents the DFK pattern according to
the metamodel in Figure 2.

3.3.2 QVT Template Generation for
MDPEM Application

According to Figure 1, the pattern expressed in terms
of the PIM/PSM metamodel is not the same as that
used to perform the MDPEM. To this end, a QVT
Template is obtained from the proposed pattern
(Figure 4 (b)).

(a)

a:Table
m:Table

fk1:FK

b:Table

fk2:FK
+mMainTable

+mSecTable +mSecTable

+mMainTable

(b)

Figure 4: (a) DFK pattern and (b) Figure 2 metamodel-like
representation.

Figure 5: QVT template creation.

There are two ways to obtain a QVT Template:
(1) manually or (2) automatically. The first may be
complex depending largely on the complexity of the
pattern metamodel and the size of the pattern. The
second can be carried out implementing a suitable
transformation to obtain QVT Template from the
source pattern (see Figure 5).

Due to the lack of space, the
PatternToQVTPattern transformation for a working
example is not shown, but rather the QVT Template
textual representation. Once the
PatternToQVTPattern transformation is written, any

A FRAMEWORK FOR MODEL-DRIVEN PATTERN MATCHING

555

pattern conforming to the pattern metamodel can be
transformed into the QVT Template.

This textual QVT template representation can be
understood in the following way: “return all the
matchings composed by three tables (a, b and m)
and two foreign keys (fk1 and fk2). Those elements
must hold the following conditions: a is related to
fk1, b is related to fk2, m is related to fk1 and m is
related to fk2”.

In this pattern, the criteria to process the search
are only based on the structure of the elements
composing the pattern. In another situation, it may
be useful to establish another kind of conditions.

3.3.3 MDPEM Application

Given the QVT template (representing the pattern)
and the target model (Figure 3), the QVT engine
looks for all the occurrences (matchings) of the
template that exist in the model.

Figure 6: Matching obtained from the working example.

As a result, a set of sub-models from the target
model, holding the constraints set by the pattern, are
returned to the invoker.

Because all the matchings are “fragments” of the
target model, all of them belong to the same level of
the target model (Figure 1).

The only obtained matching (Figure 6) consists of
a set of classes that hold the a, b and c tables and the
foreign keys fk1 and fk2

4 PURPOSE OF MATCHINGS

Matchings may be useful when a particular purpose
is bound to patterns. For example, a pattern such as
DFK could be accompanied by abstract operations.
Each abstract operation involves those tables
included in the pattern, so, when a matching is
found, this abstract operation can be applied to a
real set of tables. The real result of this matching is a
set of operations associated with the pattern.

The DFK pattern can be accompanied by the
following operations: getA_ForAGiven_B (having
B, obtain the associated A) and getB_ForAGiven_A
(the opposite). The combination “pattern+actions”
can be a powerful tool to deal with complex
systems. Another possible use for MDPEM could

also be the design pattern detection in large software
systems, such as other authors do (Zhang et al.,
2004).

5 CONCLUSIONS AND FUTURE
WORK

In this paper, a framework for Model-Driven Pattern
Matching has been presented. To perform MDPEM,
both the pattern and target models must be known.
To ensure compatibility among these models we
propose using the metamodel of the target model (or
at least a subset) to build the pattern. Thus any given
pattern can be used to find matchings in a given
target model.

Because each pattern must be translated into a
QVT Template, a suitable transformation must be
developed. An excerpt of a transformation to obtain
QVT Templates from our patterns is presented.

ACKNOWLEDGEMENTS

This work has been partially supported by the
ENIGMAS Project (PIB-05-058), the FAMOSO
Project (2006: FIT-340000-2006-67); and the
MECENAS project (PBI06-0024).

REFERENCES

Bézivin, J. (2006). Introduction to Model Engineering,
ATLAS Group (INRIA & LINA), Nantes.

García-Rodríguez de Guzmán, I., M. Polo and M. Piattini
(2006a). A Methodology for Database Reengineering
to Web Services. European Conference on Model
Driven Architecture - Foundations and Applications,
Bilbao (Spain), Springer-Verlag Berlin Heidelberg.

García-Rodríguez de Guzmán, I., M. Polo and M. Piattini
(2006b). Un primer paso para la obtención de
servicios en bases de datos relacionales mediante
patrones y MDA. ZOCO: Desarrollo y Mantenimiento
Ágil de Aplicaciones Basadas en Servicios Web,
Sitges (Barcelona).

OMG (2003a). MDA Guide Version 1.0.1., Object
Management Group: 62.

OMG (2003b). QVT-Partners initial submission to qvt-
rfp, Object Management Group.

OMG (2003c). Revised submission for MOF 2.0
Query/Views/Transformations RFP, Object
Management Group.

OMG (2005a). MOF QVT Final Adopted Specification,
Object Management Group.

:FK
+name='User_Renting_FK'

Table
+name=Film

:Table
+name=Rent

:Table
+name=Client

:FK
+name=Rented_Film_FK

+mMainTable +mSecTable+mSecTable +mMainTable

ICEIS 2007 - International Conference on Enterprise Information Systems

556

OMG (2005b). Unified Modeling Language:
Superstructure. Versión 2.0.

Queralt, P., L. Hoyos, A. Boronat, J. Á. Carsí and I.
Ramos (2006). Un Motor de Transformación de
Modelos con soporte para el Lenguaje QVT Relations.
Desarrollo del Software Dirigida por Modelos y
Aplicaciones 2006 (DSDM´06), Sitges, Barcelona
(Spain).

QVTP (2003). Revised submission for MOF 2.0 Query /
Views /Transformations RFP (Version 1.1), QVT-
Partners (http://qvtp.org/).

Schmidt, D. C. (2006). "Model-Driven Engineering."
IEEE Computer 39(2): 25-31.

Zhang, Z. and Q. Li (2004). Automated Detection of
Design Patterns. Grid and Cooperative Computing,
Springer Berlin / Heidelberg: pp 694-697.

A FRAMEWORK FOR MODEL-DRIVEN PATTERN MATCHING

557

