
DYNAMIC COMMIT TREE MANAGEMENT FOR SERVICE
ORIENTED ARCHITECTURES

Stefan B̈ottcher and Sebastian Obermeier
University of Paderborn, Computer Science, Fürstenallee 11, 33102 Paderborn, Germany

Keywords: Service oriented architectures, SOA, web services, web service transactions, atomicity, commit tree.

Abstract: Whenever Service Oriented Architectures make use of Web service transactions and an atomic processing of
these transactions is required, atomic commit protocols are used for this purpose. Compared to traditional
client server architectures, atomicity for Web services and Web service composition is much more challenging
since in many cases sub-transactions belonging to a global transaction are not known in advance.
In this contribution, we present a dynamic commit tree that guarantees atomicity for transactions that invoke
sub-transactions dynamically during the commit protocol’s execution. Furthermore, our commit tree allows
the identification of obsolete sub-transactions that occur if sub-transactions are aborted and restart.

1 INTRODUCTION

An atomic transaction execution is essential for con-
current transactions in complex systems like dis-
tributed databases, peer-to-peer systems, and Service
Oriented Architectures that make use of a composi-
tion of cascading Web service calls.

Service Oriented Architecture that use Web ser-
vice transactions demand a more dynamic transac-
tional model than the classical distributed transac-
tional model for which 2PC is designed. More pre-
cisely, the model must support a dynamic invocation
of sub-transactions even during commit time. This
means, that the use of classical atomic commit proto-
cols like 2PC (Gray, 1978) or 3PC (Skeen, 1981) in-
volves a lot of problems since a previously unknown
set of sub-transactions must be guided to an atomic
commit decision.

Solutions based on timeouts (Kumar et al., 2002)
demand committed transactions to be undone by ap-
plying compensation transactions. However, commit-
ted transactions can trigger other operations, and we
cannot assume that compensation is always possible
for the following reason. In networks where network
partitioning can occur, nodes may be unreachable but
still operational. Therefore, compensation transac-
tions may not reach a separated, fully operational

node. Meanwhile, this node may have executed other
transactions based on the transaction that should have
been compensated. To avoid these kinds of problems,
we focus on a transaction model, within which atom-
icity is guaranteed for distributed, non-compensatable
transactions.

In this paper, we propose a data structure used by a
commit coordinator to deal with dynamically invoked
sub-transactions. The data structure re-organizes it-
self and allows the coordinator to react to various net-
work situations.

2 TRANSACTION MODEL

Our transaction model has the goal to support atomic
execution of Web services. Our transaction model
is based on the concepts “application”, “transaction
procedure”, “Web service”, and “sub-transaction”, as
well as their relationship to each other.

An application APmay consist of one or more
transaction procedures. A transaction procedure is
a Web service that must be executed in an atomic
fashion. Transaction procedures and Web services
are implemented using local code, database instruc-
tions, and (zero or more) calls to other remote Web
services. Since the invocation of a Web service de-

95
Böttcher S. and Obermeier S. (2007).
DYNAMIC COMMIT TREE MANAGEMENT FOR SERVICE ORIENTED ARCHITECTURES.
In Proceedings of the Ninth International Conference on Enterprise Information Systems - DISI, pages 95-101
DOI: 10.5220/0002365300950101
Copyright c© SciTePress

pends on conditions and parameters, different execu-
tions of the same Web service may call different Web
services and execute different local code.

We call the execution of a transaction procedure a
global transactionT. The applicationAP is only inter-
ested in the result ofT, i.e. whether the execution of
a global transactionT has been committed or aborted.
In case of commit,AP is also interested in the return
values of the parameters ofT.

The relationship between transactions, Web ser-
vices, and sub-transactions is recursively defined as
follows: We allow each transaction or sub-transaction
T to dynamically invoke additional Web services of-
fered by physically different nodes. We call the exe-
cution of such Web services invoked by the transac-
tion T or by a sub-transactionTi the sub-transactions
Tsi . . .Ts j of T or of Ti , respectively. This invocation
hierarchy can be arbitrarily deep.

Whenever T1, . . . ,Tn denote all the sub-
transactions called by eitherT or by any child
or descendant sub-transactionTs of T during the
execution of the global transactionT, atomicity
of T requires that either all transactions of the set
{T,T1, . . . ,Tn} commit or all of these transactions
abort.

We assume that each Web service only knows the
Web services that it calls directly, but not whether or
not the called Web services call other Web services.
Therefore, at the end of its execution, each transac-
tion Ti knows which sub-transactionsTis1 . . .Tis j it has
called, butTi , in general, will not know which sub-
transactions have been called byTis1 . . .Tis j . Further-
more, we assume that usually a transactionTi does
not know how long its sub-transactionsTis1 . . .Tis j are
going to run.

We assume that each sub-transaction consists of
the following phases: a read-phase, a coordinated
commit decision phase, and, in case of successful
commit, a write-phase. During the read-phase, each
sub-transaction performs write operations on its pri-
vate storage only. After commit, during the write
phase, write operations on the private storage are
transferred to the database, such that the changes done
throughout the read-phase become visible to other
transactions after completion of the write-phase.

In the architecture for which our protocol is de-
signed, Web services are invoked by messages instead
of invoking them by a synchronous call to a Web
service for the following reason. We want to avoid
that a Web serviceTi that synchronously calls a sub-
transactionTj cannot complete its read phase and can-
not vote for commit beforeTj sends its return value
to Ti . Therefore, we allow sub-transactions only to
return values indirectly by asynchronously invoking

corresponding receiving Web services, and not syn-
chronously by return statements1. Since (sub-) trans-
actions describe general services, the nodes that exe-
cute these (sub-) transactions may be arbitrary nodes
and are not necessarily databases. We therefore call
these nodesresource managers (RM).

One characteristic of our Web service transac-
tional model is that the initiator and the Web ser-
vices do not know every sub-transaction that is gener-
ated during transaction processing. Our model differs
from other models that use nested transactions (e.g.
(Dunham et al., 1997), (OMG, 2003), (Cabrera et al.,
2005)) in some aspects including but not limited to
the following:

• Since network partitioning makes it difficult
or even impossible to compensate all sub-
transactions, we consider each sub-transaction
running on an individual resource manager to
be non-compensatable. Therefore, no sub-
transaction is allowed to commit independently of
the others or before the commit coordinator guar-
antees that all sub-transactions can be committed.

• Different from CORBA OTS ((OMG, 2003),
(Liebig and K̈uhne, 2005)), we assume that we
cannot identify a hierarchy of commit decisions,
where aborted sub-transactions can be compen-
sated by executing other sub-transactions.

• Different from the Web service transaction model
described in (Cabrera et al., 2005), the Initiator of
a transaction in our model does not need to know
all the transaction’s sub-transactions. We assume
that the Initiator is only interested in the commit
status and the result of the transaction, but not in
knowing all the sub-transactions that have con-
tributed to the result.

• A Web service may consist of control struc-
tures, e.g. if<Condition> then <T1> else
<T2>.This means that a sub-transaction execut-
ing this Web service may create other sub-trans-
actions dynamically. These dynamically created
sub-transactions also belong to the global transac-
tion and must be executed in an atomic fashion.

• Communication is message-oriented, i.e., a Web
service does not explicitly return a result, but may

1However, if the application needs synchronous calls,
e.g. because of dependencies between sub-transactions, the
intended behavior can be implemented by splittingTi into
Ti1 andTi2 as follows. Ti1 includesTi ’s code up to and in-
cluding an asynchronous invocation of its sub-transaction
Tj ; andTi2 contains the remaining code ofTi . Tj performs
an asynchronous call toTi2 which may contain return values
computed byTj that shall be further processed byTi2

ICEIS 2007 - International Conference on Enterprise Information Systems

96

invoke a receiving Web service that performs fur-
ther operations based on the result.

3 SOLUTION

This section describes a data structure called “commit
tree”, which represents the commit status of all sub-
transactions involved in a global transaction.

3.1 Atomicity of Web Service
Transactions

The main problem of ensuring atomicity for Web ser-
vice transactions is that the coordinator does not know
all sub-transactions. In order to inform the coordi-
nator about all invoked sub-transactions, we outline
the sub-transaction’s ID management in Section 3.2
and propose a data structure calledcommit treeto
dynamically store the completion status of each sub-
transaction involved in a transaction in Section 3.3.

3.2 The Sub-Transactions ID
Management

Since a global transactionT may consist of many in-
voked sub-transactions, we propose the use of sub-
transaction IDs to distinguish all sub-transactions of
T. To ensure that the coordinator gets knowledge of
all invoked sub-transactions belonging toT, we re-
quire that each vote message sent by a sub-transaction
Ti to the coordinator informs the coordinator about all
sub-transactionsTs1, . . . ,Tsk that are called byTi . This
means that each sub-transactionTi includes a list of
IDs of all its invoked sub-transactionsTi1, . . . ,Tik in its
vote message. For this purpose, we have included a
parameterListOfInvokedSubTransactions in the
vote message which has the following format:

VoteMessage V(bool commit,
ID subtransactionID,
ID callerID, ID globalTID,
ListOf(ID) ListOfInvokedSubTransactions,
int sequenceNr)

Since the atomic decision of the global transac-
tion T must include these invoked sub-transactions,
the coordinator must also wait for the votes of those
newly added resource managers. This behavior is
supported by the commit tree data structure, for which
an example is given in the next section and which is
generally defined in Section 3.4.

The other parameters have the following mean-
ing: commit tells the coordinator whether or not

the sub-transaction execution was successful and
contains the value of either “abort” or “commit”.
subtransactionID is the sub-transaction’s own ID
whereascallerID is the ID of the parent transac-
tion andglobalTID is the ID of the global transac-
tion T to which the sub-transaction belongs. Finally,
sequenceNr is needed to identify the latest version of
the vote message in order to handle message delays if
the vote message is sent more than once.

Furthermore, each sub-transactionTsi belongs to
exactly one global transactionT, and it is called
by exactly one callerTs, i.e., the application pro-
gram or another sub-transaction. Since each sub-
transactionTs must inform the coordinator about
the sub-transaction IDs of all its sub-transactions
Ts1, . . . ,Tsk, we have decided to provide a sub-
transactionTsi with all the information when it is
called. Therefore, the sub-transaction ID ofTsi is
generated by the resource manager running the call-
ing parent transactionTs and is passed in a parameter
subtransactionID to Tsi whenTsi is invoked. The
following example shows the use of IDs:

invokeSubTransaction(subtransactionID,
callerID, globalTID,

<WebService name and parameters>)

The parametercallerID contains the ID ofTsi

and the parameterglobalTID contains the ID of
the global transactionT to which Tsi and Ts be-
long. The parameter list<WebService name and
parameters> contains the name of the called Web
service and the parameters used for the Web service
call.

3.3 An Example of the Coordinators
Commit Tree

To ensure that all sub-transactionsTsi , . . . ,Tsj invoked
by a sub-transactionTi are known to the coordinator,
the coordinator must process the parameterListOf-
InvokedSubTransactions, passed in the vote mes-
sage ofTi and update the set of required votes for
the global transactionT before processingT ’s com-
mit decision. Before we describe the general use of
the commit tree data structure, we give an example
(c.f. Figure 1) that shows how we ensure that the co-
ordinator can only come to a commit decision after it
has knowledge of all necessary votes.

Figure 1 shows part of a sequence diagram of an
example execution: During the read-phase, a sub-
transaction T2 needs the service doT(. . .) and gen-
erates the ID “T4” to invoke the Web service with
the required parameterssubtransactionID (T4),
CallerID (T2) andglobalTID. In our example, sub-
transaction T4 has finished earlier than T2 and sends

DYNAMIC COMMIT TREE MANAGEMENT FOR SERVICE ORIENTED ARCHITECTURES

97

�� ��������	���

����
���������� ���������� ������� �� ��� ��� ����������!"� #�
������� ����� �#� ����������!��� �$"� #� %�� &���'����&������

�(
�����$���� ���������� ������� �� �$� ��� ����������!"� #�

����
Figure 1: Sequence diagram of example commit tree construction.

T1

I

T4

T3T2

T5

Vote(true, I, root,
[T1], 1)

Vote(true, T1, I,
[T2, T3], 1)

Vote(true, T3, T1,
[], 1)

Vote(true, T2, T1,
[T4, T5], 1)

Vote(true,
T4,T2,[],1) Vote(true, T5,

T2, [], 1)

Figure 2: An example commit tree.

the vote message to the coordinator. Since T4 has not
invoked any sub-transactions, the fifth parameter of
the vote message denoting the set of the called sub-
transactions is empty. T2, however, includes the IDs
of its invoked sub-transactions, T4 and T5, in its set
of the called sub-transactions. This makes the coordi-
nator to require the votes of T4 and T5, which, in this
example, have arrived earlier. When the coordinator
has received all these votes, it decides on the global
commit decision.

In contrast to 2PC, which handles flat transactions
instead of nested transactions, the dynamic call of
Web services supported by our protocol requires that
the votes, which the coordinator needs for a global
commit decision, can be determined only during the
protocol’s execution. In order to store the commit sta-
tus and vote of each sub-transaction, we propose a
dynamic data structure, calledcommit tree, and we
define the initiator of a transaction to be the root of
this commit tree.

Figure 2 shows an example commit tree (we have
omitted the globalTIDs since all sub-transactions be-

long to the same global transaction). When the co-
ordinator has received the initiatorI ’s vote which in-
cludes the list [T1] for the parameter of the invoked
sub-transactions, the root node is generated to repre-
sent the commit status ofI . When the coordinator has
received the vote of T1, the node T1 is created. Since
the sub-transaction T1 invoked the sub-transactions
T2 and T3, the commit of the sub-transactions T2
and T3 is also required to commit the whole trans-
action. Therefore, this information is added to the
commit tree. The coordinator builds this commit tree
dynamically and determines whether all votes needed
for continuing the protocol’s execution have arrived.
Since the information about invoked sub-transactions
is sent along with a vote message of the parent trans-
action and the parent’s vote can arrive later than a
sub-transaction’s vote, it may be the case that an ar-
riving sub-transaction vote cannot be assigned to a
parent transaction, like the vote messages of T4 and
T5 in the example of Figure 1. In this case, the sub-
transaction’s vote is stored and it is assigned after the
corresponding parent sub-transaction’s vote has ar-
rived.

3.4 The Coordinators Commit Tree

The commit tree for a transaction is an unordered
tree with additional parameters to dynamically store
votes. Each commit tree corresponds to exactly one
global transaction and stores the following variables:
the global transaction ID; a tree structure contain-
ing commit tree nodes; a listunassignedN of unas-
signed nodes corresponding to sub-transactions that
voted for commit before their parents voted for com-
mit; and a list openSubTransactions of transaction
IDs, for which the vote was not received by the coor-
dinator. Furthermore, each commit treenodestores:
the sub-transaction ID; the ID of the resource man-

ICEIS 2007 - International Conference on Enterprise Information Systems

98

ager running the sub-transaction; the parent transac-
tionID; and 0−n IDs of invoked sub-transactions.

Depending on the status of the commit tree and
based on a timer, the coordinator decides on the com-
mit decision and sends one of the following messages
to all participating resource managers:

doCommit, which requires all recipients to commit
the sub-transaction. the message is sent, when all
participants have voted for commit, i.e. the list
openSubTransactions is empty.

doAbort, which requires the recipient to abort the
sub-transaction. This message is sent, when at
least one participant has voted for abort.

3.5 Modification of the Commit Tree by
the Vote Operation

Algorithm 1 outlines the implementation of the co-
ordinator’s vote operation which is executed on the
commit tree whenever a client’s vote message arrives
at the coordinator. First, the coordinator uses the se-
quence number to check that no newer message was
processed earlier, e.g., due to message delay (line re-
falg1:check)1. Thereafter, a new nodeN is created
and the reception of the vote is marked in the list of
open sub-transactions (line 8). Then, the parent-child
relationships betweenN and the nodes represent-
ing other sub-transactions are managed (lines 8-14).
In addition, the implementation of the vote opera-
tion (line 15) updates the listopenSubTransactions
which stores sub-transactions of which the votes are
necessary.

If all votes are present, the list
openSubTransactions contains only marked
entries and the global decision can be made. To
ensure that in case of a resource manager’s failure
no infinite blocking occurs, the coordinator starts the
timer. If the time is over and some votes are still
missing, the coordinator may propose abort or it may
inform the participants about the delay and give them
the chance to file a petition to abort the transaction,
e.g. if highly needed resources are blocked by the
pending transaction. However, only the coordinator
may abort the transaction after a resource manager
voted for commit.

1This is necessary because otherwise an old message
would overwrite a newer message, if the old message was
delayed

4 RELATED WORK

We can distinguish contributions to the field of atom-
icity and distributed transactions according two main
criteria: first, whether their transactional models use
flat transactions or support nested transaction calls,
second, whether transactions and sub-transactions are
regarded as compensatable or non-compensatable.
Our contribution is based on a transactional model
that allows nested transaction calls and assumes sub-
transactions to be non-compensatable.

The requirement to allow sub-transactions to in-
voke other sub-transactions originated from busi-
ness applications. Within such a business applica-
tion, the atomicity constraint is to complete all “sub-
transactions” of aworkflow (Workflow Management
Coalition, 2000). Today, Web services and their de-
scription languages (e.g. BPEL4WS (Curbera et al.,
2002) or BPML (Arkin et al., 2002)) are more and
more used to implement nested Web service transac-
tions, which are calledWeb services orchestration.

However, these languages do not provide a coor-
dination framework to implement atomic commit pro-
tocols. For this purpose, our contribution can be com-
bined with these description languages, like the “WS-
Atomic-Transaction” proposal (Cabrera et al., 2005)
does. Note that our contribution is different from
(Cabrera et al., 2005) in several aspects. For exam-
ple, (Cabrera et al., 2005) has a “completion protocol”
for registering at the coordinator before the transac-
tion coordination started. In comparison, our commit
tree is invoked on-the-fly and can be dynamically ex-
tended, which is needed whenever used Web services
are not known in advance.

Besides the Web service orchestration model,
there are other contributions that set up transactional
models to allow the invocation of sub-transactions,
e.g. the Kangaraoo Model (Dunham et al., 1997).
Common with these transaction models, we have a
global transaction and sub-transactions that are cre-
ated during transaction execution and cannot be fore-
seen. The main difference to this transactional model
lies in the fact that we consider all sub-transactions to
be non-compensatable. This means that in our model,
an abort of one of these sub-transactions must – for
the sake of the atomicity constraint – result in a global
abort.

Other contributions like (Pitoura and Bhargava,
1995) or (Rakotonirainy, 1998) allow a transaction to
define the level of consistency which the transactions
leave behind. In contrast, our solution does not need
to adjust the level of consistency. We can guaran-
tee atomicity without leaving states of inconsistency,
even within environments where nodes that have con-

DYNAMIC COMMIT TREE MANAGEMENT FOR SERVICE ORIENTED ARCHITECTURES

99

Algorithm 1 Coordinator’s implementation of the Vote procedure.
1:
2: procedure VOTE(boolean commitStatus, ID subtrsID, ID callerID, ID globalTID, ListOf(ID) invokedSubT, int sequenceNr)
3: if isVoteValid(sequenceNr) then ⊲ no newer message was processed earlier?
4: if commitStatus==false then
5: abortTransaction(); ⊲ If one participants voted abort, abort the transaction
6: end if
7: N :=createNode(subtrsID, callerID, globalTID, invokedSubT);
8: openSubTransactions.markAsVoted(subtrsID);
9: if (ParentNode := getNodeByID(callerID)) == nil then

10: unassignedN.add(N); ⊲ Vote of the calling sub transaction has not yet arrived
11: else
12: ParentNode.addChild(N)
13: assignNodes(invokedSubT, N)
14: end if
15: openSubTransactions.add(invokedSubT)
16: end if
17: end procedure

sistent data may crash or permanently remain in a sep-
arated network partition.

Corba OTS ((OMG, 2003), (Liebig and Kühne,
2005)), uses a hierarchy of commit decisions, where
an abort of a sub-transaction does not necessarily lead
to an abort of the global transaction. Instead, the
calling sub-transactions can react on this abort and
use other sub-transactions, for example. Although we
also assume that Web services invoke other Web ser-
vices and the coordinator uses a tree structure to main-
tain information about commit votes, we do not have
this hierarchical commit decisions, since in the pres-
ence of non-compensability, this implies waiting for
the commit decision of all descendant nodes. In an
environment where node failures are likely, we do nei-
ther propose to wait nor to block the participants until
the commit decision has reached all participants. In
contrast, our solution needs only one message round
for distributing the commit decision to each partici-
pant.

When the coordinator’s availability cannot be
guaranteed throughout the whole transaction execu-
tion, for example in mobile environments where dis-
connections and network failures may occur, some
contributions propose the use of protocols with more
than one coordinator. Since our solution is an exten-
sion, it can be combined with these protocols. (Reddy
and Kitsuregawa, 2003), for example, suggests the
use of backup coordinators in 2PC; (Gray and Lam-
port, 2004) uses Paxos Consensus (Lamport, 1998) to
get a consensus on the commit decision; and (Böse
et al., 2005) allows “controlled failures” by proposing
a combination of 2PC, 3PC (Skeen, 1981), and Paxos
Consensus. Different contributions like (Nouali et al.,
2005) employparticipant-agentsto shift the coordi-
nation workload to fixed, stable parts of the network

like base stations. However, our extension is also suit-
able in such infrastructure scenario. Since all these
referenced protocols require a resource manager to
send a vote on the sub-transaction, the protocols can
be extended to support the dynamic invocation of sub
transactions within a service oriented architecture.

5 SUMMARY AND CONCLUSION

In this paper, we have presented the commit tree as
a key idea for guaranteeing atomicity for Web ser-
vice transactions. The commit tree, a specialized data
structure, can be used to implement the coordinator’s
management of transaction atomicity for a dynami-
cally changing set of sub-transactions. We have em-
bedded our atomic commit protocol in a Web service
transactional model, the characteristics of which is
that sub-transactions must not be known in advance.
Finally, our protocol extension merges nicely with
a variety of concurrency control strategies including
validation and locking.

REFERENCES

Arkin, A. et al. (2002). Business process modeling lan-
guage, bpmi.org. Technical report.

Böse, J.-H., B̈ottcher, S., Gruenwald, L., Obermeier, S.,
Schweppe, H., and Steenweg, T. (2005). An inte-
grated commit protocol for mobile network databases.
In 9th International Database Engineering & Appli-
cation Symposium IDEAS, Montreal, Canada.

Cabrera, L. F., Copeland, G., Feingold, M., et al.
(2005). Web Services Transactions specifications
– Web Services Atomic Transaction. http://www-

ICEIS 2007 - International Conference on Enterprise Information Systems

100

128.ibm.com/developerworks/library/specification/ws-
tx/.

Curbera, F., Goland, Y., Klein, J., Leymann, F., et al. (2002).
Business Process Execution Language for Web Ser-
vices, V1.0. Technical report, BEA, IBM, Microsoft.

Dunham, M. H., Helal, A., and Balakrishnan, S. (1997). A
mobile transaction model that captures both the data
and movement behavior.Mobile Networks and Appli-
cations, 2(2):149–162.

Gray, J. (1978). Notes on data base operating systems. In
Flynn, M. J., Gray, J., Jones, A. K., et al., editors,
Advanced Course: Operating Systems, volume 60 of
Lecture Notes in Computer Science, pages 393–481.
Springer.

Gray, J. and Lamport, L. (2004). Consensus on transaction
commit. Microsoft Research – Technical Report 2003
(MSR-TR-2003-96), cs.DC/0408036.

Kumar, V., Prabhu, N., Dunham, M. H., et al. (2002). Tcot-a
timeout-based mobile transaction commitment proto-
col. IEEE Trans. Comput., 51(10):1212–1218.

Lamport, L. (1998). The part-time parliament.ACM Trans.
Comput. Syst., 16(2):133–169.

Liebig, C. and K̈uhne, A. (2005). Open Source Imple-
mentation of the CORBA Object Transaction Service.
http://xots.sourceforge.net/.

Nouali, N., Doucet, A., and Drias, H. (2005). A two-phase
commit protocol for mobile wireless environment. In
Williams, H. E. and Dobbie, G., editors,Sixteenth
Australasian Database Conference (ADC2005), vol-
ume 39 ofCRPIT, pages 135–144, Newcastle, Aus-
tralia. ACS.

OMG (2003). Transaction Service Specification 1.4.
http://www.omg.org/.

Pitoura, E. and Bhargava, B. K. (1995). Maintaining con-
sistency of data in mobile distributed environments.
In International Conference on Distributed Comput-
ing Systems, pages 404–413.

Rakotonirainy, A. (1998). Adaptable transaction consis-
tency for mobile environments. InDEXA Workshop,
pages 440–445.

Reddy, P. K. and Kitsuregawa, M. (2003). Reducing the
blocking in two-phase commit with backup sites.Inf.
Process. Lett., 86(1):39–47.

Skeen, D. (1981). Nonblocking commit protocols. In Lien,
Y. E., editor,Proceedings of the 1981 ACM SIGMOD
International Conference on Management of Data,
Ann Arbor, Michigan, pages 133–142. ACM Press.

Workflow Management Coalition (2000).
http://www.wfmc.org/.

DYNAMIC COMMIT TREE MANAGEMENT FOR SERVICE ORIENTED ARCHITECTURES

101

