
ON GROUPING OF ACTIVITIES INSTANCES
IN WORKFLOW MANAGEMENT SYSTEMS

Dat C. Ma, Joe Y.-C. Lin and Maria E. Orlowska
School of Information Technology and Electrical Engineering

 The University of Queensland
Brisbane, Australia

Keywords: Grouping, Activity instances, Work items, Flexibility, Workflow.

Abstract: Current research in the flexibility of workflow management systems covers many aspects of this
technology. The focus of this paper is primarily on the practical capabilities of workflow management
systems in handling preferred work practice while dealing with many short duration activities. It is
motivated by the requirement of merging or grouping work items by one performer to achieve work
performance enhancements by avoiding unnecessary communication with the system but still executing the
required activities. The paper proposes a new function to group activity instances for a given process,
investigates the impact, benefits, and potential implementation of such of extended functionality.

1 INTRODUCTION

Workflow technology has been considered being the
most common technology in supporting the
automating of business processes. It has delivered
effectively in the area of business and scientific
process enforcement, which offered a clear
separation of process logic from component
applications and data involved in process execution.
The technology has primarily offered productivity
improvements mainly for repetitive business
processes with substantial human involvement, and
has provided strict business policy enforcement,
effective scheduling, monitoring, and resource
planning services.

However, one of the most critical limitations of
current workflow technology is its rigour in
executing predefined process structures. It is often
discussed under the name of lack of flexibility (Aalst
1999), (Sadiq 1999), (Sadiq, Orlowska & Sadiq
2005), (Sadiq et al. 2005). In general, the scope of
the term “flexibility” in workflow is quite diverse,
which ranges from adaption to evolution of business
process models and exception handling (Aalst 1999),
(Sadiq, Orlowska & Sadiq 2005) to the requirement
for specifying workflow patterns (Aalst et al. 2003)
and the work practice conformance (Sadiq et al.
2005). Due to the well motivated challenges and
potential benefits from effective handling flexibility

in workflow technology, related research attracted
lots of attention.

In this paper, we focus on another flexibility
aspect of workflow technology; in supporting user
driven grouping of work items (within one activity).
Our aim is to address this flexibility aspect without
impacting on the semantics of current workflow
specifications, but to give users the freedom to group
work items at the runtime. This work is motivated
by the requirement to handle many short duration
tasks, the way work as individuals executing them
would prefer to do – without additional overhead
from deployment of workflow management systems
(WFMS). This issue was first raised by (Sadiq et al.
2005). In this paper, we show the distinction
between two work items amalgamation principles:
grouping several work items of the same activity
into a new integrated work item without any
intervention to the involved activity instances data
versus merging several activity instances into one
new instance subsuming data from all its
components. We demonstrate how much can be
achieved without serious modifications of the
process specification language semantics and what
impact on ‘off shelf WFMS’ such introduction must
have.

In the following sections, we provide the basic
related concepts in workflow technology. Section 3
proposes an approach to extend the functionality of

125
C. Ma D., Y. -C. Lin J. and E. Orlowska M. (2007).
ON GROUPING OF ACTIVITIES INSTANCES IN WORKFLOW MANAGEMENT SYSTEMS.
In Proceedings of the Ninth International Conference on Enterprise Information Systems - ISAS, pages 125-130
DOI: 10.5220/0002369801250130
Copyright c© SciTePress

WFMS by allowing grouping of activity instances.
In section 4, we discuss a potential implementation
of such extension in traditional WFMS environment.
The conclusion and future work are presented in
section 5.

2 BASIC TERMINOLOGY

In order to provide a background for further
discussion, we define some basic terminologies.

Let a workflow process W be defined as W =
<N, F> where N: finite set of nodes, F: flow relation
F ⊆ N Χ N. Further, we define two functions:
 ∀ n∈N, NodeType: n → {Coordinator, Task},

such that N = C∪T, C∩T = φ ; where C: Set of
Coordinators, T: Set of Tasks (or Activities).
 ∀c∈C, CoordType: c → {AND-Split, AND-

Join, XOR-Split, XOR-Join, Begin, End}
A process model will have many activities. A

process instance represents a particular case of the
process. An activity instance is the representation of
an activity within a process instance. Each activity
instance is governed by a finite state machine (FSM)
that is characterised by typical states (e.g.
Scheduled, Active, Suspended, Completed, and
Terminated).

Figure 1: Relationships between key terminologies.

During the run time, a workflow performer
(participant) performs the work by selecting a work
item from a worklist. A work item is the
representation of the work in the context of an
activity instance. The worklist forms part of the
user’s interface between the workflow engine and
the worklist handler. A Worklist Handler is a
software component managing the interaction
between the users and the worklist. Figure 1 shows
the relationships between some key terminologies
(WfMC 1999) using the Business Process Modelling
Notation (or BPMN) (OMG 2004).

3 GROUPING WORK ITEMS

The notion of an activity instance in workflow
system is a useful concept to separate individual
fragments/phases of complex process execution.
However, this notion can be too restrictive for
certain scenarios, in particular when dealing with
large loads of short-duration work items of the same
type. We provide a motivating scenario that has been
identified in real work practice showing an overhead
(not contributing to the process itself) but imposed
by the deployment of WFMS solution.

3.1 Motivating Example

One of the most widely used processes for
automation by workflow technology is sale order
processing. Figure 2 illustrates a simplified version
of a typical order processing scenario.

Figure 2: Order Processing Workflow.

Consider the creation of purchase order managed
by workflow as in Figure 2. Note that the Create
Purchase Order requires a merchant to commence
and complete the same activity for each individual
purchase request. Given the current state of art in
workflow technology, the performer interacts with
the worklist handler for 1 work item at a time, which
is proved to be a cumbersome task. A much
preferred work practise would be to do this activity
for a group of purchase order with a single point of
interaction with the worklist handler. For example,
grouping 3 purchase orders (i.e. 3 work items) into
one group will reduce the number of interactions
between the user and the worklist handler from 6
(i.e. 2 for each work item) into 2, which is not
supported by current WFMS.

We now differentiate between merging and
grouping of work items. The main difference
between these two functions could be illustrated as
in Figure 3. In Figure 3, PR and PO represent
multiple work items appear on the worklist of
activities Create Purchase Request and Create
Purchase Order. Each work item has an associated
content. For instance, the work item PR2 requests to
order two products B and C with their respective
values (i.e. 30 and 20) as its content.

As illustrated in Figure 3, when merging work
items, a new work item is created as a result of
merging (i.e. PO*) for PR.1 and PR.2. While in the
case of grouping, a group of work items is created.

Create
Purchase
Request

Create
Purchase

Order

Organize
Shipment

Begin End

Receive
Payment

Send Invoice

End

Process model Process Instance Worklist
1st P rocess Ins tance

2nd P rocess Instance

3rd P rocess Instance

Performer A

Performer B

Work item 1

Work item 2

Work item M

1st P rocess Instance

2nd P rocess Instance

Work item 7

Work item 9

Work item N

Work item 10

Work item 8

A B C

+A
B

C
+ D

+ +

+ +

ICEIS 2007 - International Conference on Enterprise Information Systems

126

Figure 3: Merging and Grouping of work items.

If we denote t as a task and WIt the set of all
work items of task t across multiple instances, then
we define the Merge and Group functions for work
items as followed.

Merge: WIt
2 WIt, where WIt

2 is the power set
of WIt. When the merge function is applied on a
subset of WIt, it will replace the subset by creating a
new work item wit∈WIt. The newly created work
item wit has its content as the collated contents of all
the work items it merged.

Group: WIt WIt
2. When the group function is

applied on WIt, it will necessarily produce a partition
of WIt. Each subset of WIt is called a group iff it has
more than one element (i.e. one work item). When
grouping work items of a task t, no new work item is
created and no item is removed, which are different
from the case of merging work items.

In this work, we limit our research only to
grouping of work items due to the fact that merging
of work items may introduce abnormalities in the
execution of workflow process models, which are
illustrated by the examples in Figure 4 and Figure 5
using the BPMN specification.

Figure 4 illustrates a typical result of executing a
part of a workflow, which consists of four activities
with their corresponding work items (T1.1, T1.2,
T2.1, T2.2, T3.1, T4.1, T4.2) and an XOR-Split
coordinator (with decision condition “Total > 50”).

Figure 4: Merging with XOR-Split.

In Figure 4, in the case that there is no merging,
after executions of task T2, task T4 is selected to
execute as the result of evaluating the “Total” value
of the contents of T2.1 and T2.2 (i.e. 20 and 50
respectively). However, a different result happened
when merging is performed at T2. In this case,

instead of T4, activity T3 is selected to execute as a
result of evaluating the “Total” value (i.e.
20+30+20=70) of the merged work item T2.1.

Figure 5 illustrates a result of executing a part of
a workflow, which consists of five activities with
their corresponding work items and an AND-Join
coordinator in two situations, i.e. when there is no
merging and when there is merging at task T2.

Figure 5: Merging with AND-Join.

In Figure 5, work item T5.1 is created as a result
of completion both T2.1 and T4.1. Similarly, the
completion of both T2.2 and T4.2 triggers the
execution of T5.2.

However, in the case of merging work items (the
right hand side of Figure 5), after the completion of
T2.1* and T4.1, it is not desired to execute T5, since
there is a non-correspondence between contents of
T2.1* and T4.1 (similarly for T2.1* and T4.2). For
clarity, if T2, T4, T5 refer to the tasks of Receive
Purchase Order, Receive Payment, Send Goods
respectively, then T5 should not be executed when
there is a mismatch between the contents of a
purchase order and the payment.

The main reason that contributes to the above
anomalies is the violation of the coupled relationship
between activity instance and process instance.
Originally, each activity will have at most one
execution (i.e. one activity instance) within any
given process instance. This relationship is a critical
foundation for workflow specifications. For
instance, workflow constructs are used to route the
execution of activities only within the scope of a
process instance.

However, in the case of merging, this
relationship does not hold. When merging, a new
activity instance is created in replace of specific
activity instances that originally belong to multiple
process instances, thus the newly created activity
instance now belongs to multiple process instances.
This requires the modification in workflow

T2

T4

T5

T1

T3

T1.1
A 20

B 30
C 20

T1.2

T2.1

A 20

B 30
C 20

T2.2

T5.1

A 20

B 30

C 20

T5.2
T3.1

A 20

B 30
C 20

T3.2

T4.1

A 20

B 30
C 20

T4.2

T2

T4

T5

T1

T3

T2.1*

A 20

B 30

C 20

T1.1

A 20

B 30

C 20

T1.2

B 30
C 20

T3.2
B 30
C 20

T4.2

T3.1

A 20

T4.1

A 20

?

Merging
work
items

Without Merging With Merging

Yes

T2T1

T3

T4No

Total > 50

T2.1*

A 20
B 30
C 20

T1.1
A 20

B 30
C 20

T1.2

Yes

T2T1

T3

T4No

Total > 50

T1.1
A 20

B 30
C 20

T1.2

T2.1
A 20

B 30
C 20

T2.2

T4.1
A 20

B 30
C 20

T4.2

T3.1*

A 20
B 30
C 20

Without Merging With Merging

Merging
work
items

PO 1

A 20

B 30
C 20

PR 1

A 20

B 30
C 20

PR 2

Merging work
items

PR 1

A 20

B 30
C 20

PR 2

PO 1
A 20

PO 2
B 30
C 20

Grouping work
items

ON GROUPING OF ACTIVITIES INSTANCES IN WORKFLOW MANAGEMENT SYSTEMS

127

specifications to reflect the change in semantics and
to make process work properly in a cross process
instance environment. Such modification leads to
major extension to current WFMS.

3.2 Grouping Activity Instances

According to section 2, a work item and its
corresponding activity instance are two perspectives
of an activity execution. We propose to use the
concept of Instance group, which is necessary to
represent a group of selected activity instances at a
point in time during workflow execution and its
behaviour is modelled as a FSM (called Instance
Group FSM or iGFSM).

For simplicity, we also propose that the
ungrouping of an instance group takes place
automatically when the instance group reaches
Completed state, Terminated state, or when the
group is empty (i.e. after removing all work items).

The relationships between instance groups,
activity instances, and process instances are as
followed.
 Each activity instance can only belong to an

instance group and each instance group can consist
multiple instances of the same activity.
 Each process instance can have multiple instance

groups and each instance group can belong to
multiple process instances

When grouping work items (i.e. corresponding to
grouping activity instances), certain design
considerations or constraints on grouping function
must be taken into account. We identified the
following grouping constraints on group function.
 Pre-grouping constraints. Pre-grouping

constraints specify whether activity instances must
be in the same state or not, and the allowed states for
activity instances to be able to group.
 State synchronising constraints. State

synchronising constraints specify whether activity
instances and its belonging instance group must have
the same state or not at any point of execution time.
 Membership constraints. Membership

constraints specify whether members of an instance
group can be changed during instance group
execution.

Different levels of flexibility on group function
are determined by grouping constraints. The full
flexibility of group function allows activity instances
to be grouped at any time, work items can be
executed as individuals even after grouping,
inserting and removing work items from a group are
allowed. At the other end, the flexibility of the
function is lost when activity instances are required
to have the same state before grouping; states of
activity instances and instance group must be the

same at any time of execution thus not allowing
work items to be executed individually within a
group; items can not inserted/removed into/from an
existing group.

Grouping constraints can be specified at the
activity level or instance group level, which
determines the behaviour of group function for all
the instance groups of an activity or for specific
instance groups. For instance, users can freely
specify that for the task Create Purchase Order all
the purchase orders within a group must be
completed at the same time, while for the task
Create Invoice, each invoice must be completed
individually.

3.2.1 Behaviour of an Instance Group

The behaviour of an instance group is modelled as
an iGFSM. State of an instance group at a given time
is identified by the states of the activity instances
constitute the group.

We define the state of an instance group as
followed. If:
 It denotes an instance group of task t
 it∈ It denotes an activity instance of a task

belonging to the instance group It
 State(it) ∈{Scheduled, Active, Suspended,

Completed, Terminated} is a function that returns
the state of an activity instance it

Then state of It: State(It) = ∏
∈ tt Ii

State(it) (i.e. the

Cartesian product of states of all the activity
instances it belonging to the instance group It).

Table 1: An example for the definitions of states of
instance group It .

State(It) Conditions
Scheduled ∀ it ∈ It, State(it) = Scheduled
Active ∃ it ∈ It, State(it) = Active

Suspended
¬ (∃ it ∈ It, State(it) = Active)
∧ (State(It) ≠ Terminated)
∧ (State(It) ≠ Completed)

Terminated ∀ it ∈ It, State(it) = Terminated

Completed

¬ (∀ it ∈ It, State(it) = Terminated)
∧
 (∀ it ∈ It,
 (State(It) = Terminated) ∨
 (State(It) = Completed))

Conventionally, we can define iGFSM of an

instance group following the FSM of an activity
instance (section 2). Depending on which grouping
constraints that designers would like to enforce on
the group function, different ways to define the
states of iGFSM can be proposed. Table 1 represents

ICEIS 2007 - International Conference on Enterprise Information Systems

128

definitions on iGFSM states, which give the group
function the full flexibility.

In general, when grouping activity instances,
WFMS does not need to create an iGFSM for the
corresponding instance group, since its states can be
derived by the states of activity instances
constituting the group. However, in practice certain
benefits can be gained from extending WFMS to
generate iGFSM. For instance, in validation the
transitions between states (e.g. Active to Completed,
Active to Suspended, but not Scheduled to
Completed) of an iGFSM, the implementation of
iGFSM reduces the repeating interactions within the
WFMS to check states of individual activity
instances, especially when the number of activity
instances in an instance group is large.

3.2.2 Impact of Instance Group

We investigate the impact of instance group on the
semantics of workflow specifications and the
execution of a workflow.

Workflow specifications. The concept of
instance group does not make any change to or
affect the semantics of activity instance within a
process. Thus the strict relationship between activity
instance and process instance is still held, which
does not require any modification to the workflow
specifications.

Workflow execution. When a performer selects
work items in a worklist, it leads to the creation of
an instance group that groups the corresponding
activity instances together. The instance group can
allow each individual activity instance to be
executed independently and when it completes, the
control thread is released to trigger the next activity.
However, instance group can also allow activity
instances within the same group to be executed as a
whole, when the instance group is completed, all the
control threads of activity instances in the group are
forced to be released at once to trigger multiple
executions of the next activity (or activities).

4 DEPLOYMENT OF INSTANCE
GROUPING

The implementation of instance grouping requires
some modification on the WFMS. Since we aim to
enhance the WFMS without complete software re-
engineering, we are proposing the modification to be
carried out on the client side of the software instead
of the server side. i.e. no change to the workflow
engine. The implementation of the WFMS can be
described in two parts: modification on the Worklist

Handler user interface and controlling the FSMs of
the grouped work items.

Worklist Handler user interface. Traditionally,
when a work item is scheduled to the performer,
he/she may activate the task by pressing the
“commence” button. Once the performer finishes
working on the task, he/she may press the
“complete” button on the worklist to complete the
task and begin the next task. Although a performer is
allowed to open multiple work items concurrently,
but only 1 work item may be activated or committed
at once. Therefore, the performer is working in a
very inefficient working pattern by repeating the
process such as “Press the Commence button” →
“Work on the task” → “Press the Complete button”
over and over again.

Our proposed instance grouping approach is
introduced to save the hassle of multiple interactions
between the user and system. The first modification
to the worklist handler user interface is very simple
but yet very useful, simply by adding a “Group”
button and an “Ungroup button” to the worklist user
interface. The purpose of the “Group” button is to
allow work items to change their states at the same
time, whereas the “Ungroup” button allows the
performer cancelling the grouping anytime.

The interface of the worklist handler should be
altered to distinguish the grouped work items from
those not in a group. In addition to, other useful
features for performers can be provided, such as
automatic grouping work items based on certain
conditions or sorting work items in different orders
based on different properties. Figure 6 shows a
sample screenshot of the proposed worklist.

Figure 6: A sample screenshot of worklist.

FSMs of the grouped work items. WFMS
needs to accommodate the modified user interface.
In particular, the state of the group of work items is
now managed by the worklist handler.

Once work items are in a group, the state
changes of individual work item and instance group
(iGFSM) must be validated by checking all grouping

Group box

Ungroup
button

Link to
associated
application

Group button &
grouping condition

Disable button for
invalid action

Listing
order for
work items

ON GROUPING OF ACTIVITIES INSTANCES IN WORKFLOW MANAGEMENT SYSTEMS

129

constraints (section 3.2). There are four types of
grouping control where validation of the group
constraint may take place.
 Initialization of a group
 Insertion to a existing group
 Removal from a group
 State changes as a group

The validation of grouping constraint first takes
place at the initialization stage when a group of work
items are proposed to be grouped by the user.
Generally, some grouping may result the
inconsistence of the process. For example, work
items at the Suspended state can not be grouped with
work items of another state. The validation of such
inadequate behaviour should be automatically
checked by the worklist handler to maintain process
quality.

The grouping can be enforced by the
membership constraint with some specific condition.
For example, if size of the group is limited to
between five and ten work items, then the insertion
or removal of work items into or from a group needs
to be checked.

Finally, some grouping constraint can be used to
synchronize the state changes of all work items of a
group. The worklist handler virtually synchronises
the FSMs for each work item into a virtual FSM (i.e.
iGFSM). The work list handler keeps track of all
work item status and the virtual FSM only changes
state when all grouping constraints are satisfied.

As we demonstrated above, the implementation
of the concept of instance grouping only requires the
extension at the worklist handler therefore minimum
modification efforts are required to incorporate this
new feature.

5 CONCLUSIONS

In this paper, we propose a practically driven
extension to the functionality of typical workflow
management systems by offering, if required, the
grouping work items facility. We identified the
distinction between merging and grouping of work
items, and showed that traditional workflow
management systems can not deliver using the
merging function without major modifications into
the semantics of workflow specifications language
and the workflow engine itself. We propose a more
restrictive version of activity instance merging
limited to the grouping of instance to provide this
overhead relaxation without any modifications to the
semantics of the specification language. However, it
is still not for free entirely; there is a need for

modification of worklist handler to support the
proposed workflow flexibility extension. The paper
concludes with an overview of potential
implementation of introduced new workflow
systems’ functionality. The consideration of
extending workflow specification to incorporate
merging of items will form our future research.

ACKNOWLEDGEMENTS

The authors would like to acknowledge the
comments and suggestions provided by Dr. Shazia
Sadiq.

REFERENCES

Aalst, W. M. P. 1999, 'Generic Workflow Models: How to
Handle Dynamic Change and Capture Management
Information?' in Proceedings of the Fourth
International Conference on Cooperative Information
Systems (CoopIS'99), IEEE Computer Society Press,
Los Alamitos, CA, pp. 115-126.

Aalst, W. M. P., Hofstede, A. H. M. , Kiepuszewski, B &
Barros, A. P. 2003, 'Workflow patterns', Distributed
and Parallel Databases, vol. 14, no. 3, pp. 5-51.

OMG 2004, Business Process Modelling Notation
(BPMN) version 1.0, Object Management Group
(OMG), San Mateo, CA. Retrieved: June, from
http://www.bpmn.org/.

Sadiq, S. 1999, 'Workflows in Dynamic Environments –
Can they be managed ?' in Proceedings of The Second
International Symposium on Cooperative Database
Systems for Advanced Applications (CODAS99),
Woollongong, Australia.

Sadiq, S., Orlowska, M. & Sadiq, W. 2005, 'Specification
and validation of process constraints for flexible
workflows', Information Systems, vol. 33, no. 5, pp.
349-378.

Sadiq, S., Orlowska, M., Sadiq, W. & Schulz, K. 2005,
'When workflows will not deliver - The case of
contradicting work practice', in the 8th International
Conference on Business Information Systems (BIS
2005), Poznan, Poland.

WfMC 1999, Workflow Management Coalition
Terminology & Glossary, The Workflow Management
Coalition (WfMC). Retrieved: June, from
http://www.wfmc.org/standards/docs/TC-
1011_term_glossary_v3.pdf.

ICEIS 2007 - International Conference on Enterprise Information Systems

130

