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Abstract: The new methodology for software development is introduced and applied to an accounting system. The 
new method is called the incrementally modular abstraction hierarchy (IMAH). IMAH has an abstraction 
hierarchy from abstract to concrete levels. Invariants defined on an abstract level are kept on a concrete 
level, which allows adding modules incrementally on each hierarchical level and avoiding combinatorial 
explosion of the serious problem in software engineering, while climbing down abstraction hierarchy in 
designing and modeling a complex system. This paper shows how IMAH is applied in developing an 
accounting system, which is fundamental in enterprise systems and a suitable example of complex software 
systems. At first, very simple example recording only journal vouches to a database system is used to 
describe methodologies of IMAH. Then, it is described how this simple system is incrementally developed 
to a conventional complex accounting system. 

1 INTRODUCTION 

Many software development methodologies have 
been proposed. (Dahl,  Dijkstra and Hoare 1972). 
(Naur et al 1976). (Jackson 1975). (Halstead 1977). 
(Myers 1978). (Yordon and Constantine 1979). 
(Boehm 1981). (Agresti 1986). (Humphrey 1989). 
(Booch 1991). (Rumbaugh 1991). (Jacobson 1992).  
(Soley, Frankel and Parodi 2004). However, 
conventional software development methodologies 
have not solved yet a so-called combinatorial 
explosion problem, which is a fundamental problem 
since the study of software engineering started in 
1970s. Combinatorial explosion is caused when a 
new component is added to a developing system 
since component addition leads to combinatorially 
complicated modification in most parts of the 
system. 

The rational process model (RUP) is proposed to 
avoid this problem recently by repeating 
development process. (Jacobson, Booch and 
Rumbaugh, 1999). (Booch, Rumbaugh and Jacobson 
1999). (Rumbaugh,  Jacobson and Booch 1999). 
RUP divides a system into multiple subsystems. The 

most difficult subsystem among them is firstly 
developed in accordance with engineering 
disciplines starting from a business model and 
requirements and ending with test and development. 
When this subsystem is successfully completed, 
RUP moves to the following most difficult 
subsystem for development. As a result, RUP makes 
development feasibility clear at an early stage so that 
a project manager can control software development 
by giving correct judgments at each stage. RUP 
succeeds in raising the success rate of projects. RUP 
tries to decrease as much as possible opportunities of 
combinatorial explosion by iterative and incremental 
development. However, as it does not solve 
combinatorial explosion theoretically, RUP is still 
annoyed by the unsolved problem. 

The incrementally modular abstraction hierarchy 
(IMAH), which is based on homotopy and topology, 
is introduced in this paper. (Sieradski 1992). 
(Spanier 1996). (Hatcher 2002). (Kunii 2005). 
(Kunii 2006). (Ohmori 2006). IMAH avoids 
combinatorial explosion by adding invariants 
linearly while climbing down abstraction hierarchy, 
keeping invariants defined on higher abstract levels 
and adding linearly new invariants on the current 
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abstract level. RUP enforces developers to design 
and model a system using unified modeling 
language (UML) diagrams. With the progress of 
development, many components are added to the 
diagram step by step. However, inevitability of these 
components, for example why these components are 
necessary or satisfy requirements, is not clear. When 
designing a class diagram, it is hard to explain 
theoretically why we need to put a new class in the 
diagram, or why this class has to have an association 
link with another class. This theoretical ambiguity 
leads to repeated modification of classes and class 
links, sometimes endlessly, as the development 
advances. This is a basic reason why RUP cannot 
avoid the combinatorial explosion problem 
theoretically. 

In contrast, IMAH uses UML diagrams on a 
lower level in abstraction hierarchy. As IMAH 
provides theoretically fundamental properties for a 
class on higher abstract levels, the class has been 
already defined with necessary properties when it 
appears in a class diagram on a lower abstract level, 
which does not bring any modification of classes in 
the lower level.  

In this paper, the accounting system 
development is described as an example for showing 
how a complicated enterprise information system is 
developed by IMAH. The accounting system is a 
fundamental system for enterprise resource planning 
(ERP) and gains importance with introduction of the 
Sarbanes–Oxley Act of 2002 (SOX). (Ohmori 2005). 
The SOX requires accountabilities of initiating, 
authorizing, processing, and reporting of financial 
data. A Web-base system, which allows financial 
data to be directly entered on site, is the most 
suitable system for SOX environments. In this paper, 
IMAH disciplines are firstly explained using a 
simple accounting system and designing of a full-
scale Web-base accounting system is then described. 

2 INCREMENTALLY MODULAR 
ABSTRACTION HIERARCHY 

IMAH is based on the abstraction hierarchy in 
algebraic topology and consists of seven abstract 
levels.  
1) The homotopy level is the most abstract level in 

the hierarchy. On the homotopy level, the 
developing system is described using a fiber 
bundle. The fiber bundle defines the most 
fundamental spaces constituting the developing 
system. The relation of these spaces is also 
provided on this level. As homotopy is 
continuous changes of continuous functions, 

dynamic changes can be represented using 
homotopy. Conceptual progress, which is 
thought as dynamic changes from the original 
concept to the current one, is described using 
homotopy extension properties (HEP) or 
homotopy lifting properties (HLP). A simple 
accounting system is described using a fiber 
bundle and a Web-base accounting system, 
which is conceptual progress originated from 
the simple accounting system, is described by 
HEP or HLP.  

2) The set theoretical level is the following most 
abstract level. Elements consisting of the spaces 
defined on the above level are defined and 
incrementally added on this level. Logical 
operations are also available from this level. 

3) The topology space level is the third highest 
abstract level. Continuity and closeness are 
defined on this level. Topological equivalence is 
one of the most important invariants, which are 
defined on this level. As the accounting system 
has discrete spaces, strong or weak topology is 
used to describe these spaces. 

4) The adjunction space level is the middle 
abstract level. Dynamic changes are handled 
here. It occurs when two spaces are attached 
together or detached separately. The accounting 
system is the description of transactions, where 
entities such as products and cash are 
exchanged between two agents. When a 
transaction occurs, some entities are detached 
from one agent and attached to another agent. 
These dynamic changes are expressed using an 
attaching function. 

5) The cellular structure level is the third lowest 
abstract level. The physical structure of the 
system is defined here. Up to now, the 
designing system is conceptual and difficult to 
capture its physical structure. On this level, an 
element constituting a space is represented by a 
cellular structure, which is imaginary similar to 
embryos and constructed by n-dimensional 
cells. 

6) The presentation level is the following lowest 
abstract level. On this level, UML diagrams are 
used to represent the developing system. From 
this level, an accounting system is designed or 
modeled in the same way as RUP. However, as 
properties of classes have already been defined 
on the precedent abstract levels, UML diagrams 
are created almost automatically. This is the big 
difference with the traditional methodologies. 

7) The view level is the lowest abstract level and 
the most concrete level. On this level, the 
system is represented by program codes. If 
program codes are installed in the system, the 
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behavior of the developing system can be 
observed. 

3 DESIGNING AND MODELING 
OF AN SIMPLE ACCOUNTING 
SYSTEM 

3.1 The Homotopy Level 

A simple accounting system is the description of 
transactions in a company. A company buys parts 
and sells products. The difference of amount 
between buying and selling is profit or loss. When a 
transaction occurs, a journal voucher is issued. A 
journal voucher consists of a journal voucher 
number, header and details. IMAH maps these 
materials into a fiber bundle. A fiber bundle is 
defined mathematically as follows. 

Definition: A fiber bundle is a quadruple ξ = (E, 
B, F, p) consisting of a total space E, a base space 
B, a fiber F, and a bundle projection that is a 
continuous surjection called F-bundle p: E → B 
such that there exists an open covering Υ = {U} of B 
and, for each U ∈ Υ, a homeomorphism called a 
coordinate chart ϕU: U × F → p-1(U) exists such 
that the composite 

 
U × F  �  p-1(U) � U 

is the projection to the first factor U.  Thus the 
bundle projection p: E → B and the projection pB: B 
× F → B are locally equivalent.  The fiber over b ∈ 
B is defined to be equal to p-1(b), and we note that F 
is homeomorphic to p-1(b) for every b ∈ B, namely 
∀b ∈ B, F > p-1(b). 

The total space for the simple accounting system 
is of course the transaction space. A fiber bundle 
divides a total space into a base space and a fiber. As 
the base space is projection of the total space, the 
journal voucher frame space J, which is a frame to 
contain the description of a transaction, is 
determined as the base space. The inverse map of 
projection to an element of the base space represents 
a fiber. A journal voucher number space V, a header 
space H and a detail space D, which represent the 
description of a transaction, compose a fiber as 
shown in Figure 1.  

When a transaction occurs, the elements are 
obtained from these spaces and combined each 
other, where a space and an element are similar 
concepts to a class and an instance of an object 
oriented language. Therefore, a journal voucher 
frame is obtained from the space J. A journal 

voucher number, a header and a set of details are 
obtained from the spaces V, H and D. The journal 
voucher number, the header and the set of details are 
put in the journal voucher frame. 

 
Figure 1. The fiber bundle for the simple accounting 
system. 

In summary, the journal voucher frame space J, 
the journal voucher number space V, the header 
space H and the detail space D have been defined on 
this level. 

3.2 The Set Theoretical Level 

Elements of a space are defined on this level. The 
journal voucher frame space J consists of a set of 
journal voucher frames: J = {j1, j2,…., jn}, where ji is 
a journal voucher frame with three variables such 
that ji = (vi, hi, DSi) ∈ J, where vi, hi and DSi are a 
journal voucher number, a header and details. The 
journal voucher number space V consists of journal 
voucher numbers: V = {v1, v2,….,vs}, where vi is a 
journal voucher number with one variable of si ∈ ⊆. 
The header space consists of headers: H = {h1, 
h2,….,hs}, where hi is a header with three variables 
such that hi = (ti, ai, ri) ∈ H, where ti, ai and ri are 
application date, applicant name and remarks. The 
detail space consists of a set of details: D = {d1, 
d2,…..,dj}, where di is a detail with two variables 
such that di = (dii, dai), where dii, dai are an 
accounting item and amount. If amount is positive, 
the detail is debtor, otherwise it is creditor. 

In summary, the elements of each space: J = {j1, 
j2,…., jn}; V = {v1, v2,….,vs}; H = {h1, h2,….,hs} and 
D = {d1, d2,…..,dj} are defined on this level. The 
variables of each element are also defined on this 
level. The elements and variables are incrementally 
added on the basis of the invariants defined on the 
homotopy level. 

ϕ p 

A journal voucher 
frame space 

A detail 
space 

A header 
space 

A journal 
voucher 
space 
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3.3 The Topological Space Level 

The strongest topology is introduced for the simple 
accounting system. The strongest topology for the 
journal voucher space J is introduced as follows. (J, 
T) = {φ, j1, j2, j3,…, jn, (j1, j2), (j1, j3),…, (jn-1, 
jn),……., (j1, j2, j3,…, jn) }. Other spaces also have 
the strongest topology in the same way. 

Here is an example how the topological space is 
used. When the general ledger is required, it is 
necessary to collect journal vouchers with a given 
accounting item. This requirement is achieved by 
gathering fibers as shown in Figure 2. For example, 
if all transactions traded with account receivable are 
projected to a subset Js ⊂ (J, T), then the set of 
fibers of Js gives the voucher numbers, headers and 
details of all the journal vouches traded with account 
receivable. 

 
Figure 2. Fibers for account receivable. 

In summary, the topological space level defines 
topological spaces, for example (J, T) = {φ, j1, j2, 
j3,…, jn, (j1, j2), (j1, j3),…, (jn-1, jn),……., (j1, j2, j3,…, 
jn) },  on the basis of invariants defined by the 
previous abstract levels. 

3.4 The Adjunction Space Level 

When a transaction occurs, the space J is attached to 
the spaces V, H and D such that the journal voucher 
number, header and details are put in the journal 
voucher frame. This behavior is clearly represented 
on the adjunction space level, where related spaces 
are adjoined by an attaching function.  

Dynamic relations between the journal voucher 
frame space J and the detail space D are considered 
here as an example.  When a transaction occurs, the 
spaces J and D are adjoined by identifying 
transaction details. That is,  a journal voucher frame 
ji, is attached to a journal voucher numbar vi(si), a 
header hi(ti, ai, ri) and details di1(di i1, ai i1)  ….. 
dik(diik, aiik). This attachment is carried out by 

adjoining two spaces. Using an attaching function f, 
the adjunction space Df 

Df = D +f J = D + J / ∼ = D + J / (ji ∼ f(y) | ji ∈ J, 
∀y ∈ D0 ) 
is obtained by identifying each of transaction details 
y ∈ D0 | D0 ⊆ D with its image f(y), which is a 
journal voucher frame ∈ J, so that ji ∼ f (y) | ∀y ∈ 
D0.  The adjunction space Df shows the shape of the 
space D where D0 ⊆ D affected by this transaction is 
identical to the corresponding part of the space J. 

The attaching map f and the identification map g 
are: 

f: D0 → J | D0 ⊆ D,  
and  

g: D + J → Df  = D +f J = D + J / ∼  
= D + J / (ji ∼ f(y) | ji ∈ J, y ∈ D0).   

The attaching map shows how D0 ⊆ D is mapped 
into J. The identification map shows how relations 
of two spaces D and J change after mapping f.  
These relations are shown in Figure 3. 

 
Figure 3. The attaching function. 

The adjunction space level preserves the 
invariants defined at the homotopy level. The 
invariant showing that the journal voucher consists 
of three properties of a journal voucher number, a 
header and details is preserved by the attaching map 
f.  These spaces are attached by a disjoint union. 

As an attaching map is continuous, the reverse 
function is defined. It means that the system can 
return at the point before applying the attaching map. 
Therefore, cancellation of any transaction can be 
accepted at any time, which gives flexibility to 
system development. 

In summary, attaching maps from V, H and D to 
J are defined on the basis of invariants defined by 
the previous higher abstract levels. 

3.5 The Cellular Structure Level 

On this level, the physical structure is constructed 
using cells. At first, an element in each space is 
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j

Acc Item

Amount  Details 

The attaching map f 

An accounting system 

Acc Item 

Amount 

A voucher 

frame 

Detail 

The adjunction space J f 

The identification 

map g 

Detail

Transaction 

J + D 
A voucher 

frame 

Journal voucher 

frames 

Details 

 

ICEIS 2007 - International Conference on Enterprise Information Systems

440



 

transformed to an n-dimensional ball. A journal 
voucher number vi has one variable of an integer 
number. It is represented by Βsi

1. As the journal 
voucher number space V is disjoint unions of journal 
voucher numbers, it is represented by +iΒsi

1. A 
header hi and a detail di have three and two variables. 
These spaces H and D are represented by +iΒhi

3 and 
+iΒdi

2. A journal voucher frame ji is a container of 
these elements without variables, its space J 
becomes +iΒi

0.  
A n-dimensional closed ball is represented by 

disjoint unions of a (n-1)-dimensional open ball and 
a (n-1)-dimensional surface and (n-1)-dimensional 
closed balls such that 

Βn = intΒn + (Sn-1\ +j Β j
 n-1) +j Β j

 n-1. 
A smaller dimensional closed ball Β j

 k than the 
original ball is obtained by repeating this process. 
This ball is denoted by the following expression. 
     ∂n-k Βn = Β k. 

A journal voucher frame ji is attached to a 
journal voucher number vi, a header hi and details 
DSi. These attaching is described by the following 
equations. 

f1: ∂1Βsj
1 → Βj

0, or Βj
0 + f1 Βsj

1 /~. 
f2: ∂3Βhj

3 → Βj
0, or Βj

0 + f2 Β hj
3 /~. 

f3: +j ∂2Βdjj
2 → Βj

0, or Βj
0 +f3 (+j Βdjj

2)/~. 
Then, n-dimensional balls are transformed into 

cellular structures using a filtration. 
Definition: A filtration space is a sequence of cells 
to represent a topological space.  It is defined as 
follows.  For any topological space X, we can get a 
finite or infinite sequence of skeletons Xp, where p is 
an integer, such that 

X  = ∩p∈Z Xp 
X0 ⊆ X1 ⊆ …… ⊆ Xp …… ⊆ X. 

A skeleton Xp consists of cells, whose 
dimensions do not exceed n. A cell is a topological 
space, equivalent topologically to an n-dimensional 
open ball IntΒn, where n is an arbitrary integer. A 
sequence of skeletons is called filtration. If it is 
finite, it becomes a CW-space.  

Let’s consider details DSi. DSi is represented by 
+jΒdji

2 using open balls. A detail has an accounting 
item and amount as its variables. It also needs an 
index to be uniquely identified. These entities are 
used as a skeleton Xdetail

0 of DSi. 
Xdetail

0 ={edid
0

1 , .., edid
0

k, eitem
0

1 , .., eitem
0

k , eamount
0
1 

, .., eamout
0
k }. 

For the skeleton Xdetail
1, every two entities among 

index, accounting item and amount are attached 
together via 1-dimensional cells as follows. 

Xdetail
1 ={Xdetail

0, ediditem
1

1 , .., ediditem
1

k, eitemamount
0
1 , 

.., eitemamount
0
k , eamoundidt

0
1 , .., eamoutdid

0
k | f1: ∂ediditem

1
i 

→ edid
0
i, f2: ∂ediditem

1
i → eitem

0
i, f3: ∂eitemamount

1
i → 

eitem
0
i, f4: ∂eitemamount

1
i → eamount

0
i, f5: ∂eamountdid

1
i → 

eamount
0
i, f6: ∂eamountdid

1
i → edid

0
i,}. 

The keleton Xdetail
2 is also obtained as follows. 

Xdetail
 = Xdetail

2 ={Xdetail
1, edetail

2
1 , .., edetail

2
k | f1: 

∂edetail
2
i → ediditem

1
i, f2: ∂edetail

2
i → eitemamount

0
i, f3: 

∂edetail
2
i → eamoutdid

0
i}. 

In the same way, a journal voucher number vi 
and a header hi are obtained. These are attached to a 
journal voucher frame ji as shown in figure 4. 

 
Figure 4. The cellular structures for the simple 
accounting system. 

In summary, the cellular structures of elements 
for the spaces J, V, H and D are defined while 
preserving invariants defined on the previous higher 
levels. 

3.5 The Presentation Level 

The journal voucher frame ji ∈ J, the journal 
voucher number vi ∈ J, the header hi ∈ J, the details 
DSi ⊂ D constituting a transaction have been 
represented as cellular structures Xframe, Xnumber, 
Xheader and Xdetail on the cellular structure level. 
These cellular structures are transformed into UML 
diagrams on the presentation level as shown in 
Figure 5.  Each cellular structure is represented as a 
class such that Xframe is represented as class 
VoucherFame, with stereo type entity, which 
becomes an entity been of Enterprise Java Beans 
(EJB) on the next view level. The elements of a 0-
dimentional skeleton are transformed into instant 
variables. The attaching function between two cells 
is transformed into an association links. Multiplicity 
of an association link reflects the number of cells 
connected by the attaching function. In a cellular 
structure, an index is used in a 0-dimentional 
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skeleton. It does not appear in its class. However, it 
becomes the primary key when a class is 
transformed into the database table using object-
relational mapping on the next view level. 

In summary, a space defined on the homotopy 
level is transformed into a class with stereotype 
entity on this level. An element defined on the set 
theoretical level is transformed into a cell on the 
cellular structure level and into an instance on this 
level. A variable defined on the set theoretical level 
is transformed into a 0-dimentional cell on the 
cellular structure level and into an instance variable 
on this level. An attaching function defined on the 
adjunction space level is transformed into an 
association link connecting two classes.  

3.6 The View Level 

The simple accounting system includes only classes 
with stereo type entity. These classes are 
automatically transformed into entity beans and 
database tables by AndroMDA. AndroMDA is a 
generator framework that adheres to the model 
driven architecture (MDA) paradigm. UML 
diagrams are transformed into deployable 
components for J2EE, Spring or .NET platform.  

Any business logic is not included in the simple 
accounting system. Only, creating, reading, updating 
and deleting are necessary for the database. Java 
server pages (JSP) realizing these functions are also 
automatically generated by AndroMDA. 

In summary, as everything which is necessary as 
an application program in EJB environment is 

automatically generated by AndroMDA, invarinats 
defined on the previous levels are preserved here 
and components required for deploying the system is 
incrementally added on this level. 

4 DESIGNING AND MODELING 
OF A FULL-SCALE WEB-BASE 
ACCOUNTING SYSTEM 

4.1 The Homotopy Level 

A full-scale accounting system is provided by 
adding functions to the simple accounting system. A 
basic accounting system is obtained by adding 
general ledgers to the simple accounting system. An 
enterprise accounting system is equipped with 
financial statements to the basic accounting system. 
A full-scale Web-base accounting system with 
internal auditing functions is obtained by adding a 
business process model to the enterprise accounting 
system in Web-base environment. The conceptual 
progress from the simple accounting system to the 
full-scale Web-base accounting system is explained 
by HLP. HLP is defined mathematically as follows. 

The function p: E → B has the homotopy lifting 
property (HLP) for a space X if, for each continuous 
function k: X → E, each homotopy H: X � I → B of 
p⎣k (H⎣i0 = p⎣k) has a lifting to a homotopy K: X � I 
→ E of k (K⎣i0 = k) and K is constant on {x} � I 
whenever H is constant on {x} � I. 

If space X represents conceptual progress and E 
and B are a total space representing transactions and 
a base space representing journal vouchers as shown 
in Figure 6, the conceptual progress to the full-scale 
accounting system is considered as homotopical 
changes originated from the simple accounting 
system. 

Therefore, the conceptual progress preserves 
invariants of the simple accounting system. For the 
full-scale Web-base accounting system, the journal 
voucher frame space J, the journal voucher number 
space V, the header space H and the detail space D 
are preserved. The invariants for conceptual progress 
part are incrementally added to the original part. 

The basic accounting system, which enhances 
the simple accounting system by adding the function 
of the general ledger, is considered as the first 
conceptual progress. The general ledger is a 
permanent summary of all journals. The general 
ledger is sometimes divided into main accounting 
items, such as cash, account receivable and account 
payable ledgers. The general ledger is created from a 
set of journal vouchers. It is possible to create it 
whenever a journal voucher is processed or only 

 
Figure 5. The class diagram for the simple accounting 
system. 
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when the reference of the general ledger is requested. 
The system is designed by the latter since it is 
expected the former takes time when the system 
becomes a full-scale system.  

 

 
Figure 6. The homotopy lifting properties. 

To fulfill the above requirements, the basic 
accounting system is designed as follows. It adds the 
general ledger space and the processing list space to 
the spaces defined for the simple accounting system 
as shown in Figure 7. The general ledgers are 
generated on the general ledger space. The 
processing list space is divided into two subspaces: 
waiting and processed. Journal vouchers which have 
not been recorded yet in the general ledger are kept 
in the waiting space. When a journal voucher is 
recorded, it is moved to the processed space. The 
basic accounting system has two main procedures: 
1) processing of a journal voucher, which carries out 
the same process as in the accounting system as well 
as saves it in the waiting space; 2) updating of the 
general ledger, which moves journal vouches from 
the waiting space to the processed space and add 

amount recorded in the journal voucher to the 
current total amount of the corresponding 
accounting item as shown in Figure 8. 

 
Figure 8. General ledger updating process. 

4.2 The Presentation Level 

After designing the basic accounting system on the 
homotopy level, it goes to designing on the lower 
abstract levels in the same way as the simple 
accounting system. The results on the presentation 
level are shown in Figure 9. In the simple 
accounting system, all classes have stereo type entity. 
However, in the basic accounting system, processing 
of the general ledger requires business logic. A class 
with business logic has stereo type service. This 
class becomes a session bean of EJB. In the Figure 
10, GeneralLegerHandler is equipped for this 
purpose. The method getGeneralLedger() of class 
GeneralLegerHandler updates the general ledger. 
The contents of this method, which is business logic 
of the basic accounting system, is not automatically 
generated by AndroMDA, a programmer has to 
supply its code. This program development is also 
carried out by abstraction hierarchy. A finite 
machine, where equivalent finite machines are 
homotopically equivalent, is defined on the 
homotopy level. As the explanation of this 
mechanism needs more space, it will be described in 
another paper.  

After completing the development of the basic 
accounting system, the enterprise accounting system 
is developed in the same way starting from the 
homotopy level and ending with the view level. The 
full-scale accounting system is finally completed by 
repeating this process. This process is similar to 
RUP. However, RUP repeats it between the 
presentation and view levels, while IMAH repeats it 
between the homotopy and view levels with 
theoretical basis. 

 
Figure 7. The spaces for the basic accounting system. 
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Figure 9. The class diagram for the basic accounting 
system. 

4 CONCLUSIONS 

IMAH is applied to the development of accounting 
systems ranging from the simple accounting system 
to the full-scale Web-base accounting system. 
IMAH keeps invariants defined on higher abstract 
levels while climbing down the abstraction hierarchy. 
Using the simple accounting system, it is described 
how invariants are incrementally added to the 
developing system. The incremental invariant 
addition contributes to avoiding the combinatorial 
explosion problem.  

The simple accounting system is enhanced to the 
basic accounting system and the full-scale Web-base 
accounting system. The conceptual progress also 
keeps invariants defined in the original system. 
IMAH is considered as the conceptual progress of 
RUP since both methodologies are performed by 
iterative process.  However, IMAH is different from 
RUP since IMAH has theoretical background. 
Homotopy, fiber bundles, homotopy lifting 
properties, homotopy extension properties, topology, 
attaching functions and cellular structures give 
enough theoretical background to software 
engineering. 
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