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Abstract: Exception handling during the execution of workflow processes is a frequently addressed topic in the 
literature. Exception handling policies describe the desired response to exception events with respect to the 
current state of the process instance in execution. In this paper, we present insights into the definition and 
verification of such policies for handling asynchronous, expected exceptions. In particular, we demonstrate 
that the definition of exception handling policies is not a trivial exercise in the context of complex 
processes, and, while different approaches to defining and enforcing exception handling policies have been 
proposed, the issue of verification of the policies has not yet been addressed. The main contribution of this 
paper is a set of correctness criteria which we envisage could form the foundation of a complete verification 
solution for exception handling policies. 

1 INTRODUCTION 

Workflow technology is ideal for supporting highly 
repetitive and predictable processes. However, many 
processes are faced with the need to deal with 
exceptional situations that may arise during their 
execution (Casati 1999). Workflows may be affected 
by different types of exceptions: system failures such 
as hardware and software crashes and logical 
failures or exceptions. Logical failures refer to 
application-specific exceptional events for which the 
control and data flow of a workflow is no longer 
adequate for the process instance (Müller, et al 
2004). Many logical failures may be unexpected, and 
these must be handled manually on an ad hoc basis 
by knowledge workers. However, many exceptions 
are expected – the inconsistencies between the 
business process in the real world and its 
corresponding workflow representation can be 
anticipated, even if they might not be frequent 
(Casati and Pozzi 1999). That is, workflows describe 
the ‘normal behaviour’ (forming the ‘core’) of a 
process whereas expected exceptions model the 
‘occasional behaviour’.   

Expected exceptions can be synchronous with 
respect to the flow of work, but most often they are 
asynchronous – that is, they can be raised at an 
arbitrary stage of the process, potentially during a 
long-duration activity (Casati and Pozzi 1999). 

Cancellations of customer orders and car accidents 
during a rental process are examples of 
asynchronous events.   

In some applications, there may be one standard 
desired response to the occurrence of such an 
exception event, regardless of the execution state of 
the underlying process instance. However, in most 
real world scenarios, the required reaction to these 
events depends on the data associated with the 
relevant process instance (that is, its execution state).  

As discussed in the next section, a myriad of 
exception handling approaches exist, each with its 
own expressivity, syntax and visual representation. 
However, regardless of the approach that is adopted, 
exception handling, in essence, still constitutes the 
enforcement of a set of exception handling rules 
defined in terms of the state of the process instance.  

Exceptional situations are usually very 
complicated (Luo, et al 2000) and we argue that it is 
very easy to define policies that may produce 
unintended execution behaviour. However, while 
most authors are fast to claim that exception 
handling is complex, and it is well known that the 
analysis of rules in general is non-trivial, little 
attention has been paid to the issue of verification of 
these rules. This issue is glossed over in the 
literature, so we attempt to address it in this paper. 

The focus of this paper is on the definition and 
verification of policies for handling expected 
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exceptions that are based on external events that 
occur asynchronously with respect to the process. 
The policies make reference to the ‘state’ of the 
process instance, and, while there are multiple 
dimensions to this notion, we argue that two of these 
are common to many and indeed completely satisfy 
a large proportion of exception handling cases – the 
position of the process instance with respect to the 
process model (i.e. the currently executing 
activities), and the values of associated case data. 
And regardless of the particular exception handling 
approach that is adopted, this business logic must be 
captured and then processed at runtime. 

Since this logic relates directly to the business 
itself, validation of the exception handling policies is 
largely a semantic issue to be performed by a 
domain expert and thus cannot be automated. 
However, we argue that there are some common 
principles of a generic nature that should be 
observed in order to perform the first step towards 
verification of the rules in an automated manner.   

In the following sections, we summarize the 
related work, then present an introduction to the 
basic principles of workflow specification and 
execution. We introduce the notion of an exception 
handling policy and illustrate the concept with a 
simple but meaningful example. We then describe a 
set of generic properties that should be satisfied in 
order to ensure the ‘correctness’ of the policy. We 
conclude with an outlook for future research. 

2 RELATED WORK 

Exception handling is not a new concept, and has 
attracted considerable attention in the literature. 
Many approaches for flexible process enforcement 
have been proposed. The first approach is to encode 
the entire workflow process as a set of rules, thereby 
ensuring complete flexibility. For example (Bae, et 
al 2004) and (Kappel, et al 1997) present approaches 
where the process is described through a set of 
Event-Condition-Action (ECA) rules (c.f. (Widom 
and Ceri 1996)). However, while processes encoded 
through rules enable all predefined behavior to be 
enforced, it is well known that large sets of rules can 
interact in unknown ways (e.g. (Widom and Ceri 
1996)). The importance of ensuring correctness of 
the process model before deployment has been 
emphasized in (Sadiq and Orlowska 2000b). 

As already noted, this paper primarily addresses 
the issue of policy definition for handling expected 
exceptions that are based on external events that 
occur asynchronously with respect to the process. 
(Readers are referred to (Mourão and Antunes 2004) 

for a framework to support ad hoc interventions 
when dealing with unexpected exceptions.) Ess-
entially, there are two approaches for incorporating 
exceptional cases into a process model – ‘exception 
rules’ and ‘exception workflows’ (Sadiq and 
Orlowska 2000a). The first approach is to implement 
exceptions through an explicit exception rule base. 
Each exception is modelled by an ECA rule, where 
the event describes the occurrence of a potentially 
exceptional situation, the condition verifies that the 
occurred event actually corresponds to an exception 
that must be managed, and the action reacts to the 
exception (Casati 1999). A different approach is 
presented in (Müller, et al 2004) where the core pro-
cess is dynamically modified at run-time based on a 
set of rules – when exceptional events occur during 
process execution, the AgentWork system identifies 
the workflow instances to be adapted, determines the 
change operations to be applied, and automatically 
performs the change for those instances. 

Alternatively, exceptions can be modelled as 
workflow processes themselves (Sadiq and 
Orlowska 2000a). This approach is taken in (Adams, 
et al 2005), which introduces the notion of Worklets, 
which are ‘an extensible repertoire of self-contained 
sub-processes and associated selection and exception 
handling rules’. Choosing the most applicable 
worklet to be executed in response to an exception is 
achieved by evaluating conditions that are associated 
with each worklet. These conditions are defined 
using a combination of current data attribute values 
and the current state of each of the worklets that 
comprise the process instance. It was noted that the 
set of states for a worklet-enabled process may be 
deduced by mining the process log file (c.f. Aalst, et 
al 2003) but that full exploration of the specification 
of such conditions is yet to be completed. 

Another approach is to consider the exception 
handling processes as sub-processes within the core 
process. In the ‘event node approach’ discussed in 
(Casati 1999), the workflow model includes a partic-
ular type of node, called an event node, which is 
able to observe asynchronous events and to activate 
its successor in the workflow graph when the event 
is detected. However, once again, it was noted that 
upon observation of an event, conditions ‘can be 
used to select, among several exception management 
alternatives, the most adequate to deal with the 
current workflow state’ (Casati, et al 1999). The 
complexity of defining such conditions was briefly 
emphasised in (Carter and Orlowska 2007) but the 
issue of definition and verification of exception 
handling policies has not yet received adequate 
attention in the literature.  
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3 BACKGROUND OF 
WORKFLOW SPECIFICATION 
AND EXECUTION 

Before we discuss exception handling, let us first 
briefly summarize the basic principles of workflow 
specification and execution that are required for the 
subsequent discussion. A workflow management 
system (WFMS) is a system that completely defines, 
manages, and executes workflows. Before a 
workflow process can be enacted, it must be 
specified to reflect the process requirements. The 
process model describes the order of execution of 
tasks according to the business policies and 
resource/temporal constraints. Each task (activity) is 
a logical unit of work within a process that may be 
either manual or automated but performed by a 
single workflow participant.  

The workflow model (W) is defined through a 
directed acyclic graph (DAG) consisting of nodes 
(N) and flows (F). Flows represent the control flow 
of the workflow. Thus, W = <N, F> is a directed 
graph where N is a finite set of nodes, and F, F ⊆ N 
× N, is a flow relation. Nodes are classified into 
tasks (T) and coordinators (O), where O ∪ T  = N 
and O ∩ T = ∅. Furthermore, we assume that the 
model is structurally correct (free from deadlocks 
and potential lack of synchronisation) according to 
the correctness criteria proposed in (Sadiq and 
Orlowska 2000b) for the purposes of this paper.  

In this paper, we will adopt graphical process 
modelling notation whereby rectangles represent 
tasks, and forks and synchronizers (concurrent 
branching constructs), and ovals represent choices 
and merges (alternative branching constructs). 

Let a workflow graph W = <N, F> be given.  
A Process Instance (PI) is a particular 

occurrence of the process. Let IW = {iW
1, iW

2, …, iW
g} 

represent the set of all instances of the process W. 
Note that for a commercial WFMS, g is likely to be 
in the order of hundreds of thousands.  

For readability and simplicity of presentation, we 
consider one process so omit W as an index for all 
terms defined below (without loss of generality). 

Each process instance is associated with three 
types of data. During process execution, the WFMS 
maintains internal Control Data that includes the 
internal state information associated with the 
execution of activities in the process. There are also 
two types of data that flow between activities. 
Workflow Application Data is manipulated directly 
by the invoked applications. Workflow Relevant 
Data (also known as ‘Case Data’), is the only type 
of application data accessible to the WFMS, and can 
be thought of as a set of global variables. 

Data Items. Let D be the set of data variables 
{d1, d2, …, dq} that are required as input to one or 
more nodes in T in order to execute instances of the 
process described by W. We refer to dk, k = 1…q, as 
the Data Items for W.  

Data Values. Corresponding to each data item dk 
∈ D is a set Vk , k = 1…q called the Data Values for 
dk. and denoted values(dk). The data values are 
arbitrary, nonempty finite or countably infinite sets. 
Let V = V1 ∪ V2 ∪ … ∪ Vn. 

The value for each data item d ∈ D can be given 
at process instantiation or generated during process 
execution. Let Dn ⊆ D represent the set of data items 
for which values are produced by node n ∈ N. 
(Aside: In practice, all nodes that produce data 
values will be activities.) 

Time. A discrete time base is assumed such that t 
∈ ℑ denotes a time point where ℑ is isomorphic with 
the set of natural numbers. 

Case Data.  Let Zi(t) ⊂ D × V be the workflow 
case data for PI, i ∈ I at time t such that ∀ (dk, vj) ∈ 
Zi(t), vj ∈ (values(dk) ∪ NULL), and ∀ (dk, vj), (dl, 
vm) ∈ Zi(t), dk = dl → vj = vm. The data values can be 
given at process instantiation or generated during 
process execution. The NULL value indicates that 
the data value has not (yet) been generated for a data 
item for i at time t. 

Data Condition. Let C be the set of first order 
predicate expressions defined on the case data. That 
is,∀ c ∈ C, i ∈ I, t ∈ ℑ, c(Zi(t)) ∈ {True, False}. We 
refer to each c ∈ C as a Data Condition.  Data con-
ditions may reference one or more data items/values.  

Generally, there will be minor variations in the 
way in which different PIs are to be enacted. 
Specifically, not all of the activities in the process 
model will necessarily be relevant for every PI. 
Choice coordinators allow these variations to be 
represented in the same process model – a data con-
dition c ∈ C is associated with the outgoing flow of 
each choice node, and the associated flow is taken 
for a process instance i ∈ I if and only if c(Zi(t)) = 
True at the time t at which i reaches the choice 
construct during its execution. 

Process Instance Type (PIT). We call a class of 
PIs that execute the same set of tasks during their 
complete execution a Process Instance Type (PIT).  
Let {I1, I2, …, Ir} be a partition of I that represents 
the set of PITs associated with W. Corresponding to 
each PIT Ik, ∀ k = 1…r, is a set of data conditions Ck 
⊂ C that are associated with the choice paths taken 
by all instances i ∈ Ik. This set of data conditions 
uniquely identifies each PIT.  

Since case data may be either given at process 
instantiation or generated during process execution, 
it is possible that at time t during the execution of an 
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instance i ∈ I, the PIT of i is not yet determined. 
However, it must have been determined prior to 
completion of the process. Also, at time t during the 
execution of a WFMS (and indeed, during the 
lifetime of the system), it is possible that no PIs 
corresponding with one or more PITs have (yet) 
been facilitated, because one or more choice paths 
have not (yet) been taken – this depends entirely on 
the case data associated with the PIs that have been 
enacted by the system. 

Process Instance Graph (PIG). Corresponding to 
each PIT Ik is a workflow graph Wk = <Nk, Fk> 
where Nk ⊆ N, Fk ⊆ Nk × Nk called the Process 
Instance Graph (PIG) for Ik. This graph Wk is a 
structurally correct workflow graph that represents 
the exact process that is performed by all instances 
of the PIT Ik. Therefore, choice coordinators are not 
present in any PIG (and since the models are 
assumed to be structurally correct according to the 
criteria presented in (Sadiq and Orlowska 2000b), 
merge coordinators are also excluded from PIGs). 
The set of PIGs is known at ‘design time’, prior to 
the introduction of any process instances into the 
WFMS. The original process model W can be 
reconstructed from all PIGs {W1, W2, … Wr} and the 
data conditions {C1, C2, … Cr} associated with each 
of the corresponding instance types {I1, I2, … Ir}. 
There are two PIGs in the workflow graph depicted 
in Figure 1. The tasks associated with the PIG 
identified through condition c1 are shaded. 

Due to parallel branching structures, multiple 
tasks may be executing concurrently for any PI. 
Information about currently executing tasks is 
maintained as part of the Control Data. 

Process Instance Position (PIP). Let P = {T1, T2, 
…, Ts} where ∀ b = 1…s, Tb ⊂ T, be the set of sets 
of tasks that may be executing concurrently at any 
point in time if the correct semantics of all workflow 
modeling constructs in W are observed. We call P 
the set of Process Instance Positions (PIPs) for W. 
Note that since each PI i ∈ I executes a single PIG 
Wk, it follows that Tb ⊆ Nk, ∀ b = 1…s. Furthermore, 
the flow relation Fk enforces ordering constraints 
between all nodes n ∈ Nk, so ∀ n1, n2 ∈ Tb, n1 is not 
reachable from n2 through Fk, and vice versa. 

Clearly, not every combination of tasks is a PIP. 
For example, for the process model depicted in 
Figure 1, the PIPs are: (1), (2, 4), (3, 4), (2, 5, 6), (2, 
5, 7), (2, 8), (3, 5, 6), (3, 5, 7), (3, 8), (2, 9), (2, 10), 
(3, 9), (3, 10) and (11). Note that the set of tasks (2, 
4, 9) is not a PIP since these tasks will never be 
active at the same time due to the choice construct in 
the process model. 

Figure 1: Example Process Model for Discussion. 

e say that a node n ∈ N is prior to (‘<’) a PIP P 
∈ P if n is prior to any node m ∈ P, that is, (n, m) ∈ 
F* where F* is the transitive closure of F.  

LetΤ be a function: I × ℑ → P that returns the 
set of currently executing tasks P ∈ P for process 
instance i ∈ I at time t ∈ ℑ.  

Process Instance State (‘State’). We will refer 
to the combination of PIP and case data for a PI i ∈ I 
at time t as its state. 

With this background, we now introduce the 
concept of exception handling policies. 

4 EXCEPTION HANDLING 
POLICIES 

Exception handling behavior depends on the 
underlying business requirements. Due to the costs 
associated with manual exception handling, this 
behaviour should be automated whenever possible. 
Before the system can automatically react to 
exception events, the desired exception handling 
behaviour must first be captured and encoded in a 
format that the system can interpret (similar to a 
process model for the core process). Each exception 
event has an associated ‘Exception Handling Policy’ 
that describes the desired reaction if the exception 
event is observed while the PI is in various 
execution states. In this section, we formally 
introduce the notion of an exception handling policy.  

Assume the workflow graph W as introduced in 
the previous section is given. All introduced 
concepts correspond to W, unless otherwise noted.  

Events. Let E be the set of all Events related to W 
for which exception handling policies are to be 
defined.  

Actions. Let A be the set of all Actions to be 
performed in order to ‘handle’ each of the events e 
∈ E if and when they occur, as dictated by the 
business requirements. Each of these actions can be 
rep-resented through a process model, but definition 
of these models is outside the scope of this paper.  
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For a given event e ∈ E, an Exception Handling 
policy associates an action a ∈ A with each PI state 
(that is, combination of PIP and the case data).  

Exception Handling Policy. Let eΔ : Se → A be a 
function where Se ⊆ P  × C. We call eΔ the Exception 
Handling Policy (‘Policy’) for each event e ∈ E. 
Each Policy Rule (‘PR’) for each e ∈ E identifies an 
action a ∈ A to be performed (P, c) → a iff e is 
observed at time t during the execution of PI i 
whenΤ (i, t) = P and c(Zi(t)) = True.  

Note that ∀ (P, c) ∈ Se, (P, c) represents a set of 
process instance states. We say that a data condition 
c∈ C is ‘associated with’ a PIP P ∈ P iff (P, c) ∈ Se. 

When an exception event e is observed during the 
execution of a process instance i at time t, the system 
must retrieve the relevant exception handling 
policy eΔ . Then, a query must be executed on the 
control data to determine the current PIP of i, that is, 
P = Τ (i, t), and then to retrieve the set of PRs for P 
from the policy. If there is one PR for P, the 
associated action is to be performed. If there are 
multiple PRs for P, each data condition associated 
with P is to be evaluated against the case data for i 
until a satisfied condition is found, at which point 
the action associated with the satisfied condition is 
to be performed.  

5 EXAMPLE 

We now illustrate the notion of an event handling 
policy with a simple but meaningful example. 
Consider the ‘just in time’ ordering process for 
computer systems, depicted in Figure 2. (Note that 
tasks are numbered for reference purposes only.) 

 Consider that e ∈ E represents a cancellation of 
the order. The process has one data item: Type, such 
that values(Type) = {‘A’, ‘C’}, that represent an 
account purchase and a credit card purchase, 
respectively. The value for Type is given at process 
instantiation (i.e. it comes with the order). Two data 
conditions are relevant: c1: Type = ‘A’, c2: Type = 
‘C’. (We assume here that the account and credit 
card debits are approved for the sake of illustration.) 

The business would like to enforce that the 
process can only be cancelled if the assembly of the 
system has not yet started, because they are unable 

to return goods once the packaging has been opened. 
If cancelled before that point, the core process 
should be halted, the hardware and software 
procurement semantically compensated for (if 
applicable), and the payment refunded – that is, 
either an account credit or a credit card refund 
issued. If received after this point, the cancellation is 
to be rejected. The policy for e could thus be defined 
as presented in Table 1. Note that the set of actions 
includes the following: A1: Issue Account Credit, 
A2: Issue Credit Card Refund, and A3: Reject 
Cancellation. Each row of the table represents a PR. 

Table 1: Example Policy for Order Cancellation. 
 

PIP Data Conditions Action 
2 Type = ‘A’ Cancel 2 
3 Type = ‘A’ Cancel/Compensate 3 
4 Type = ‘C’ Cancel/Compensate 4 
5 Type = ‘A’ Cancel 5 and Perform A1 
5 Type = ‘C’ Cancel 5 and Perform A2 
6, 7 Type = ‘A’ Cancel/Compensate 6, 

Cancel/Compensate 7, and 
Perform A1 

6, 7 Type = ‘C’ Cancel/Compensate 6, 
Cancel/Compensate 7, and 
Perform A2 

6, 8 Type = ‘A’ or ‘C’ Peform A3 
9 Type = ‘A’ or ‘C’ Peform A3 
10 Type = ‘A’ or ‘C’ Peform A3 

 
Note that the control data must be inspected at a 

finer level to determine how much compensation is 
required (if any) for tasks, depending on the progress 
that has been made through their execution at the 
time the exception occurs. Now let us consider the 
verification of the defined policies. 

6 CORRECTNESS OF 
EXCEPTION HANDLING 
POLICIES 

Verification of process models prior to deployment 
is essential in order to detect potentially costly 
erroneous execution situations before they arise 
(Sadiq and Orlowska 2000b). Due to the 

Choice
1. Receive 

Order

5. 
Decompose 

Order

9. Install 
Software

10. Pack and 
Dispatch

4. Debit 
Credit Card

Merge

c2

2. Approve 3. Debit 
Account

c 1

7. Procure 
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6. Procure 
Software

8. Assemble 
System

Figure 2: Ordering Process Example. 

ON CORRECTNESS CRITERIA FOR WORKFLOW

319



 

combinatorial explosion of PITs, it is inherently 
difficult to reason about the correctness of complex 
processes.  

Just as it is possible to define processes that are 
erroneous according to specific correctness criteria, 
it is possible to define policies that can be 
determined to be erroneous prior to system 
deployment. And although exception handling is a 
peripheral issue to the enactment of the core process, 
it is equally important that exception handling 
policies be verified. Due to the infrequency of 
exception handling behaviour, it is perhaps even 
more important to verify the policies, because many 
months or even years may pass before particular 
situations arise for the errors to be detected. In this 
section, we introduce and describe the correctness 
criteria for exception handling policies.  

Since the exception handling logic relates 
directly to the business itself, validation of the 
exception handling policies is largely a semantic 
issue to be performed by a domain expert and thus 
cannot be automated. However, we argue that there 
are two essential and two desirable properties of 
‘correct’ exception handling policies. These generic 
properties for the correctness of a policy definition 
can be automatically verified as a precursor to 
semantic validation. 

The essential requirements are 
• Deterministic Behaviour, and 
• Data Availability. 
The desirable properties are 
• Completeness, and 
• No Redundant Rules. 
While the expressiveness of the languages used 

to describe the policies and the particular modeled 
application domains may differ, we argue that these 
requirements should be observed. To our 
knowledge, no previous work has focused on the 
verification of the policies in this way. We will now 
introduce each of the correctness criterion in turn.  

6.1 Deterministic Behaviour 

The first correctness criterion for exception handling 
policies is that they must produce deterministic 
exception handling behaviour such that if an 
exception event is observed, the behaviour of the 
system can be determined based on the PIP and case 
data of the associated PI only.  

Practically, this means that in a policy for a 
given event, the set of data conditions associated 
with each PIP (that is, across all PRs) must be 
mutually exclusive. That is,  ∀ e ∈ E, P ∈ P, c1 ∈ C, 
c2 ∈ C such that (P, c1) ∈ Se and (P, c2) ∈ Se, if ∃ i 
∈ I,  t ∈ ℑ such thatΤ (i, t) = P and c1(Zi(t)) = True 
and c2(Zi(t)) = True then c1 = c2.  

For example, if <2, Type = ‘A’, Cancel Approval 
Request> is a PR then <2, Type = ‘A’, Perform A3> 
is not a valid PR. If multiple actions are to be 
performed then they should be combined in one PR. 

The effect on system behaviour resulting from a 
violation of this property depends on the specific 
implementation. In the best case scenario, the entire 
set of ‘triggered’ actions will be performed each 
time. Another possibility is that only one action is 
performed, but it is the same action each time. 
Whether this behaviour is correct is debateable, and 
the policy definition is not an accurate source of 
process knowledge in any case, but consistent 
behaviour would be observed. In the worst case, one 
action could be arbitrarily selected each time, which 
would result in inconsistent system behaviour that 
may remain undetected indefinitely. Another 
possibility is complete process or system suspension. 

6.2 Data Availability 

Data availability is a requirement for correct process 
execution. The problems associated with ‘missing 
data’ were discussed in (Sadiq et al 2004) in the 
context of execution of the ‘core’ business process. 
Specifically, it was noted that a data item (value) 
must be produced in a node of the graph prior to 
each node (that is, an activity or a choice node) that 
requires that data item (value) in order to execute. 

This natural requirement extends to exception 
handling. During execution, data conditions must be 
evaluated only to resolve conflicts in order to 
determine which exception handling action to 
perform if multiple actions are defined for one PIP. 
Therefore, for any such PIPs, the data that is 
required in order to evaluate all associated data 
conditions need not be given at process instant-
iation, but must be generated during the execution of 
the process by the time the PI reaches that PIP.  

That is, data availability requires that ∀ e ∈ E,∀ 
(P, c) ∈ Se where P ∈ P, c ∈ C, the values for all 
data items referenced in c must be generated in a 
node that is prior to P. Therefore, the following must 
hold if all required data is available during exception 
handling: ∀ e ∈ E, ∀ (P, c) ∈ Se where P ∈ P, c ∈ 
C, ∀ d ∈ D such that d is referenced in c, ∃ n ∈ N 
such that d ∈ Dn

 and ∃ m ∈ P such that n < m. 
In our example, the only data item referenced in 

the policy rules is Type and its value is given at 
process instantiation, so all data is available. 

The consequences of unavailable data depend on 
the implementation. If the values are ‘NULL’ for all 
items on instantiation (as implied in this paper), then 
unanticipated condition evaluation results may result 
in incorrect exception handling. However, if the 
actual data items themselves are created during 
execution, system suspension is a likely outcome. 
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6.3 Completeness 

On occurrence of a particular event e ∈ E during the 
execution of a PI, eΔ is consulted to determine the 
exception handling action to be performed for the PI, 
according to its current state. However, there may be 
some application scenarios whereby there are no 
actions to be performed on observation of an event 
for particular states of the PI in execution. It may be 
natural to think that no PRs should be defined for 
these states. 

However, we argue that a thorough consideration 
of all possible states for a PI during the definition of 
exception handling policies is a complex task. It is 
therefore plausible and perhaps even likely that 
process designers may inadvertently omit one or 
more states when defining policies. A case could 
thus be made for requiring the definition of a PR for 
all such states with a corresponding action of ‘No 
Action’, in order to make it explicit that all states 
were indeed considered during the definition of the 
policy but that exception handling behaviour is not 
required in particular situations. This would help to 
ensure that the exception handling policies are an 
accurate and complete source of ‘process 
knowledge’, making it easier to understand and 
ultimately maintain the policies.  

We therefore propose that such practices be 
recommended. However, while implementation-
specific issues are outside the scope of this paper, it 
should be noted that it is possible to design the 
system such that an ‘incomplete’ policy neither 
suspends nor produces abnormal process or system 
execution, and so it is only a desirable, not critical, 
requirement that the policies are complete.  

In order to ensure that the policies are complete, 
the following correctness criterion must hold: ∀ e ∈ 
E, i ∈ I, t ∈ ℑ, ∃ (P, c) ∈ Se such that c ∈ C, P ∈ P, 
such thatΤ (i, t) = P and c (Zi(t)) = True. 

In our example, an action is required to be 
performed on observation of the cancellation event, 
regardless of the PI state for the order. The example 
policy, as presented in Table 1, is complete. 

6.4 No Redundant Policy Rules 

Ultimately, the main reason for the definition of 
exception handling policies is to facilitate their 
automatic enforcement. The ‘complexity’ of the 
definition is therefore not a critical issue, provided 
that the desired behaviour is achieved. However, 
exception handling policies also serve as a valuable 
source of ‘process knowledge’ that must be agreed 
upon and ultimately maintained by domain experts. 
As such, the policies should be as clear as possible. 
Being explicit with all assumptions (for example, 

with a ‘complete’ policy, as described above) 
partially addresses this issue.  

Another desirable quality for policies is that they 
are not unnecessarily complex. Clearly, this issue is 
subjective to some degree, and is dependent on both 
the syntax and semantics of the PR condition 
language (which is not the focus of this paper) and 
also the underlying business scenario to be 
facilitated (which can only be considered by domain 
experts and process modellers). However, it is poss-
ible to make a generic observation in that policies in 
which one or more PRs are completely redundant 
(that is, they will never be executed, regardless of 
the state of the relevant PI) should be avoided. 
Redundant PRs can be safely removed without any 
impact on exception handling behaviour.  

Not only do redundant rules make the policy 
more difficult to comprehend, but they may also 
negatively affect system performance, since more 
PRs than necessary must be searched through to find 
the relevant action. However, this effect could be 
minimised with appropriate indexing, and exception 
handling behaviour should not occur frequently 
anyway (by definition). In any case, as for complete-
ness, the presence of redundant PRs will generally 
not cause undesirable exception handling behaviour 
and so this is not a critical requirement for policies. 

The set of the PIPs P is ‘valid’ in the sense that it 
is constructed after analysis of the underlying 
process model – that is, they are not random 
combinations of nodes.  However, the PRs will be 
redundant if the associated data condition is a 
contradiction. Detecting this issue is a relatively 
easy task, by inspecting the data condition in 
isolation, knowing the domain values for each of the 
referenced data items. However, we wish to make a 
more subtle observation. 

In particular, we observe that a PR is redundant 
if the combination of PIP and data condition in the 
PR is invalid. Such a situation is possible because 
the concepts of PIP and case data (on which data 
conditions are defined) are not orthogonal. Consider 
a process instance state (P, c) ∈ Se such that e ∈ E, 
P ∈ P, c ∈ C for which a PR is defined. Recall that 
every PIP is applicable for a subset of PIGs, each of 
which is associated with a set of data conditions that 
are satisfied by every PI that executes the PIG. 
Therefore, each PIP P ∈ P is associated with a set of 
conditions CP ⊂ C that are satisfied by every PI that 
reaches P. We can encapsulate CP into a single 
logical expression (data condition) h = c1 ∧ c2 ∧ … 
∧ cy, ∀ c1..y  ∈ CP. We note if the expression h ∧ d is 
a contradiction then the policy rule is redundant. 

For example, the policy rule <4, Type = ‘A’, 
Perform A3> is redundant, since all PIs that reach 
PIP 4 must satisfy the condition Type = ‘C’.  

ON CORRECTNESS CRITERIA FOR WORKFLOW
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7 CONCLUSIONS AND FUTURE 
WORK 

Workflow technology is ideal for supporting 
repetitive and predictable processes, but exceptions 
occur often during the execution of processes in the 
real world. An important class of such exceptions is 
those that are expected and are asynchronous with 
respect to the process in execution. The desired 
reaction in response to these events will often 
depend on the current state of process execution, and 
we argue that the important aspects of this state for 
the majority of exception handling situations are the 
position of the process instance through the process 
model and the values of the case data at the time at 
which the exception event occurs. This reactive 
behaviour is encapsulated in an exception handling 
policy for each event. 

In this paper, we have demonstrated that the 
definition of such policies for complex processes is a 
challenging exercise. In particular, it is possible to 
introduce errors into the policies that may result in 
undesirable execution behaviour if they were to 
remain undetected. It is therefore essential to verify 
policies prior to deployment, and this issue has not 
yet been addressed in the literature.  

We have argued that regardless of the express-
iveness or ‘syntactic sugar’ of the language used to 
define the policies, or the modelled application 
domain, a set of generic requirements must be 
satisfied. The presentation of correctness criteria for 
exception handling policies is a major contribution 
of this paper. We envisage that these properties will 
form the foundation for a complete verification sol-
ution for policies, to be utilised before the policies 
are semantically validated by the domain experts. 

In our future work, we will develop a 
methodology for the automated verification of 
exception handling policies based on the proposed 
correctness criteria. We will also relax the restriction 
that state is described only through position and case 
data and consider other types of workflow control 
data in policy definition and subsequent verification. 
Finally, we will consider the development of a 
software tool to assist with the specification and 
verification of policies. 
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