
A KOREAN SEARCH PATTERN IN THE LIKE OPERATION

Sung Chul Park1, Eun Hyang Lo1
1Kyungpook National University, Department of EECS 1370, Sangyeok-dong, Buk-gu, Daegu 702-701, Korea

Jong Chul Park2, Young Chul Park1
2FusionSoft Co., Ltd. Research and Development 3-Division, 969-7 Dongcheon-dong, Buk-gu, Daegu, 702-250, Korea

Keywords: SQL, LIKE, string pattern, Korean, Unicode.

Abstract: The string pattern search operator LIKE of SQL has been developed based on English such that each search
pattern of English of the operator works for each character in the alphabet of English. For finding Korean,
search patterns of the operator can be expressed by both the alphabet and syllables of Korean. As a phonetic
symbol, each syllable of Korean is composed either of a leading sound and a medial sound or of a leading
sound, a medial sound, and a trailing sound. By utilizing that characteristic of Korean syllables, in addition
to the traditional complete-syllable based search pattern of Korean, this paper proposes an incomplete-
syllable based search pattern of Korean, as a pattern of the operator LIKE, to find Korean syllables having
specific leading sounds, specific medial sounds, or both specific leading sounds and medial sounds.
Formulating predicates that are equivalent with the incomplete-syllable based search pattern of Korean by
way of existing SQL expressions is cumbersome and might cause the portability problem of applications
depending on the underlying character set of the DBMS.

1 INTRODUCTION

The operator LIKE of the database language SQL is
a string pattern search operator. By providing the
string pattern, the operator can identify column
values that match with the string pattern. As pattern
characters of the string pattern, the standard SQL
(American National Standards Institute 1992;
Melton & Simson 1993) permits normal characters
and reserved characters. The operator LIKE has
been developed based on English such that each
search pattern of English of the operator works for
each character in the alphabet of English. For
finding Korean, search patterns of the operator can
be expressed by both the alphabet and syllables of
Korean. Once a Korean alphabet is used as a search
pattern, the Korean alphabet itself is matched with
the pattern, and once a Korean syllable is used as a
search pattern, the Korean syllable itself is matched
with the pattern.

The string pattern of the operator LIKE allows
any combination of consonants and vowels of
English alphabet. For example, by the string pattern
‘M% Ave% %a%’, strings like “Maple Avenue,
Evanston” and “Martin Ave. Chicago” can be

matched. Traditionally, the string pattern for Korean
syllables has been a complete-syllable based one.
For example, finding strings that start with Korean
syllable ‘박’ (‘Park’, as it sounds in English) can be
done by a string pattern ‘박%’. However, the
problem of finding Korean syllables having specific
combinations of Korean alphabet has not been
addressed in the literature. We will come back to the
detailed specification of that problem in short right
after introducing the alphabet and syllables of
Korean.

Modern Korean alphabet consists of 30
consonants (‘ㄱ’, ‘ㄲ’, ‘ㄳ’, ‘ㄴ’, ‘ㄵ’, ‘ㄶ’, ‘ㄷ’,
‘ㄸ’, ‘ㄹ’, ‘ㄺ’, ‘ㄻ’, ‘ㄼ’, ‘ㄽ’, ‘ㄾ’, ‘ㄿ’, ‘ㅀ’,
‘ㅁ’, ‘ㅂ’, ‘ㅃ’, ‘ㅄ’, ‘ㅅ’, ‘ㅆ’, ‘ㆁ’, ‘ㅈ’, ‘ㅉ’,
‘ㅊ’, ‘ㅋ’, ‘ㅌ’, ‘ㅍ’, and ‘ㅎ’, in lexicographic
order) and 21 vowels (‘ㅏ’, ‘ㅐ’, ‘ㅑ’, ‘ㅒ’, ‘ㅓ’,
‘ㅔ’, ‘ㅕ’, ‘ㅖ’, ‘ㅗ’, ‘ㅘ’, ‘ㅙ’, ‘ㅚ’, ‘ㅛ’, ‘ㅜ’,
‘ㅝ’, ‘ㅞ’, ‘ㅟ’, ‘ㅠ’, ‘ㅡ’, ‘ㅢ’, and ‘ㅣ’, in
lexicographic order). As a phonetic symbol, each
Korean syllable is composed either of a leading
sound and a medial sound or of a leading sound, a
medial sound, and a trailing sound. Only consonants
can be used for leading sounds and trailing sounds of
Korean syllables. In Korean, the consonants that are

457
Chul Park S., Hyang Lo E., Chul Park J. and Chul Park Y. (2007).
A KOREAN SEARCH PATTERN IN THE LIKE OPERATION.
In Proceedings of the Ninth International Conference on Enterprise Information Systems - DISI, pages 457-464
DOI: 10.5220/0002376304570464
Copyright c© SciTePress

used for leading sounds and trailing sounds are
called leading consonants and trailing consonants,
respectively. For medial sounds of Korean syllables,
only vowels can be used and all the Korean vowels
are used for the medial sounds. Among the 30
modern Korean consonants, 19 consonants (‘ㄱ’,
‘ㄲ’, ‘ㄴ’, ‘ㄷ’, ‘ㄸ’, ‘ㄹ’, ‘ㅁ’, ‘ㅂ’, ‘ㅃ’, ‘ㅅ’,
‘ㅆ’, ‘ㅇ’, ‘ㅈ’, ‘ㅉ’, ‘ㅊ’, ‘ㅋ’, ‘ㅌ’, ‘ㅍ’, and ‘ㅎ’,
in lexicographic order) can be used as leading
consonants and 27 consonants (‘ㄱ’, ‘ㄲ’, ‘ㄳ’, ‘ㄴ’,
‘ㄵ’, ‘ㄶ’, ‘ㄷ’, ‘ㄹ’, ‘ㄺ’, ‘ㄻ’, ‘ㄼ’, ‘ㄽ’, ‘ㄾ’,
‘ㄿ’, ‘ㅀ’, ‘ㅁ’, ‘ㅂ’, ‘ㅄ’, ‘ㅅ’, ‘ㅆ’, ‘ㆁ’, ‘ㅈ’,
‘ㅊ’, ‘ㅋ’, ‘ㅌ’, ‘ㅍ’, and ‘ㅎ’, in lexicographic
order) can be used as trailing consonants.

Figure 1 illustrates two Korean syllables: one
syllable ‘배’ (abdomen, pear, or vessel, in English)
that is composed of a leading sound ‘ㅂ’ and a

medial sound ‘ㅐ’, and another syllable ‘삶’ (life, in
English) that is composed of a leading sound ‘ㅅ’, a
medial sound ‘ㅏ’ and a trailing sound ‘ㄻ’. The
lexicographic order among Korean syllables follows
the order of <a leading consonant, a vowel, a trailing
consonant> that constitute the Korean syllables,
which means that it keeps the order of leading
consonants; for the same leading consonant, it keeps
the order of vowels; and for the same leading
consonant and the same vowel, it keeps the order of

trailing consonants. In the case of the same leading
consonant and the same vowel, a syllable that does
not have any trailing consonant precedes syllables
that have trailing consonants.

In this paper, we are concerned about finding
Korean syllables that have specific leading sounds,
specific medial sounds, or both specific leading
sounds and medial sounds. Our goal is specifying
the combinations of Korean alphabet directly into
the string patterns of the operator LIKE without
having any notational difficulty. For that purpose,
we have devised a two-dimensional table, which we
call the Korean syllable map. As shown in Figure 2,
the Korean syllable map has rows and columns for
representing the leading consonants and the vowels
of Korean, respectively. Each cell in the map that is
formulated by a specific row and a specific column
contains all the 28 contiguous syllables that can be
constructed with the leading consonant of the row
and the vowel of the column. All the rows, columns,
and syllables in each cell are arranged according to
the lexicographic order of the consonants, vowels,
and syllables, respectively. According to that, all the
11,172 modern Korean syllables in Unicode
(Unicode, Inc. 2006) can be mapped into the Korean
syllable map.

In the Korean syllable map, indexes of rows,
which we call row_indexes, start from 0 (for the
initial consonant ‘ㄱ’) and end with 18 (for the
initial consonant ‘ㅎ’), indexes of columns, which
we call column_indexes, start from 0 (for the vowel
‘ㅏ’) and end with 20 (for the vowel ‘ㅣ’). We call
the row of row_index i as ROWi and the column of
column_index j as COLUMNj, and the cell of
row_index i and column_index j as CELLi,j. Let the
first syllable and the last syllable in CELLi,j be FSi,j
and LSi,j, respectively. Then the syllables in CELLi,j,
ROWi, and COLUMNj are in the range of [FSi,j-
LSi,j], [FSi,0-LSi,20], and [FS0,j-LS0,j | FS1,j-LS1,j | … |
FS18,j-LS18,j], respectively. For example, the

배Leading
Sound

Medial
Sound

삶 Trailing Sound

Leading
Sound

Medial Sound

18

...

...

...

ㅏ ... ㅓ ... ㅣ
ㄱ 가각갂…갚갛 ... 거걱걲…겊겋 ... 기긱긲...깊깋
ㄲ 까깍깎...깦깧 ... 꺼꺽꺾…껖껗 ... 끼끽끾...낖낗
...
ㅂ 바박밖...밮밯 ... 버벅벆…벞벟 ... 비빅빆…빞빟

ㅎ 하학핚...핲핳 ... 허헉헊…헢헣 ... 히힉힊...힢힣

...

0
1

7

0 4 20... ...
ㅐ

개객갞…갶갷
깨깩깪...꺂꺃

...
배백밲...뱊뱋

해핵핶...햎햏

...

1

ㅇ 아악앆...앞앟 ... 어억얶...엎엏 ... 이익읶...잎잏11 애액앢...앺앻

ㅕ ...
6

겨격격...곂곃
껴껵껶...꼎꼏

...
벼벽벾...볖볗

...
여역엮...옆옇

...

...

...

...

...

...
...

혀혁혂...혚혛 ...

Figure 2: The Korean syllable map for Unicode.

Figure 1: Components of Korean syllables.

ICEIS 2007 - International Conference on Enterprise Information Systems

458

syllables in CELL7,4, ROW7, and COLUMN4 are in
the range of [FS7,4-LS7,4] (i.e., [버–벟]), [FS7,0-
LS7,20] (i.e., [바–빟]), and [FS0,4-LS0,4 | FS1,4-LS1,4 |
… | FS18,4-LS18,4] (i.e., [거–겋 | 꺼–껗 | … | 허–헣]),
respectively.

Based on the Korean syllable map, the problem of
finding Korean syllables that have specific leading
sounds, specific leading sounds and medial sounds,
or specific medial sounds becomes finding syllables
that are located in the specific ROWs, CELLs, or
COLUMNs of the Korean syllable map, respectively.
According to that, string patterns for finding Korean
syllables that have specific leading sounds, specific
leading sounds and medial sounds, or specific
medial sounds are called string patterns of
Type_ROW, Type_CELL, or Type_COLUMN,
respectively.

A simple solution of specifying those three types
of Korean search patterns could be expressing each
of them by the use of regular expressions. That
solution looks fine and can be executed by any
DBMS that supports regular expressions in one or
another form. For example, consider finding words
having at least two Korean syllables, where the first
syllable has ‘ㅂ’ as its leading sound and the second
syllable has ‘ㅐ’ as its medial sound such as strings
like ‘박애’ (benevolence, in English) and ‘비행기’
(airplane, in English). The regular expression for
such strings becomes ‘[바-빟][개-갷 | 깨-꺃 | 내-냏
| 대-댛 | 때-땧 | 래-랳 | 매-맿 | 배-뱋 | 빼-뺗 | 새-샣
| 쌔-쌯 | 애-앻 | 재-쟇 | 째-쨓 | 채-챟 | 캐-캫 | 태-탷
| 패-퍃 | 해-햏]’. However, that simple solution has
the following problems.

First, the simple solution might cause the
portability problem of SQL applications. This is
because the number of Korean syllables that are
supported could be different depending on the
underlying character sets. For example, in Unicode,
all the 11,172 modern Korean syllables are specified.
However, in KS X 1001 (Korean Standards
Information Center 2002) that is one of the Korean
standards and also the most widely used character
set with Unicode in Korea, only 2,350 Korean
syllables that are commonly used in Korea today are
specified. Because of the discrepancy in the number
of supporting Korean syllables, once we build
Korean syllable maps for them, many of the first
syllables and the last syllables in the cells of the two
Korean syllable maps are different. For example, in
Unicode, LS7,20 is ‘빟’, but, in KS X 1001, it is ‘빛’.
Provided that a character in a regular expression
exceeds the range of the underlying character set of
the DBMS, the DBMS such as ORACLE 10g
(ORACLE 2005b) raises a run time error. Therefore,
once an application that runs on the character set of

Unicode is moved to the environment that uses the
character set of KS X 1001 or the other way, the
values of FSi,j and LSi,j must be modified manually.
This means that SQL applications adopting that
simple solution might have the portability problem.

Second, the simple solution might have the
performance problem in executing search patterns of
Type_COLUMN. As far as search patterns of
Type_ROW and Type_CELL are concerned, they
can be executed by checking whether a certain
syllable lies in the specified range of syllables.
However, the Type_COLUMN search pattern has 19
ranges of syllables such that multiple comparisons
should be done to check whether a certain syllable
matches with the search pattern.

This paper presents an intuitive, uniform, and
simple way of expressing the three types of Korean
search patterns that is free from the portability
problem of SQL applications. Algorithms for the
execution of the Korean search pattern are also
presented based on Unicode. Without loss of
generality, we assume that 30 consonants and 21
vowels of modern Korean alphabet are arranged on
the keyboard systems that take the Korean standard
KS X 5002, “Keyboard layout for information
processing” (Korean Standards Information Center
1982). Because of that, leading consonants and
trailing consonants are not arranged separately on
the keyboard and can be discriminated by some
appropriate automaton while building Korean
syllables. We do not consider archaic characters of
Korean. The performance evaluation of the Korean
search pattern is not main concern of this paper.
Comparing a Korean syllable with the Korean search
pattern needs only one range check or a value check.
Regular expressions that are equivalent with the
Korean search pattern need the same number of
comparisons for the search patterns of Type_ROW
and Type_CELL. However they need 19 range
checks for the search pattern of Type_COLUMN. It
is clear that one scheme with a smaller number of
comparisons is faster than another with a larger one.
This paper does not present performance of the
algorithms for such reasons.

The rest of this paper is organized as follows. In
Section 2, we introduce the Korean search pattern
and its expression. In Section 3, schemes that
identify Korean search patterns and matching
algorithms for each type of the Korean search
pattern are provided. String match algorithms related
to the Korean search pattern are presented in Section
4. Section 5 concludes this paper.

A KOREAN SEARCH PATTERN IN THE LIKE OPERATION

459

2 KOREAN SEARCH PATTERN
AND ITS EXPRESSON

The Korean search pattern consists of a predecessor
and a searcher. The predecessor of it could be an
escape character of the operator LIKE or a newly
reserved character (for example, ‘$’ after defining it
as a reserved character). The searcher of it could be
(1) a leading consonant (i.e., Type_ROW), (2) a
syllable that consists only of a leading consonant
and a vowel (i.e., Type_CELL), or (3) a vowel (i.e.,
Type_COLUMN). Each of these searchers matches
with (1) Korean syllables that have the specified
leading consonant as their leading sounds (i.e., the
syllables in a specific ROW), (2) Korean syllables
that have the leading consonant and the vowel of the
specified Korean syllable as their leading sounds and
medial sounds respectively (i.e., the syllables in a
specific CELL), or (3) Korean syllables that have the
specified vowel as their medial sounds (i.e., the
syllables in a specific COLUMN), respectively. In
the rest of this paper, an escape character is used as
the predecessor, and if not declared, ‘＼’ is assumed
declared as an escape character.

Trailing consonants that are not used for leading
consonants, and syllables that consist of leading
sounds, medial sounds and trailing sounds are not
included in the searcher. The reason of excluding the
trailing consonants that are not used for the leading
consonants from the searcher is two-fold. First, we
assume that the request of finding Korean syllables
that have a specific trailing consonant might be rare.
Second, because of the keyboard systems that we
take, once consonants that are commonly used for
the leading consonants and the trailing consonants
are specified in the string pattern, it is impossible to
identify whether they are leading consonants or
trailing consonants by looking at them only. Because
of that, once any of the trailing consonants that are
not used for the leading consonants is specified right
after the predecessor of the Korean search pattern,
we treat the pattern exactly the same way as
specifying the consonant only. Once syllables that
consist of leading sounds, medial sounds, and
trailing sounds are specified right after the
predecessor of the Korean search pattern, the request
is treated exactly the same way as specifying that
syllable only. This is because only that syllable can
be matched with that pattern.

Example 1. “Retrieve employees whose addresses
start with Korean syllables having ‘ㅂ’ as their
leading sounds.”

By using the Korean search pattern, the request
can be done by the query “SELECT * FROM

employee WHERE address LIKE ‘＼ㅂ%’ ESCAPE
‘ ＼ ’;”. Addresses of ‘바다’ (sea, in English),
‘보석상자’ (jewel box, in English), and ‘뷰티샵’
(beauty shop, in English) match with the pattern. In
Unicode, 588 Korean syllables having ‘ㅂ’ as their
leading consonants are located in the range between
‘바’ and ‘빟’ and they are less than the Korean
syllable ‘빠’. Therefore, the above expression is
equivalent with “address >= ‘바’ and address <
‘빠’”. The above predicate of Korean search pattern
can be represented equivalently either by the use of
regular expression “REGEXP_LIKE(name, ‘^[바-
빟]’)” of ORACLE 10g or by the extended syntax of
operator LIKE “name LIKE ‘[바-빟]%’” of MS
SQL Server 2005 (Microsoft 2006).

Example 2. “Retrieve employees whose names
consist of exactly three Korean syllables, where the
first syllable has ‘ㅂ’ as its leading consonant, the
second syllable has ‘ㅇ’ as its leading consonant and
‘ㅕ’ as its vowel, and the third syllable has ‘ㅓ’ as
its vowel.”

It can be done by the query “SELECT * FROM
employee WHERE name LIKE ‘＼ㅂ＼여＼ㅓ ’
ESCAPE ‘ ＼ ’;”. The name of ‘박영철’ (‘Park
Young Chul’, as it sounds in English) matches with
the pattern. Unfortunately, expressing the Korean
search pattern by using range predicates can be very
cumbersome. For instance, according to the
lexicographic order and the arrangement of Korean
syllables in Unicode, the above expression is
equivalent with “name LIKE ‘___’ and ((name >=
‘바여거’ and name <= ‘바여겋’) or (name >=
‘바여꺼’ and name <= ‘바여껗’) or … or (name >=
‘빟옇허’ and name <= ‘빟옇헣’)”. To formulate
that equivalent expression however, since there are
588 Korean syllables having ‘ㅂ’ as their leading
consonants, 28 Korean syllables having ‘ㅇ’ as their
leading consonants and ‘ㅕ’ as their vowels, and 19
ranges of Korean syllables having ‘ㅓ’ as their
vowels, 312,826 (that is, 588 * 28 * 19) range
predicates must be enumerated and connected with
the OR operator. This large number of predicates
means that, apart from the question of troublesome
in making that equivalent expression, the query
processing time might become tremendous. By the
use of regular expression “REGEXP_LIKE(name,
‘^[바-빟][여-옇][거-겋 | 꺼-껗 | 너-넣 | 더-덯 | … |
허-헣]$’)” of ORACLE 10g and the extended syntax
of operator LIKE “name LIKE ‘[바-빟][여-옇][거-
겋 | 꺼-껗 | 너-넣 | 더-덯 | … | 허-헣]’” of SQL
Server 2005, both of them are also equivalent with
the above predicate of Korean search pattern.
However, formulating both the regular expression
and the extended string pattern that have 19 ranges is
not easy and is error prone.

ICEIS 2007 - International Conference on Enterprise Information Systems

460

Example 3. “Retrieve employees whose names start
with at least one arbitrary character that is
immediately followed by exactly three Korean
syllables, where the first syllable has ‘ㅂ’ as its
leading consonant, the second syllable has ‘ㅇ’ as its
leading consonant and ‘ㅕ’ as its vowel, and the
third syllable has ‘ㅓ’ as its vowel, which in turn are
followed by at least one character.”

It can be done by the query “SELECT * FROM
employee WHERE name LIKE ‘%_＼ㅂ＼여＼
ㅓ_%’ ESCAPE ‘ ＼ ’;”. Formulating equivalent
expressions by using range predicates is not possible
in this case. By the use of regular expressions or
extended string patterns, both
“REGEXP_LIKE(name, ‘(.)+[바-빟][여-옇][거-겋 |

꺼-껗 | 너-넣 | 더-덯 | … | 허-헣](.)+’)” and “name

LIKE ‘%_[바-빟][여-옇][거-겋 | 꺼-껗 | 너-넣 | 더-

덯 | … | 허-헣]_%’” are also equivalent with the
above predicate of Korean search pattern. Note also
that these equivalent expressions are not easy to
formulate and are also error prone.

3 KOREAN SEARCH PATTERN
AND ITS MAPPING WITH
KOREAN SYLLABLES

This section presents identifying schemes of Korean
syllables that match with a given Korean search
pattern. Before illustrating those schemes, a short
introduction to the placement of Korean alphabet
and Korean syllables in Unicode comes first.

Unicode follows the lexicographic order among
consonants, vowels and syllables of Korean in
assigning code points to them (Unicode Inc. 2005c,
2005d, 2005e). In Unicode, in the range between
0xAC00 and 0xD7AF, which is called Hangul
Syllables (Unicode Inc. 2005e), 11,172 modern
Korean syllables are encoded and are arranged
according to the lexicographic order. Because of
that, the smallest Korean syllable ‘가’ is arranged
into the code point 0xAC00 (which we call
KS_START) and the biggest Korean syllable ‘힣’ is
arranged into the code point 0xD7A3 (which we call
KS_END). In Unicode, modern and archaic
consonants and vowels of Korean are provided in
two different ranges: the range between 0x1100 and
0x11FF, which is called Hangul Jamo (Unicode Inc.
2005d) and the range between 0x3130 and 0x318F,
which is called Hangul Compatibility Jamo

(Unicode Inc. 2005c). The characters in Hangul
Compatibility Jamo are provided solely for the
compatibility with the Korean standard KS X
1001:1998 (Unicode Inc. 2005b). The 30 consonants
and 21 vowels of modern Korean characters are
declared both in Hangul Jamo and in Hangul
Compatibility Jamo. They are arranged according to
a predefined lexicographic order. In Hangul Jamo,
19 leading consonants are arranged in the range
between 0x1100 (which we call L_START) and
0x1112 (which we call L_END), 27 trailing
consonants are arranged in the range between
0x11A8 and 0x11C2, and the whole vowels are
arranged in the range between 0x1161 (which we
call V_START) and 0x1175 (which we call V_END).
In Hangul Compatibility Jamo, the whole
consonants are arranged in the range between
0x3131 (which we call CON_START) and 0x314E
(which we call CON_END) and the whole vowels
are arranged in the range between 0x314F (which
we call VOWEL_START) and 0x3163 (which we call
VOWEL_END).

Let ROW_SIZE be the number of Korean syllables
in a row, CELL_SIZE be the number of Korean
syllables in a cell, ROW_COUNT be the number of
rows, and COLUMN_COUNT be the number of
columns of the Korean syllable map. Actually,
ROW_SIZE is 588, CELL_SIZE is 28,
ROW_COUNT is 19, and COLUMN_COUNT is 21.

Observation 1. According to the placement of
Korean syllables in Unicode, we can have the
following facts about the Korean syllable map.
(1) FS0,0=KS_START.
(2) For row_index i and column index j, where

0≤i<ROW_COUNT and 0≤j<COLUMN_COUNT,
FSi,j=FS0,0+i*ROW_SIZE+j*CELL_SIZE, and
LSi,j=FSi,j+CELL_SIZE-1.

Observation 2. For a Korean syllable of a Unicode
code point S, we can have the following facts.
(1) Let row_index(S) be the row_index of S in the

Korean syllable map. Then, row_index(S) = (S –
FS0,0)/ROW_SIZE.

(2) Let column_index(S) be the column_index of S
in the Korean syllable map. Then,
column_index(S) = ((S–FS0,0)/CELL_SIZE) %
COLUMN_COUNT.

(3) Let IS_FS(S) be a Boolean function that
identifies whether a syllable S is the first syllable
of a certain cell in the Korean syllable map. In
other words, IS_FS(S) becomes TRUE only
when the syllable of S is composed of a leading
consonant and a vowel only. Then, IS_FS(S)
becomes TRUE only when (S –
FS0,0)%CELL_SIZE is equal to 0. Otherwise, that

A KOREAN SEARCH PATTERN IN THE LIKE OPERATION

461

syllable is composed of a leading consonant, a
vowel, and a trailing consonant.

Observation 3. A searcher of a Korean search
pattern can be classified into six different groups
depending on the code point x of the searcher.
(1) If x is between L_START and L_END, x is a

leading consonant of Hangul Jamo and x –
L_START becomes row_index of the leading
consonant.

(2) If x is between CON_START and CON_END, x
is a consonant of Hangul Compatibility Jamo. To
identify row_indexes of leading consonants in
Hangul Compatibility Jamo, we put an array
CON_Array. That array has 30 entries and the ith
entry contains row_index of the ith consonant if
that consonant is a leading consonant and
contains -1 otherwise. The CON_Array is shown
below.
static const int CON_Array[] = {
 0, 1, -1, 2, -1, -1, 3, 4, 5, -1,

-1, -1, -1, -1, -1, -1, 6, 7, 8, -1,
9, 10, 11, 12, 13, 14, 15, 16, 17, 18

}
From that array, for the code point of x

between CON_START and CON_END, if
CON_Array[x – CON_START] is not –1, x is a
leading consonant and that value becomes
row_index of x. Once that value is –1, x is not a
leading consonant such that ‘＼x’ is handled as

‘x’. For example, for a consonant ‘ㄷ’ of Hangul
Compatibility Jamo, which has the Unicode code
point 0x3137, CON_Array[0x3137 -
CON_START], i.e., CON_Array[6] is the entry
for the consonant and the value 3 of the entry
means row_index of the consonant. However,
CON_Array[15] is the entry for a consonant ‘ㅀ’

and the value –1 of the entry means that ‘ㅀ’ is
not a leading consonant.

(3) If x is between KS_START and KS_END, x is a
Korean syllable. According to Observation 2-(3),
if IS_FS(x) is TRUE, x is a code point of a
syllable that is composed of a leading consonant
and a vowel only. Otherwise, x is a code point of
a syllable that is composed of a leading
consonant, a vowel and a trailing consonant such
that ‘＼x’ is handled as ‘x’.

(4) If x is between V_START and V_END, x is a
vowel of Hangul Jamo and x – V_START
becomes column_index of the vowel.

(5) If x is between VOWEL_START and
VOWEL_END, x is a vowel of Hangul

Compatibility Jamo and x – VOWEL_START
becomes column_index of the vowel.

(6) If x is not in any one of the above five ranges,
the pattern is not a Korean search pattern.

For a Type-ROW Korean search pattern of
searcher S, there could be two schemes of finding
matching Korean syllables. The row_index of S, say
i, can be found according to Observation 3-(1) or 3-
(2) depending on the value of S. Let W be the code
point of the syllable to be compared. One scheme is
checking whether i = row_index(W). The other
scheme is setting up the range as [FSi,0-LSi,20] and
then check whether W lies in that range. We take the
second scheme.

Once the type of a Korean search pattern is Type-
CELL of searcher S, there could be two schemes of
finding matching syllables. Let i be row_index(S), j
be column_index(S), and W be the code point of the
syllable to be compared. The first scheme is
checking whether i = row_index(W) and j =
column_index(W). The second scheme is setting up
the range as [FSi,j-LSi,j] and then check whether W
lies in that range. We take the second scheme.

Once the type of a Korean search pattern is
Type-COLUMN of searcher S, the following
scheme for finding matching syllables is used. The
column index of S, say j, can be found according to
Observation 3-(4) or 3-(5) depending on the value of
S. Let W be the code point of the syllable to be
compared. Our scheme is checking whether j =
column_index(W). In addition to that scheme, for the
formulation of the index search range, the following
scheme for finding boundaries is also used. Let the
code point of an arbitrary syllable whose
column_index is the same as the searcher of
Type_COLUMN of column_index j be W, then the
range of code points of W be [FS0,j-LS18,j]. Even
though that range encompasses wide space
unnecessarily, it could be helpful for restricting the
search space of the index search. Note that this range
scheme is used only for the search of key values in
indexes.

4 SYLLABLE COMPARISON
SCHEMES AND PATTERN
MATCH ALGORITHMS

Without loss of generality, we take the UTF-8
encoding scheme (Unicode Inc. 2005a) for the
representation of characters. There could be two
different schemes of comparison between the

ICEIS 2007 - International Conference on Enterprise Information Systems

462

syllable to be compared and boundary syllables (i.e.,
FSi,j and LSp,q, which we call LB and UB
respectively in the rest of this paper) of the Korean
search pattern: one is comparing them in Unicode
code points and the other is comparing them in the
UTF-8 encoding scheme. Korean characters are
assigned into the Basic Multilingual Plane (BMP)
region of Unicode. Therefore, even though the first
scheme has the burden of transforming byte
sequences into Unicode code points, since the code
points can be stored in variables of unsigned short
data type, the comparison itself can be done
promptly. The second scheme keeps LB and UB in
byte sequences according to the UTF-8 encoding
scheme. Therefore, it does not have the burden of
transforming Korean syllables into Unicode code
points. However, for the comparison of byte
sequences within each code unit, (1) in the case of
encoding schemes of UTF-8, UTF-16BE, and UTF-
32BE, those bytes have to be compared in the
forward direction and (2) in the case of encoding
schemes of UTF-16LE and UTF-32LE, those bytes
have to be compared in the reverse direction.

We take the second scheme for the comparison of
Korean syllables and it works as follows. After
transforming the searcher of the Korean search
pattern of the UTF-8 encoding scheme into a
Unicode code point, from that code point, the type of
the pattern and column_index (if available) are
identified, LB and UB of the searcher are decided in
Unicode code points, and then these two values are
transformed into byte sequences of the UTF-8
encoding scheme. For the matching of Korean
syllables in the string to be compared, those
syllables are compared directly with LB and UB. For
the generation of column_index (if necessary), the
syllables are transformed into Unicode code points.
In the rest of this paper, we assume that all data
structures and algorithms take this policy, and all
characters in the string pattern and the stored data
are either ASCII characters or modern Korean
characters.

The string pattern of the operator LIKE should be
normalized before performing any matching
operation. For that purpose, the string pattern is
stored in an array, say StringPattern, and the
normalized string pattern is kept in an array, say
zPattern. In this paper, we consider normal
characters, reserved characters (‘%’ and ‘_’), and
escape characters for the string patterns. We do not
consider string patterns like ‘[]’ and ‘[^]’, which are
supported by some commercial DBMSs such as MS
SQL Server. Upon including the Korean search
pattern, we put an array zPatternFlag to keep types
of Korean search patterns, put arrays LBS and UBS

to keep LB and UB of each Korean search pattern
respectively, and have the following two additional
rules for the normalization. Note that each Korean
character takes three bytes in the UTF-8 encoding
scheme.
(1) Let zPatternk represent the kth character in the

array zPattern. zPatternFlagk takes the same
number of bytes as zPatternk holds. If zPatternk
is not a Korean search pattern, zPatternFlagk
takes 0. However, if zPatternk is a Korean search
pattern, zPatternFlagk holds the information of
<type, range_index, column_index>, where type
means the type (1 for Type_ROW, 2 for
Type_CELL, and 3 for Type_COLUMN) of the
Korean search pattern, range_index identifies the
index of arrays LBS and UBS that hold LB and
UB of the pattern zPatternk, and column_index
holds the column_index of the search pattern
only when the search pattern is one of type
Type_COLUMN.

(2) For each Korean search pattern in the string
pattern, the following steps have to be done. The
predecessor of the pattern is not stored in
zPattern and only the searcher of the pattern is
stored in zPattern. Let the searcher to be stored
in zPattern be the kth character in zPattern. First
of all, LB and UB of the searcher are found
according to the schemes shown in Section 3 and
they are appended into arrays LBS and UBS. Let
the index of the values appended in the arrays be
range_index. If the type of the search pattern is
Type_ROW or Type_CELL, <1, range_index,
0> or <2, range_index, 0> is assigned to
zPatternFlagk, respectively. However, if the type
of the search pattern is Type_COLUMN,
column_index of the vowel is calculated and then
<3, range_index, column_index> is assigned to
zPatternFlagk.

We have assigned arrays LBS and UBS, and have
stored column_index in the array zPatternFlag. The
reason is simply because a lot of database records
should be compared with the given string pattern. If
we do not store them, whenever a new database
record is met for the string match, the values should
be re-calculated. This is not a good idea.

Because of the reserved character ‘%’, the
algorithm that executes the matching operation
between a string pattern and a string to be compared
could be a recursive one. Since discussing the
algorithm itself is beyond the scope of this paper, the
string match algorithm is simply summarized within
the scope of the Korean search pattern. Let the start
index of the current pattern in zPattern be k. If
zPatternFlag[k] is not 0, the pattern is a Korean
search pattern. If zPatternFlag[k] is either 1 (i.e.,

A KOREAN SEARCH PATTERN IN THE LIKE OPERATION

463

Type_ROW) or 2(i.e., Type_CELL),
zPatternFlag[k+1] has the value of range_index of
the pattern. Let the value of zPatternFlag[k+1] be r.
Then, the range R of Korean syllables that match
with that pattern becomes LBS[r..r+2] ≤ R ≤
UBS[r..r+2] and a Korean syllable S to be compared
should satisfy the range to be matched with that
pattern. If zPatternFlag[k] is 3(i.e.,
Type_COLUMN), zPatternFlag[k+2] has
column_index for that pattern. Let the function that
finds the Unicode code point of a Korean syllable S
in UTF-8 encoding scheme be codepoint(S). Then,
for a Korean syllable S, it is declared to be matched
with that pattern when (((codepoint(S) -
FS0,0)/CELL_SIZE) % COLUMN_ COUNT) is equal
to zPatternFlag[k+2]. Otherwise, it is not matched.

5 CONCLUSIONS

This paper proposes three types of Korean search
patterns to find Korean syllables having specific
leading sounds, specific medial sounds, or both
specific leading sounds and medial sounds. The
Korean search pattern is expressed in an intuitive,
uniform, and simple way such that it can be added
into the existing string patterns of the operator LIKE
without having any notational difficulty. The
expression is free from the portability problem of
SQL applications that might be resident in the
equivalent regular expressions because of the
underlying character sets of the DBMS. Efficient
ways of pattern matching for the three types of
Korean search patterns are also presented in this
paper.

We have implemented the Korean search pattern
on two relational DBMSs. One is CellDB that uses
Unicode for its character set and takes UTF-8
encoding scheme. The algorithms presented in this
paper have been ported directly into the system. The
other is BADA-II. The system uses KS X 1001 for
its character set such that some modified algorithms
of this paper have been implemented into the
system. Many commercial DBMSs such as DB2
(Poon & Sud & Chong 2005), Oracle (ORACLE
2005a), and MS SQL Server (Kaplan 2001) support
Unicode. Therefore, the Korean search pattern of
this paper can be ported into them without having
any difficulty.

ACKNOWLEDGEMENTS

This work is financially supported by the Ministry of
Education and Human Resources Development

(MOE), the Ministry of Commerce, Industry and
Energy (MOCIE) and the Ministry of Labor
(MOLAB) through the fostering project of the
Industrial-Academic Cooperation Centered
University.

REFERENCES

American National Standards Institute, 1992. The
Database Language SQL, Standard No. X3.135-1992,
New York.

Kaplan, M., 2001. International Features in Microsoft
SQL Server 2000, viewed 1 August 2006,
<http://msdn.microsoft.com/library/default.asp?url=/li
brary/en-
us/dnsql2k/html/intlfeaturesinsqlserver2000.asp>.

Korean Standards Information Center, 2002. Code for
information interchange (Hangul and Hanja),
Standard No. KS X 1001.

Korean Standards Information Center, 1982. Keyboard
layout for information processing, Standard No. KS X
5002.

Melton, J., Simon, A. R., 1993. Understanding the new
SQL: A complete guide, Morgan Kaufmann
Publishers, Inc., San Mateo, California.

Microsoft, 2006. LIKE (Transact-SQL), viewed 20
October 2006, <http://msdn2.microsoft.com/en-
us/library/ms179859.aspx>.

ORACLE, 2005. Globalization Support Oracle Unicode
database support, viewed 24 July 2006, <
http://www.oracle.com/technology/tech/globalization/
pdf/TWP_AppDev_Unicode_10gR2.pdf>.

ORACLE, 2005. Oracle 10g Downloads, viewed 20
October 2006, <
http://www.oracle.com/technology/software/products/
database/oracle10g/index.html>.

Poon, S., Sud, M., Chong, R., 2005. Understanding DB2
Universal Database character conversion, viewed 1
August 2006, <http://www-
128.ibm.com/developerworks/db2/library/techarticle/d
m-0506chong/>.

Unicode, Inc., 2005. Conformance, viewed 11 July 2006,
<http://www.unicode.org/versions/Unicode4.0.0/ch03.
pdf>.

Unicode, Inc., 2005. East Asian Scripts, viewed 11 July
2006,
<http://www.unicode.org/versions/Unicode4.0.0/ch11.
pdf>.

Unicode, Inc., 2005. Hangul Compatibility Jamo, viewed
11 July 2006, <http://www.unicode.org/charts/P
DF/U3130.pdf>.

Unicode, Inc., 2005. Hangul Jamo, viewed 11 July 2006,
<http://www.unicode.org/charts/PDF/U1100.pdf>.

Unicode, Inc., 2005. Hangul Syllables, viewed 11 July
2006,
<http://www.unicode.org/charts/PDF/UAC00.pdf>.

Unicode, Inc., 2006. Unicode Home Page, viewed 5 July
2006, <http://www.unicode.org>.

ICEIS 2007 - International Conference on Enterprise Information Systems

464

