
REDUCING REQUIREMENTS TO EIS SPECIFICATIONS GAP
USING RM-ODP ENTERPRISE VIEWPOINT

Christophe Addinquy and Bruno Traverson
Valtech 80 avenue Marceau F-75008 Paris France

EDF R&D 1 avenue du Général de Gaulle F-92140 Clamart France

Keywords: Requirements, Viewpoints, SysML, RM-ODP, Enterprise Information Systems.

Abstract: RM-ODP (Reference Model - Open Distributed Processing) standard prescribes architectural viewpoint
specifications, but does not address traceability with requirement expression. In this article, we propose a
three-layer approach to requirements modelling, from the system high level goals, to the detailed business
rules and extra-functional requirements. Then, these descriptions are connected to key elements of the RM-
ODP enterprise viewpoint. This approach is illustrated by a case study.

1 INTRODUCTION

The requirements management, in all its entirety is a
wide area that may be classified, as shown in figure
1, in three main dimensions.

Figure 1: The three dimensions of the requirements
management.

The Project axis covers the “who” and “when”
about requirements, because everything doesn’t
occur at the same time. Early phases may be focused
on the big picture and later phases on iterative
refinement of detailed requirements.

The Communication axis dig the way the
requirements are captured, written and reviewed
between the analyst and the business specialist.
Indeed, requirements are mainly about
understanding the needs, and the way people interact
and make the requirements happen is essential.

The Notation axis is all about the way the
requirements are formalized, structured and
followed. Managing requirements depend
exclusively on it.

This article focuses on notation. We also call it
“requirements modeling” here. For the seek of
illustration, some requirements are expressed using
SysML (Systems Modeling Language)
(OMG, 2006).

We have defined a three-steps process to obtain
modeling of what the system must be and what
qualities it must have. The goal of this article is not
to describe the iterative process of requirements
specifications, but of describing the relationships
between and inside these 3 levels and how they are
related to an architectural description based on RM-
ODP (Reference Model – Open Distributed
Processing) viewpoints (ISO, 1995).

Hence, RM-ODP also covers the “why” about
the system especially in the enterprise viepoint.
Establishing links between these two levels of
specifications enables us to feel the gap between
requirements expressions and system specifications.

In section 2, we describe in more detail our
modeling appoach for requirements using three
levels. Section 3 comes back to RM-ODP
viewpoints and, more specifically, to the global
consistency issue and the enterprise viewpoint
notation. Then, section 4 illustrates the connection of
requirements modeling elements to RM-ODP
enterprise viewpoint specification elements on a
case study. Finally, section 5 recaps assets and limits
of the experiment and draws some perspectives.

Notation Communication

Project

31
Addinquy C. and Traverson B. (2007).
REDUCING REQUIREMENTS TO EIS SPECIFICATIONS GAP USING RM-ODP ENTERPRISE VIEWPOINT.
In Proceedings of the Ninth International Conference on Enterprise Information Systems - ISAS, pages 31-38
DOI: 10.5220/0002378000310038
Copyright c© SciTePress

2 REQUIREMENTS

The three levels of requirements are summarized on
figure 2.

Product Vision

Problem statements

Stakeholders Features

Models

Descriptions

Use Cases

Constraints

Functional Extra-functional

Requirements

Figure 2: Three levels of requirements specifications.

The Product Vision collects the goals of the
system to be specified. The approach chosen here is
based on (Leffingwell, 1999). The system functional
perimeter is described through Use Cases, a standard
UML (Unified Modelling Language) approach
(Rumbaugh, 2004) (OMG, 2005) dedicated to that
purpose. These Use Cases are built upon the Product
Vision previously settled down and must support a
set of common rules described in the third level.
These rules may be business rules (functional
requirements), extra-functional requirements or
design constraints. The structure of these low-level
requirements is based on SysML, a UML Profile for
system engineering.

2.1 Product Vision

The Product Vision captures both the description of
the problems at hand and features expected to
address these problems. The Product Vision is not
expected to be complete and accurate, but it’s
expected to show the future system main drivers
clear enough to get all project stakeholders
understanding and support.

The problem statements permit to gain
agreement on the perceived problem. The purpose of
this step is to get a collective agreement about
what’s wrong with the way the business works
today. Once perceived problems are identified, we
have to find out the problems behind the problem, or
what contributes to the perceived problem. These
root problems are the one that should be addressed
by the future system. Each root-cause problem
should be expressed using the following statement
(table 1).

Table 1: Problem statement format.

The problem of Root cause problem statement
Affects People or processes affected
The result of which Contribution of the root cause

to the perceived problems
A convenient
solution should

Proposed solution and few key
benefits

The features are a high-level expression of
capabilities expected from the system. The features
are the solution space expression of the needs
expressed through the problem statement. A feature
is expressed in one or two natural language sentence
(often expressed by the user himself). No deep detail
is required, but it must cover all the needs raised by
the problems statements (Larman, 2001).

2.2 Use Cases Specification

The goal of the Use Case specification (figure 2) is
to describe the specification of the whole system
through usage scenario between the Actors (humans
or systems interacting with the system under design)
and the system considered as a black-box. The Use
Cases are described at two levels: The Use Cases
model and the Use Cases descriptions.

The Use Case model is a UML model which
describes the whole set of Use Cases and Actors
which covers the system functional perimeter. The
Use Case model can be organized in packages
(following functional areas, for instance) and are
expressed with Use Case diagrams. The following
figure (figure 3) shows a subset of the case study
using such kind of diagram.

Figure 3: Example of a Use Case diagram.

The Use Case description expresses the intended
behaviour. The UML is silent about what are the
elements of a Use Case description, even if it allows
the usage of state diagrams and activity diagrams
within the Use Cases. The Use Case are better
described through scenarios (often called “flow of
events”), where each step describes an interaction

ICEIS 2007 - International Conference on Enterprise Information Systems

32

from the actor to the system or reverse. These
scenarios may be expressed using text, with a short
and concise statement for each step description
(Cockburn, 2001). Three kinds of flow of events
require consideration (Bittner, 2002): the main flow
of events describes a successful scenario, alternative
flows of events are less used variants which occur at
some point in time during the main flow of events
and errors flows of events describing steps leading
to a Use Case failure.

The requirements described in the third level of
description may be referenced inside the flow of
events when they apply (Wiegers, 1999).

2.3 Requirements Modeling

The Requirements Specifications (figure 2) describe
and structure three kinds of elements:

Functional requirements (Business rules):
specific processing rules or behavior which must be
enforced during design.

Extra-functional requirements: qualities the
system must have, putting aside the functional
considerations. The IEEE 830.1998 (IEEE, 1998)
call them “system attributes” for the most part, as
(Wiegers, 1999) and (Sommerville, 1997) do.
SysML (OMG, 2006) also proposes as a non-
normative extension, a set of 4 extra-functional
requirements types. However, we found that the
most useful categorization come from the Volere
process (Robertson, 2006), which define 8 types of
extra-functional requirements (look and feel,
usability, performance, operational and
environmental, maintainability, security, cultural,
legal).

Constraints: restrictions on the degree of
freedom we have in providing a solution
(Leffingwell, 1999). They falls into several
categories: environment (limited memory or time),
technological (standard platform defined), normative
or economic.

Functional and extra-functional requirements
support properties definitions. Again, standards such
as (IEEE, 1998) or (OMG, 2006) proposes few ones
but it must be adapted to fits organization or projects
needs. We choose to use SysML, because this UML-
based notation allows not only requirements
definitions and properties associations, but also
relationships either between requirements or
between requirements and other modelling elements
(such as test cases or classes).

The example bellow (figure 4, borrowed from
the normative document), represent two main
requirements decomposed in four child
requirements, with two of them copied from a
master (reusable) requirement.

Figure 4: Example of a SysML requirements diagram.

3 VIEWPOINT SPECIFICATIONS

According to IEEE recommendation (IEEE, 2000),
architectural description of software-intensive
systems should relay on different viewpoints. This
approach leads to multi-dimensional specifications
where each dimension addresses a particular
concern. Hence, complexity is handled by focusing
on relevant aspects of each viewpoint. However, this
strategy also leads to a global consistency issue.
Each viewpoint specification must be locally
consistent (i.e. enforces viewpoint constraints) but
also globally consistent (i.e. does not contradict
other viewpoint specifications).

To illustrate this viewpoint approach, we use in
the Reference Model for Open Distributed
Processing (RM-ODP) whose key concepts are
recalled hereafter. Then, we refers to related works
on the global consistency issue of this kind of
approach. Finally, we focus on the Enterprise
viewpoint concepts that are mainly concerned by the
bridging with requirements.

3.1 RM-ODP Viewpoints

RM-ODP recognizes five viewpoints: Enterprise,
Information, Computation, Engineering and
Technology.

Identifying those viewpoints allows the system
specification to express at the same time but
distinctly the business the Information System
supports (Enterprise Viewpoint), the way it is
modeled in the computer system regarding
information and functions (Information Viewpoint,
Computational Viewpoint, Engineering Viewpoint)
and the technical choices of the computer system
mapping user requirements (Engineering Viewpoint,
Technology Viewpoint).

REDUCING REQUIREMENTS TO EIS SPECIFICATIONS GAP USING RM-ODP ENTERPRISE VIEWPOINT

33

The key points of RM-ODP are the completeness
of its concepts and structuring rules and the
relevance of its abstraction levels.

3.2 Global Consistency

Global consistency of such multi-dimensional
systems may be ensured by correspondence rules
between viewpoint specifications. These latter must
be verified at the construction of the viewpoint
specification and during its evolution.

DASIBAO and ODAC approaches illustrate
global consistency management at the building time.
The ODAC project (Open Distributed Applications
Construction) (Gervais, 2003) carried out by the
LIP6 laboratory and the DASIBAO project (Method
based on ODP for the Architecture of Information
Systems) (Picault, 2004) carried out by EDF R&D
define, each one of both projects, an approach for
building consistent ODP systems. The system is
built in following steps and by applying
transformation rules to the models. However, this
consistency is lost if one of the models is modified.
Also, they impose a "top-down" approach which is
not adapted to evolutionary systems.

EVOS framework manages correspondence links
and permits to use them during evolution. This
framework (Yahiaoui, 2006) is based on a Link
Meta-Model and is implemented as an Eclipse plug-
in. The Link Meta-Model goes beyond simple
traceability because it contains active rules that
permit impact management.

3.3 Enterprise Viewpoint

First of all, a system is described from an Enterprise
viewpoint by its main characteristics, as shown in
figure 5 and, in a more detailed manner, in figure 6

NB: All the figures of this section are borrowed
from the normative document (ISO, 2006).

Figure 5: Main enterprise system concepts.

An enterprise specification describes an ODP
system (a kind of enterprise object) and relevant
aspects of its environment. The ODP System has a
scope, which defines the behaviour that the system

is expected to exhibit. An enterprise specification
has a field of application which describes its
usability properties.

Figure 6: Community and behaviour concepts.

A community is a configuration of enterprise
objects, formed to meet a single objective, which is
expressed in a contract that specifies the required
behaviour of the community. The configuration of a
community is expressed in the way enterprise
objects interact in fulfilling roles intended to meet
the objective of the community concerned. A
behaviour is expressed as a collection of actions
(things that happen), with constraints on when they
occur.

Figure 7: Policy concept.

A policy (figure 7) is a set of rules related to a
particular purpose. It identifies the specification of
behaviour, or constraints on behaviour, that can be
changed during the lifetime of the ODP system, or
that can be changed to tailor a single specification to
apply to a range of different ODP systems.

The specification of a policy includes:
– the name of the policy;
– the rules, expressed as obligations, permissions,
prohibitions and authorizations;
– the elements of the enterprise specification
affected by the policy;
– behaviour for changing the policy.

ICEIS 2007 - International Conference on Enterprise Information Systems

34

4 LINKING REQUIREMENTS TO
ENTERPRISE VIEWPOINT

The following case study is a partial description of
an supervisor system used in a scientific
environment (Salome, 2007). In this context,
supervision basically permits to model a study by a
graph of computing tasks (handled by physician or
mathematical problem solvers). We’ve limited the
study scope but haven’t oversimplified the
requirements to keep them realistic. We also give
extracts of the enterprise specification in order to
exhibit some correspondences between requirements
and enterprise specification elements.

4.1 Requirements Specification

The supervisor system will provide a common
supervising infrastructure for the existing projects.
This mutualization should lead to developments and
maintenance costs reductions.

One example of problems statements is given in
the following table (table 2).

Table 2: Batch execution problem statement.

The problem of The batch execution of the
computation graph

Affects The graph user.
The result of
which

Is an unknown and unplanned
execution which could take time.

A convenient
solution should

Allows execution evaluation before
and during runtime. The execution
nodes distribution could also be
rebalanced accordingly.

Main stakeholders are graph designer and graph
user (table 3).

Table 3: Graph user stakeholder.

Profile Graph user
Key Responsibilities Production of study results
Deliverables Study results
Trends that make the
job easier or more
difficult

Visibility on the load
balancing
Visibility on the execution
state of the computation graph

Problems that
interfere with success

Initial context restoration after
the execution

Definition of success
for this user

Efficient execution of the
computation graph

Some examples of features are the following.

Instantiation of a coupling graph on deployment
architecture. A computation graph must be defined
independently from deployment considerations. The
execution configuration must be decided on a by
execution basis.
Older supervisors backward compatibility. The
target version of the supervisor system must be able
to handle graph definitions of previous supervisors.
Graph validation prior to execution. It must be
possible to check the graph validity and to get a raw
estimation of the graph execution. The Graph user
will then be able to adjust the configuration, based
on these data.

The use case model is structured in three
packages (figure 8).

Figure 8: Structure of the Use Cases model.

Graph definition: gathers all use cases for creation,
modification or import of coupling graphs.
Configuration: gathers the use cases on execution
nodes configuration and applications deployment.
Graph execution: gathers the use cases on running,
controlling and analyzing coupling graphs
executions.

The “graph execution” package contains the Use
Cases appearing on the following graph (figure 9).
NB: Figures 9 and 10 have been intentionally left in
French. We will come back to this point in the
Conclusion section.

'Utilisateur de couplage'

'récupérer et analyser les résultats de
calculs et les résultats intermédiaires'

'executer en batch un graphe'

'Suivre avancement des traitements'

'Executer interactivement un graphe'

'Valider et estimer une execution'

Figure 9: Use case diagram for the “graph execution”
package.

'graph definition'

'graph execution'

configuration

REDUCING REQUIREMENTS TO EIS SPECIFICATIONS GAP USING RM-ODP ENTERPRISE VIEWPOINT

35

Low-level requirements and constraints are
described in SysML (figure 10).

Figure 10: Example of requirement in SysML.

4.2 Enterprise Viewpoint Specification

This specification is expressed using the UML
profile for ODP Enterprise specifications defined in
(ISO, 2006). UML stereotypes are derived from the
concepts described in section 3.3.

At the global level, the enterprise specification
of the supervisor system gives the field of
application and the communities of the supervision
system (figure 11).

Figure 11: Supervision system description.

As for the field of application, the specification
of the supervision system assumes a scientific
environment, such as a research center, in which a
supervisor system maintains a collection of studies
organized as graphs of computational tasks which
may be described by graph designers and used by
different kinds of graph users, their kind depending
of their respective skills. The supervisor system
deploys the computational tasks on a network of
computers and executes them according to the
scheduling rules described in the graphs.

Among the three main communities recognized

at the top level of the description, the supervisor
community is greater detailed in figure 12.

The objective of the supervisor system is defined
as to execute computational graphs designed by
graph designers and launched by graph users in an
efficient and secure manner. Enterprise objects,
behaviour and policies of the supervisor system are
also described. A sample of supervisor policy is
given in figure 13.

Figure 13: Interactive execution policy.

In the interactive execution mode, the graph
execution is controlled by the graph user. It may be
started, stopped, suspended or resumed. The
execution state may be accessed and includes state

Figure 12: Supervisor community contract.

ICEIS 2007 - International Conference on Enterprise Information Systems

36

of the graph and of the current computational task.

4.3 Traceability between Requirements
and Enterprise Viewpoint
Specification

The case study described using the requirements
formalism in section 4.1 and the enterprise language
in section 4.2 has put into light tightly-related
concepts in both specifications. These relationships
may be generalized for traceability purpose. Some of
those are summarized in the following.

First of all, the concept of “objective” in the
ODP enterprise language corresponds to the
“feature” concept in requirements notation. For
instance, the objective expressed in the enterprise
specification (supervisor objective of figure 12) is
related to “instanciation d’un graphe sur une
architecture de déploiement” and “paramétrage et
vérification préalable à l’exécution” features of the
requirements specification.

Then, “field of application” of the system may
be expressed by extra-functional requirements of
usability, maintainability, cultural or legal kind. Its
“behaviour” may be illustrated by use cases in the
requirements specification.

Lastly, extra-functional requirements of look and
feel, performance, operational and environmental, or
security kind may be handled by policies in the
enterprise specification.

5 CONCLUSION

Requirement management is a key factor of success
for computer-based systems. However, it is not
always easy to link requirement expressions to their
representations as specification elements or as
software components.

We have described, in this paper, an experiment
whose goal was to link requirements expressions
including SysML requirements diagrams to high-
level system specifications, here ODP enterprise
specifications using UML4ODP enterprise profile.

The experiment has demonstrated the feasibility
of the approach and has consolidated our vision of
the complementary qualities of the various notations.
ODP enterprise language is a bit too formalized for
end-user requirement expressions but is the ideal
candidate to bridge the gap between these letter and
the more technical specifications of the system.
Moreover, this coupling of specifications appears to

be more than a simple duplication. It enables, as for
a very simple example, traceability between terms
expressed in French (easier access by French-only
speaking end-user) and model elements named in
English (easier externalisation end reuse).

With regards to specification languages, even
though they are two UML dialects, SysML and
UML4ODP enterprise languages may not be
supported in the same UML tool. In this case,
bridging the gap implies the additional technical
challenge of making UML tools interchange data
using the same XMI (XML mete-modeling
Interchange) and UML versions.

We also seek to provide support for links
established between requirements and enterprise
specifications. As UML Trace may appear
insufficient, alternative solutions may be built on top
of already mentioned EVOS Link Meta-model (see
section 3.2) or QVT (Query View Transformation)
technologies.

REFERENCES

Bittner, K., Spence, I., 2002. Use Case Modeling. Addison
Wesley.

Cockburn, A., 2001. Writing Effective Use Cases. Addison
Wesley.

Dick, J., 2005. Design Traceability. In IEEE Software
2005, issue 6.

Egyed, A., Grünbacher, P., 2004. Identifying
Requirements Conflicts and Cooperation: How quality
attributes and automated traceability can help. In
IEEE Software 2004, issue 6.

Gervais, M.P., 2003. ODAC: An Agent-Oriented
Methodology Based on ODP. Journal of Autonomous
Agents and Multi-Agent Systems, Kluwer Academic
Publishers, Vol. 7, n¬°3, pp199-228, 2003.

IEEE, 2000. Recommended practice for architectural
description of software-intensive systems. IEEE Std
1471–2000.

IEEE, 1998. Recommended Practice for Software
Requirements Specifications. IEEE-830-98.

ISO, 1995. Open Distributed Processing - Reference
Model Part 1-4. ISO/IEC 10746-1..4 :1995, ITU-T
901..4, 1995.

ISO, 2006. Information Technology - Open Distributed
Processing - Use of UML for ODP system
specifications. Final Committee Draft. ISO/IEC
JTC1/SC7 WG19.

Larman, 2001. Applying UML and Patterns: An
introduction to object-oriented analysis and design
and design and the Unified Process, second edition.
Prentice Hall.

Leffingwell, D., Widrig, D., 1999. Managing Software
Requirements, a unified approach. Addison Wesley.

REDUCING REQUIREMENTS TO EIS SPECIFICATIONS GAP USING RM-ODP ENTERPRISE VIEWPOINT

37

OMG, 2006. OMG System Modeling Language (OMG
SysML) Specification. OMG 2006.

OMG, 2005. Unified Modeling Language: Superstructure,
version 2.0. OMG 2005.

Picault, A., Bedu, P., Le Delliou, J., Perrin, J. , Traverson,
B., 2004. Specifying Information System Architectures
with DASIBAO - A standard based method. 6th
International Conference on Enterprise Information
Systems. Porto, Portugal, April 2004.

Robertson, S., Robertson, J., 2006. Mastering the
Requirements Process, 2nd edition. Addison Wesley.

Rumbaugh, J., Jacobson, I., Booch, G., 2004. The Unified
Modeling Language Reference Manual, second
edition. Addison Wesley.

Salome, 2007. http://www.salome-platform.org/.
Sommerville, I., Sawyer, P., 1997. Requirements

Engineering, a good practical guide. John Wiley &
sons.

Wiegers, K., 1999. Software Requirements. Microsoft
press 1999.

Yahiaoui, N., Traverson, B., Levy, N., 2006. Evolution
management framework for multi-dimensional
Information Systems. 8th International Conference on
Enterprise Information Systems. Paphos, Cyprus,
August 2006.

ICEIS 2007 - International Conference on Enterprise Information Systems

38

