
EXPOSING WORKFLOWS TO LOAD BURSTS

Dmytro Dyachuk and Ralph Deters
 Department of Computer Science, University of Saskatchewan, Saskatoon, Canada

Keywords: Service-Oriented Architecture, Workflow, Performance, Bursts.

Abstract: Well defined, loosely coupled services are the basic building blocks of the service-orientated design-
integration paradigm. Services are computational elements that expose functionality (e.g. legacy
applications) in a platform independent manner and can be described, published, discovered, orchestrated
and consumed across language, platform and organizational borders. Using service-orientation (SO) it is
fairly easy to expose existing applications/resources and to aggregate them into novel services called
composite services (CS). This aggregation is achieved by defining a workflow that orchestrates the
underlying services in a manner consistent with the desired functionality. Since CS can aggregate atomic
and other CS they foster the development of service layers and reuse of already existing functionality. But
by defining workflows, existing services are put into novel contexts and exposed to different workloads,
which in turn can result in unexpected behaviours. This paper examines the behaviour of sequential
workflows that experience short-lived load bursts. Using workflows of varying length, the paper reports on
the transformations that loads experience as they are processed by providers.

1 INTRODUCTION

Service-Orientation (SO) (Four Tenets Of Service
Orientation) is a design & integration paradigm that
is based on the notion of well defined, loosely
coupled services. Within SO, services are viewed as
computational elements that expose functionality in
a platform-independent manner and can be
described, published, discovered, orchestrated and
consumed across language, platform and
organizational borders. While service-orientation
(SO) can be achieved using different technologies,
Web Services (WS) (Natis, 2003) are the most
commonly used, due to the standardization efforts
and the available tools/infrastructure (Apache Axis).
The Service-Oriented Architecture (SOA) (Chatarji,
2007), first introduced by Gartner in 1996 (Natis,
2003), is a conceptual framework that identifies
service-consumers, service-providers and a registry
trough which providers publish and consumer
discover.

In a service-oriented system, services are offered
by service providers that register them with
registries (e.g. UDDI). Service consumers (aka
clients) discover at runtime service providers by
simply queering the registries.

Figure 1: SOA.

Upon discovering a service provider, the
consumer obtains from the provider the meta-data of
the service in form of an XML document called Web
Service Definition Language (WSDL) (Web Service
Definition Language) that is then used to establish a
binding to the provider (e.g. generation of stubs).

Since services are high-level constructs that hide
implementation details, consumers can easily bind to
unknown services across platform and language
barriers, resulting in a system with very dynamic
functional dependencies between its components.
Consequently service-orientation supports a loose
coupling between consumers and providers,
allowing for agile and open systems. One of the

218
Dyachuk D. and Deters R. (2007).
EXPOSING WORKFLOWS TO LOAD BURSTS.
In Proceedings of the Ninth International Conference on Enterprise Information Systems - DISI, pages 218-225
DOI: 10.5220/0002382702180225
Copyright c© SciTePress

most profound implications of the loose-coupling is
the ease with which components (e.g. legacy
systems) can be connected and aggregated into new
services called composite services (CS). Composite
Services (CS) aggregate multiple services into one
logical unit to accomplish a complex task (e.g.
business process). This aggregation is achieved by
defining a workflow that orchestrates the underlying
services in a manner consistent with the desired
functionality. Since CS can aggregate atomic and
other CS they foster the development of service
layers and reuse of already existing functionality.
This gave rise to the idea of service networks in
which resources and workflows are shared across
organizational boundaries.
Over time many different approaches for modelling
business processes have been developed and
consequently there is no shortage of languages or
concepts for implementing composite services.
Below are two different approaches (sequential
workflow and state-machine workflow) of modelling
a business process that orchestrates three services.

Figure 2: Business Process.

While a sequential workflow (left) models the
business process from a process-driven viewpoint, a
state-machine workflow (right) models it as a finite
state machine in which state transitions are the result
of events.
Sequential workflows are prescriptive and like a
script or program define to the order in which the
operations (underlying services) are executed.
Using constructs such as loops, conditional
statements and basic exception handling they
assume a scenario in which the workflow is in
control since the path of execution is determined by
workflow internal factors. State-Machine based

workflows follow the opposite approach, since they
rely on events to trigger state transitions. State-
machine workflows are often used for business
processes that are event-driven (e.g. involve human
feedback) and that should therefore enable many
paths of execution. Sequential workflows on the
other side, are most often used for implementing
machine workflows (e.g. process automation) that
are sequential in nature, and have little or no human
involvement.

As already mentioned, the aggregation of
services enables the definition of new services and
thus layers of services arise. But by defining
workflows existing services that may expose local
resources (e.g. legacy applications) are also
subjected to novel and potentially dangerous
workloads. This is particularly worrisome for
sequential workflows that automate processes and
are therefore more likely to experience overloads
that can cause ripple effects throughout a network of
services.

This paper focuses on the behaviour of
sequential workflows that experience short-lived
load bursts. Section two presents a brief discussion
of general server behaviour. This is followed by the
presentation of the experimental setup (section
three) and the results of exposing workflows to
different loads (section four). The paper concludes
with a summary and an outlook on future work.

2 BEHAVIOUR OF SINGLE
SERVERS

If a service provider does not share resources with
other providers (e.g. no two providers expose the
same data base), it can be modelled as a server. If
such a provider is capable of handling multiple
requests simultaneously it must assign resources for
dealing with the incoming requests. Assuming that
servers have a finite amount of resources and that
each new consumer request will (temporary) reduce
the available server resources, it is interesting to
examine server behaviours under various loads.
Studies (Heiss, 1991) show that servers respond in a
common way to loads.
If a server is gradually exposed to an ever-increasing
number of service requests it is possible to observe
three distinct stages, namely under-load, saturation
and over-load. At the beginning the server
experiences a load that is below its capacity (under-
load). As the number of requests is increased, the
throughput (number of completed jobs per time unit)
improves. As the rate of incoming requests increases

EXPOSING WORKFLOWS TO LOAD BURSTS

219

the server will experience its saturation point (a
peak load). This saturation marks the point where
the server is fully utilized and operating at its full
capacity. The saturation point marks also the highest
possible throughput. Further increases of the rate at
which the requests arrive will now lead to an
overload or thrashing effect. The service capacity is
exceeded and “an increase of the load results in the
decrease of throughput” (Heiss, 1991). Typically the
main reasons for a server to experience thrashing
are:

• Resource contention: overload of the
physical devices such as CPU, memory,
hard drive, etc.

• Data contention: a contention caused by
locking.

3 WORKFLOWS & LOADS

While the behaviour of a single server towards loads
is fairly well researched, there has been little work
on the impact of loads on sequential workflows.

Figure 3: Sequences with and without Branching.

Depending on the used constructs (e.g. loops,
conditional statements, parallel execution etc.) a
sequential workflow can execute operations in a
variety of ways.
However, for the analysis of the basic behaviours of
workflows it seems sufficient to limit the discussion
to the sequence pattern since the more advanced

execution paths can be treated as extensions and/or
variations of the sequence pattern.
Our previous studies with currently used Web
Services platforms (e.g. AXIS 1.x, AXIS 2.x and the
Windows Workflow Foundation) (Apache Axis,
Eclipse, Visual Studio Home) showed that the
behaviour of providers can be simulated (XJ
Techologies) (with sufficient accuracy) by use of
fairly simple models. Instead of modelling the
different resources of providers (e.g. processor,
memory, network etc.) and trying to emulate page
faults, context switches or locking of resources, it is
sufficient to combine all resources into one type that
is distributed equally over all current requests
(Processor Sharing is the standard scheduler for
providers).

3.1 The Impact of a Single Short Burst

In the first experiment workflows of various lengths
were exposed to a load of 100 requests. The
providers in the workflow are to process jobs that
require 100 % of the resources for 1.2 seconds (load
= 120 %). The impact of the 100 requests on the first
provider can be seen by the residence times of the
requests (time it takes to process each request).

Figure 4: Residence Times of Requests on 1st Provider.

Since each request requires 120 % of resources per
second, the provider encounters immediately a light
overload. This is seen by the residence times (shown
in milliseconds) that begin to rise until no longer
new requests arrive. The rise in residence times is
due to the overloading of the server, requests come
in faster than they are completed. However since the
burst consists of only 100 requests, there is a point
when no new requests are received and the
completion of requests frees up resources, enabling
an ever faster processing of the remaining requests.
It is noteworthy that the decline is steeper than the
rise.

0

5000

10000

15000

20000

25000

30000

35000

40000

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97

Request

Ti
m

e

ICEIS 2007 - International Conference on Enterprise Information Systems

220

0

200

400

600

800

1000

1200

1400

1600

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

Request

Ti
m

e

Figure 5: Interdeparture times for 1st Provider.

The corresponding job interdeparture times
(measured in milliseconds) of the first provider are
shown in fig. 5. There is a brief warm-up period in
which the interdeparture times fluctuate. This is
followed by a phase in which the interdeparture
times gradually stabilizes followed by a rapid
decent. This transition from stabilized interdeparture
time to rapid decent marks the point when no longer
new jobs arrive and the existing ones enjoy more
and more resources which allow them to depart
increasingly faster.

The most interesting aspect of the displayed
departure rates is that a short overload (burst) with
of a constant arrival rate (1 job/sec), leads to a
departure rate that is no longer constant. Figure 5
shows that ca. 70 % of the requests have a departure
rate of 1/1.4 job/sec and ca. 25 % a rate above 1
job/sec second (speedup). The impact of this
transformation can be seen when looking at the
interdeparture times of the second provider.

Figure 6: Interdeparture times for 2nd Provider.

The departure rate of the second provider seems at
first glance very different from that of the first one.
To explain the behaviour of the second provider we
combined both graphs. As can be seen in figure 7,
the departure rates for the second provider match
those of the first provider for nearly 70 % of the
requests. The departure rate of the 2nd provider
differs from the 1st provider only in the last 30 %.
The spike starts exactly when the jobs of the 1st

provider begin to arrive at 1.2 job/sec As soon as
they arrive faster than 1.2 job/sec, the 2nd provider
begins to experience a gradual overload that leads to
slowdown in the departure rates (peak emerges). An
interesting aspect in the departure rates of the 2nd
provider is that the rates decrease and increase at a
faster rate than that of the 1st provider. This effect
can also be seen when more providers are observed
(fig. 8). With every additional provider a new spike
emerges.

0

500

1000
1500

2000

2500

3000

3500
4000

4500

5000

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

Request
Ti

m
e

Figure 7: Interdeparture times of Providers 1 & 2.

1 7

13 19 25 31 37 43 49 55 61 67 73 79 85 91 97

S1

0

1000

2000

3000

4000

5000

6000

7000

8000

Ti
m

e

Request

Figure 8: Interdeparture times of the first five Providers.

3.2 Multiple Short Bursts

To simulate short bursts the requests arrive now in
10 groups of 100 requests (arrival rate 1
second/request). Each group of 100 requests is
separated by a period of 100 seconds (no requests).
Again the providers in the workflow are exposed to
jobs that require 100 % of the resources for 1.2
seconds (load = 120 %).

-1

1999

3999

5999

7999

9999

1 67 133 199 265 331 397 463 529 595 661 727 793 859 925 991

Request

D
ep

ar
tu

re
 R

at
e

Figure 9: Interdeparture times of 1st Provider (enlarged).

0

500

1000
1500

2000

2500

3000

3500
4000

4500

5000

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

Request

Ti
m

e

EXPOSING WORKFLOWS TO LOAD BURSTS

221

Figures 9 & 10 display the interdeparture times of
the 10 bursts from the first server. As can bee seen
in figure 9 (zoomed) the familiar burst pattern (fig.
5) appears.

-1

9999

19999

29999

39999

49999

59999

69999

79999

89999

1 67 133 199 265 331 397 463 529 595 661 727 793 859 925 991

Request

De
pa

rtu
re

 R
at

e

Figure 10: Interdeparture times of 1st Provider.

The departure rates of the second provider show a
similar picture. Once again one notices that each
pulse produces the already known burst pattern of a
second provider (fig. 6). In addition one can also
notice that the gap between the burst once again has
been reduced.

-1

9999

19999

29999

39999

49999

59999

69999

1 52 103 154 205 256 307 358 409 460 511 562 613 664 715 766 817 868 919 970

Request

De
pa

rtu
re

 R
at

e

Figure 11: Interdeparture Times of 2nd Provider.

This gradual reduction of the original gap
continues as more providers are introduced.

0

5000

10000

15000

20000

25000

1 52 103 154 205 256 307 358 409 460 511 562 613 664 715 766 817 868 919 970

Requests

Ti
m

e

Figure 12: Interdeparture Times of 6th Provider.

When the interdeparture times of each provider
are presented in one graph (concatenated) an
interesting picture emerges. As shown in figure 13,
the high spikes that mark the gap between the

original bursts gradually disappear. This means that
as more providers are chained in a sequence pattern
the more the bursts merge into a completely new
pattern.

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

Requests

Ti
m

e

Figure 13: Concatenated interdeparture times of the first 8
Providers.

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

Requests

Ti
m

e

Figure 14: Concatenated interdeparture times of the first
20 Providers.

Figure 14 shows the results of exposing a sequential
workflow consisting of 20 providers to the 10 bursts.
The spikes that mark the original gaps between two
bursts gradually shrink until they totally disappear
(8th provider). Starting at the 9th provider the
phenomenon of emerging spikes (as seen in section
3.1) begins to be the only reason for spikes. As a
result of these experiments we conclude that a
sufficiently long sequential workflow can transform
an input pattern with bursts into a completely
different output pattern.

3.3 The Impact of a Constant Load
between Short Bursts

To simulate short bursts on top of a constant
medium load, 1000 requests are used. Again 10
groups of 100 requests are formed. However this
time the groups have alternating arrival rates shown
in fig 15. The 1st, 3rd, 5th, 7th and 9th group have an
interarrival time of 2 seconds and the 2nd 4th 6th 8th
and 10th an interarrival time of 1 second. Again the
providers in the workflow are exposed to jobs that

ICEIS 2007 - International Conference on Enterprise Information Systems

222

require 100 % of the resources for 1.2 seconds (load
= 120 %).

0

500

1000

1500

2000

2500

1 52 103 154 205 256 307 358 409 460 511 562 613 664 715 766 817 868 919 970

Request

Ti
m

e

Figure 15: Alternating interarrival times (arrival rates).

0

500

1000

1500

2000

2500

1 66 131 196 261 326 391 456 521 586 651 716 781 846 911 976

Request

Ti
m

e

Figure 16: Interdeparture times of 1st Provider.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

1 66 131 196 261 326 391 456 521 586 651 716 781 846 911 976

Request

Ti
m

e

Figure 17: Interdeparture times of 2nd Provider.

Figure 16 shows the interdeparture times of the first
provider. As soon as the arrival rate switches from 2
to 1 second the provider encounters an overload.

As a result of this overload the already familiar
pattern of the provider emerges with a brief warm-
up period in which the departure rates fluctuate. This
is followed by a phase in which the interdeparture
time gradually stabilizes followed by a rapid decent.

The departure rates of the second provider are
also very similar to those of the previous runs. Only
when longer sequences are observed significant
differences become visible [fig. 17].

As seen in figure 18 & 19 larger sequences of
providers transform faster into more chaotic
sequences.

0

2000

4000

6000

8000

10000

12000

Request

Ti
m

e

Figure 18: Concatenated departure rates of the first 8
Providers.

0

2000

4000

6000

8000

10000

12000

14000

16000

Request

Ti
m

e

Figure 19: Concatenated interdeparture times of the first
20 Providers.

These results indicate that short lived bursts have a
significant large impact on workflows that already
experience a constant medium load.

3.4 The Impact of Admission Control

It is well-known that overload situations lead to a
decline in service throughput. Heiss and Wagner
(Heiss, 1991) proposed to use an adaptive load
control as a means of admission control. This
prevents overloads, by first determining the
maximum number of parallel requests (e.g.
maximum number of simultaneous consumers) and
then buffering/queuing new requests once the
saturation point has been reached. Adding admission
control to an already existing service (e.g. CS) can
be achieved by using a proxy that shields/hides the
original provider and thus enables the introduction
of a transparent admission control and scheduling
(Cherkasova 1998, Elnikety 2004, Harchol-
BalterSchroeder, 2003).

To test the impact of an admission control each
of the providers is shielded by a proxy that controls
the maximum number of parallel request for each
service provider (proxy introduces no overhead).

Figure 20 shows the result of limiting the
concurrently processed requests to 1 for each
provider when the alternating load of section 3.3 (2

EXPOSING WORKFLOWS TO LOAD BURSTS

223

and 1 second arrivals) is used. As expected, setting
limit of concurrently processed requests to 1 for
each provider ensures that no transformations of the
original arrival rates occur.

0

500

1000

1500

2000

2500

Request

Ti
m

e

Figure 20: Interdeparture times of first 9 Providers (max
1).

Changing the limit to 10 concurrent requests already
leads to transformations (fig. 21).

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Request

Ti
m

e

Figure 21: Interdeparture times of first 9 Providers (max
10).

When examining the first provider, one can also see
the emergence of an alternating pattern. Since the
provider allows only 10 concurrent requests at any
moment in time the leaving of completed and the
entering of new requests results in a reoccurring
pattern of available resources.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

Request

Ti
m

e

Figure 22: Interdeparture time of 1st Providers (max 10).

By concatenating the output of the first 20 providers
one can see how the interdeparture time becomes
increasingly chaotic.

0

2000

4000

6000

8000

10000

12000

14000

Request

Ti
m

e

Figure 23: Interdeparture times of 20 providers (max 10).

Since the load scenario of section 3.3 consisted of a
constant 60 % load that increased to 120 % in the
bursts it is interesting to compare it to the lighter
load of section 3.2 (no constant load only 120 % in
bursts).

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

Request

Ti
m

e

Figure 24: Interdeparture time of 20 providers (max 10).

As can be seen in figure 24, the gradual decline of
the gap is still visible in this lighter workload
scenario. However by shielding the proxy there are
less distortions of the original workload.

It is however important to note that the positive
impact of the admission control is also a result of the
constant loads each request imposes. As soon as an
exponential distribution of arrivals and loads is
introduced it becomes difficult to determine what the
maximum amount of concurrent request should be
for each given moment in time.

4 CONCLUSIONS

This paper focuses on the behaviour of sequential
workloads that experience short periods of overloads
(bursts). Two basic scenarios were used, short bursts
that were separated by a pause of requests and bursts
that appeared between a medium (60 %) load.

ICEIS 2007 - International Conference on Enterprise Information Systems

224

The results of the experiments showed:
1) Workflows that encounter even short-lived

overloads distort the original arrival rates.
2) The more providers a workflow contains,

the more chaotic the resulting departure rate
becomes.

3) The impact a burst has depends on the load
surrounding it. Bursts that are embedded in
a medium load have a bigger impact than
those embedded in a light or no load.

4) Adding an admission control reduces the
distortion introduced by the workflow.

These results show that there is a need for a load and
configuration management of sequential workflows
that can encounter bursts. Only if tools for
monitoring/tracking/routing requests and loads are
available will it become feasible to ensure
dependable services in a complex service network.

5 FUTURE WORK

Based on the presented findings our future work will
focus on:

1) Further investigation into workflow
behaviour. The investigated workflows are
still very basic and don’t reveal the impact
conditional statements or loops will have.

2) The development of mechanisms to
monitor and manipulate the loads
workflows experience.

3) The study of seamless replication as a
mechanism to soften the impact of sudden
bursts.

4) Investigating if and how workflows can be
annotated (semantic marking) to enable
better management.

5) Provenance of workflow behaviours.

REFERENCES

Eclipse, http://www.eclipse.org/.
Apache Axis, http://ws.apache.org/axis/.
Four Tenets Of Service Orientation,

http://msdn.microsoft.com/msdnmag/issues/04/01/Indi
go/default.aspx.

Visual Studio Home, http://msdn.microsoft.com/vstudio/.
Web Service Definition Language (WSDL),
http://www.w3.org/TR/wsdl.

Chatarji, J., Introduction to Service Oriented Architecture
(SOA), http://w-ww.devshed.com/c/a/Web-Services/
Introduction-to-Service-Oriented-Architecture-SOA.

Cherkasova, L. (1998). Scheduling Strategy to Improve
Response Time for Web Applications, HPCN Europe
1998: Proceedings of the International Conference
and Exhibition on High-Performance Computing and
Networking, 1998, Springer-Verlag, 305-314.

Elnikety, S., Nahum, E., Tracey, J. And Zwaenepoel, W.
(2004). A method for transparent admission control
and request scheduling in e-commerce web sites,
WWW '04: Proceedings of the 13th international
conference on World Wide Web, 2004, ACM Press,
276-286.

Harchol-Balter, M., Schroeder, B., Bansal, N. And
Agrawal, M. (2003). Size-based scheduling to improve
web performance. ACM Trans.Comput.Syst., 21(2),
207-233.

Heiss, H. And Wagner, R. (1991). Adaptive Load Control
in Transaction Processing Systems, VLDB '91:
Proceedings of the 17th International Conference on
Very Large Data Bases, 1991, Morgan Kaufmann
Publishers Inc, 47-54.

Natis, Y.V. (12 April 2003). Service Oriented
Architecture. Gartner.

XJ TECHOLOGIES, Anylogic 5.5,
http://www.xjtek.com/2007.

EXPOSING WORKFLOWS TO LOAD BURSTS

225

