
STAH-TREE
Hybrid Index for Spatio Temporal Aggregation

Marcin Gorawski and Michał Faruga
Institute of Computer Science, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland

Keywords: Spatial databases, temporal databases, aggregation index, multiversion access methods.

Abstract: This paper presents a new index that stores spatiotemporal data and provides efficient algorithms for
processing range and time aggregation queries where results are precise values not an approximation. In
addition, this technology allows to reach detailed information when they are required. Spatiotemporal data
are defined as static spatial objects with non spatial attributes changing in time. Range aggregation query
computes aggregation over set of spatial objects that fall into query window. Its temporal extension allows
to define additional time constraints. Index name (i.e. STAH-tree) is English abbreviation and can be
extended as Spatio-Temporal Aggregation Hybrid Tree. STAH-tree is based on two well known indexing
techniques. R– and aR–tree for storing spatial data and MVB-tree for storing non-spatial attributes values.
These techniques were extended with new functionality and adopted to work together. Cost model for node
accesses was also developed.

1 INTRODUCTION

Nowadays, standard relational database systems are
not able to assure efficient processing for detailed
and aggregate queries over multidimensional spatial
data that have some non-spatial attributes changing
over time (‘spatio-temporal data’). There are many
reasons for that, naming the most important: (i)
multicolumn key for single object, (ii) spatial
relations are hard to model, (iii) large volume of
spatial data implies enormous number of temporal
data. Efficient handling of such data becomes more
and more urgent, as importance of telemetric
solutions and user requirements (concurrent users,
higher sampling rate, higher number of meters and
more demanding time constraints) grow rapidly.
Literature presents a number of dedicated solutions
for spatial data processing (R-trees, quad-trees,
…)(Guttman, 1984), (Beckerman, 1990),
(Manolopoulos, 2003), (Kamel, 1994) temporal data
processing (multiversion and overlapping
techniques) (Becker, 1996), (Bercken, 1996), (Tao,
2002) spatial aggregates processing (aR-tree, aP-
tree) (Zhang, 2002), (Tao, 2004), moving spatial
objects (TPR*-tree) (Tao, 2003) and finally
temporal aggregate processing (Zhang, 2001). But
no solution addressesing detailed and aggregate
queries for spatio-temporal data was found.

This paper presents new hybrid index based on
cooperating spatial (aR-tree) and temporal (MVB-
tree) indexes. These technologies were bounded
together and modified in order to provide requested
system properties.

2 MOTIVATING EXAMPLE

Last years were time of rapid growth of database
solutions especially based on relational model.
Despite many advantages this model is not
applicable for some solutions. Telemetric system is
one of those areas. Telemetric data are
asynchronously gathered from meters (gas, water…)
that have spatial location and unique identifier.
Measurement is characterized by a timestamp and a
meter identifier. Relational model for these data is
very easy to create. But continuous updates and
large volume of data cause query response time not
acceptable. To illustrate this problem lets assume
50000 spatial objects and data acquisition performed
every hour. The volume of temporal data is reaching
36 millions after a month (0,5 billion after a year)
Efficient searching, aggregating or processing
becomes impossible even with usage of large
computer systems. Such telemetric system can be
used in two modes. Normal user requires access to a
detailed (history of changes during last month) and

113
Gorawski M. and Faruga M. (2007).
STAH-TREE - Hybrid Index for Spatio Temporal Aggregation.
In Proceedings of the Ninth International Conference on Enterprise Information Systems - DISI, pages 113-118
DOI: 10.5220/0002386601130118
Copyright c© SciTePress

aggregate (average energy consumption within a
year) data about his energy consumption. Time
constraints are not too high. On the other hand,
producer of specific medium (gas, water, etc.)
requires aggregate information about meters that are
located in a specific region in various time scales
(year summary, predicting future usage). Answer
time should be known in advance and should be
short.

3 MODIFIED AR-TREE

AR-tree is one of two applied indexes. R-tree family
indexes are widely recognized and described in
details in literature (Manolopoulos, 2003),
(Beckerman, 1990), (Guttman, 1984), (Kamel,
1993), (Kamel, 1994). This paper put emphasis on
modifications that were introduced to base the
structure and algorithms.

Described system uses static R-trees (spatial data
are known in advance, the algorithm builds tree from
bottom to top. Such indexes are characterized by
maximum node capacity usage. AR-Hilbert Tree
(implementation based on (Kamel, 1994) and
KNNR-tree (developed in previous research) is used.

These trees were extended with aggregate info
(stored in each node) about number of spatial objects
contained in each sub tree (count aggregate). Every
node is identified with a global unique identifier.

3.1 Specific Queries

This paragraph presents types of spatial queries that
are used in the implementation. In all the cases
query area is determined by a rectangle Q Range
Query (RQ). This query is identical as in case of
standard R-tree. It retrieves all objects that intersects
Q Aggregate Query (AQ). This query was inspired
by the range aggregate query. Query result contains
aggregate value and identifiers of objects, leaves and
nodes that are contained in Q. In other words, query
returns objects that are contained in query range
despite of their level. Update Query (UQ). Two
input parameters (identifier and MBR) are used to
find specific object. MBR is used to reach leaf level
and identifier is used for filtering. List of identifiers
located on search path from root to leaf is returned.
This list is used to update the temporal index.

4 MODIFIED MVB-TREE

STAH-tree uses MVB-tree that was presented in
(Becker, 1996), (Tao, 2002). This paragraph
describes modifications required for STAH-tree.

Single temporal data entry is described with
unique identifier (ID) and temporal validity range
(T1,T2). It presents measurement made in T1 for
object identified by ID. Value is valid till T2.

Base MVB-tree version was designated for
timestamp queries for single dimensional data and
reaches asymptotically optimal node access cost.
STAH-tree introduces modifications to achieve high
efficiency for other query types.

4.1 Structural Modifications

This paper presents two structural modifications of
the MVB-tree structure. There is no limitation to use
them at the same time. Both require additional
storage space and both accelerate query processing.

4.1.1 Reverse Pointers

Reverse pointers is a technique for efficient time
range query processing. Every entry is connected
with previous measurement with a pointer – similar
to backward-links presented in (Bercken, 1996).

Pointer is created when new measurement is
added into the MVB-tree as an insertion procedure
locates previous version by default. With the
pointers it is possible to retrieve all measurements
for single object. Time range query finds object
version (in T2) and follows reverse pointers till value
for T1 is found. This approach is optimal in terms of
node accesses as it visits leaves containing
measurements changes and traverse tree height only
once.

4.1.2 Temporal Aggregates

There is a number of applications for which access
to a detailed data is not important or is forbidden and
emphasis is put on fast retrieval of aggregates and
summaries. STAH-tree is designed to answer
aggregate queries in efficient manner, but it also
allows to reach detailed data as a standard R-tree and
MVB-tree does. It also answers detailed time range
queries when reverse pointers are used.
Time range aggregate query summarizes or
aggregates values for object with identifier equal to
ID in given time range (T1,T2). Each entry in
modified MVB-tree contains data that aggregates
whole history of a specified object. Thanks to that it
is possible to answer aggregate query with two
timestamp queries and some additional computation

ICEIS 2007 - International Conference on Enterprise Information Systems

114

of final results based on the retrieved values. First
query is executed for T1 and the second for T2. It is
worth mentioning that MVB-tree is asymptotically
optimal for this type of queries (Becker , 1996).

This technique was inspired by aP-tree (Tao,
2004). It gathers aggregates during measurement
update. Beside value update (detailed data) system
stores aggregates selected by user (sum, average
etc.). These additional data increases space
consumption and update time (by constant factor)
but decreases answer time as aggregate computation
is done once at the load time.

4.2 Group Processing Algorithm

Group processing algorithm uses previously
described modified MVB-tree. It is based on an
assumption that I/O operations dominate CPU cost.
Multiple objects are queried in a single operation (at
a single timestamp). It calls only these nodes that
would be accessed by any of single queries. Many
nodes that would be accessed multiple times are
loaded only once. Further enhancement includes key
sorting. This solution increases CPU cost and
response time for single query. Amortized cost is
many times lower but there is upper boundary for
number of objects in query CPU cost becomes
dominant.

5 STAH-TREE

This paragraph presents basic version of STAH-tree
that does not use additional accelerating techniques.
It makes the idea easier to understand. These
extensions will be provided in the next paragraphs.

5.1 Structure

STAH-tree consists of two indexes. The first is
responsible for spatial data (R-tree, without
aggregates) It provides identifiers of objects that
fulfill specific spatial conditions. The second is a
modified version of MVB-tree (described above).
Spatial objects generate value updates. These
measurements are stored in MVB-tree with
aggregates and reverse pointers.

5.2 Queries

There are several types of queries that may be posed
to STAH-tree. STAH-tree supports original R- and
MVB- tree queries as efficiently as original indexes.
It allows also to pose new types of queries on both

indexes (detailed time range query). The most
important is the ability to pose queries that are
handled by both cooperating indexes.

Queries which operate on spatial attributes in
order to retrieve list of identifiers (range query,
nearest neighbors etc.) reference the R-tree. Any R-
tree query may be executed without performance
loss.

Queries with time constraints (range query,
timestamp query etc.) requires list of identifiers for
which they shall be executed. They may be passed
directly in the query (user knows his meter
identifier) or may be selected by a spatial query.

This approach may look not efficient as trees are
processed separately. But these indexes are efficient
and MVB-tree queries are optimized as there are
many queries for the same timestamp. Thanks to
buffering most of the operations are performed on
nodes already loaded into memory

This section presents the most important queries
along with their processing techniques. Range
query (RQ) operates only on spatial index (R-tree).
Returns spatial objects (identifiers) which are
contained within query range. Timestamp query
(TQ). It is a standard query concerning value for
object with known identifier in a specific timestamp.
This query is executed directly on MVB-tree. Time
range query (THQ). This query retrieves values for
object in specific time range (T1,T2). It is executed
directly on MVB-tree that applies reverse pointers
technique. The algorithm was described in a section
prsenting modified MVB-tree. Timestamp query
for a set of objects. It is a query concerning values
in a specific timestamp (T) for set of objects that
fulfill spatial query (Q) that is (RQ+TQ). Such a
query is processed in two steps. First, a set of spatial
objects (identifiers) is taken from spatial index.
Next, for each identifier a timestamp query is
performed on MVB-tree (TQ). Time range query
for a set of objects. This query retrieves values in a
specific time range (T1, T2) for a set of objects that
fulfill spatial condition (Q). That is (RQ+THQ). This
query is processed in the same way, but the query is
does not concern a single value of T but retrieves
time range values for all objects. Time aggregate
query for set of objects. This query computes
aggregate over a time range (T1, T2) for objects that
fulfills spatial condition (Q). It is performed in two
steps. First a set of spatial identifiers is retrieved
from the spatial index. Next, range queries for all
identifiers are performed over MVB-tree and overall
result is calculated.

STAH-TREE: Hybrid Index for Spatio Temporal Aggregation

115

6 STAH-TREE EXTENSIONS

Idea that was presented in previous point can be
extended to achieve better performance. This section
presents implemented extensions. All of them have
strong (positive) impact on performance for all types
of compound queries. Impact on standard query
types in not negative.

6.1 Using aR-tree

Substituting R-tree with aR-tree (aggregate index)
requires large structure modifications. Changes in
loading and querying are also required. AR- tree
that is used in STAH was already described in
paragraph 3. This tree is ‘equipped’ with ‘count’
aggregate, all nodes have identifiers.

New value insertion is is performed in two steps.
In first step, update query (UQ) is performed on aR-
tree for object that generates update. This query
returns list of identifiers, object itself and identifiers
of all nodes on the path to root. Next, update value is
inserted for all identifiers from the list. Thanks to
that, the values for whole nodes can be taken from
spatial index if the whole node fulfils spatial
condition. In other words, aR-tree properties for
aggregating on higher levels were moved directly to
MVB-tree. MVB-tree is not ‘aware’ that it contains
various types of data – so no additional changes are
required within the index. The only disadvantage of
this solution is a larger number of temporal data
(higher space consumption), but this has no impact
on query efficiency. This technique will be
referenced as AGG.

6.2 Mapping of Spatial Identifiers

Mapping of spatial identifiers was implemented
based on experimental results of batch query
processing. The number of buffer accesses was
higher than expected because object identifiers were
not following their spatial location. And identifiers
in a query group were dissolved on large key range
what leads to large number of node accesses. The
best approach is to perform query for list of
consecutive identifiers. Mapping is a way to achieve
this effect. Identifiers in R-tree are mapped to
elements in the same node having consecutive
identifiers. Objects are stored with these modified
identifiers. While answering aR-query elements
form near nodes will create a list of consecutive
(more or less) identifiers. That list is sorted and used
for querying MVB-tree.

This solution needs to keep additional mapping
(old-new key) if the detailed queries on original keys

are supported. Aggregate query does not require
that. If it is possible to change identifiers
permanently, mapping in not required. This
technique will be referenced as MAP.

6.3 Batch Processing

The number of queries that needs to be performed on
MVB-tree may be large (especially for large queries)
as their number is proportional to the number of
spatial identifiers returned by an R-tree query. This
situation is ideal to introduce batch processing
technique with no modification in trees structures.
Only the new algorithm, able to process multiple
spatial objects at the same time is required. These
queries reference the same timestamp so they require
the same nodes. Most of disk operations will be
buffered. This will reduce I/O cost but will increase
CPU cost as query processing algorithm is more
demanding. This technique will be referenced as
BATCH.

7 COST MODEL

Cost model predicts query performance as a number
of node accesses. It may be used to optimize query
processing plan in query optimization module. This
section shortly presents the model for STAH-tree
with the following assumptions: (1) aR-tree is used
(AGG technique); (2) spatial data are uniform; (3)
buffering is not taken into consideration – so
predicted number of node accesses will be higher
than in reality; (4) BATCH and MAP techniques are
not used. This model require two equations: (1)
selectivity of query on aR-tree; (2) number of node
accesses for processing timestamp query on MVB-
tree. Some equations for number of nodes at R-tree
levels, node sizes in R-tree and others were taken
from literature (Theodoridis, 1996).

7.1 AR-tree Selectivity

In the case of STAH-tree aR-tree selectivity is a
sum of spatial objects and nodes that were returned
by spatial query. It is assumed that size of a spatial
area is bounded with (0,1) range in every dimension,
query and object sizes in every dimensions are the
equal. That simplifies computation with little loss of
generality. Following symbols are defined (table 1).

ICEIS 2007 - International Conference on Enterprise Information Systems

116

Table 1: Symbols that are used in computation.

Symbol Description
J Tree level.

j=0 for spatial objects; j=1 for leaves level
I Dimension
N Number of spatial objects
Nj Number of objects at j level
F ‘fanout’ – number of objects in node
Q Spatial query range
sj Average objects size at j level
Pz Probability that object is contained in

query range
Pp Probability that object is crossing query
A Factor used in describing how large part of

objects falls in query range when leaf is
crossing with query

B MVB-tree node capacity
NA Number of node accesses
SEL Selectivity

n Number of dimensions

7.1.1 Dependencies between the Object and
the Query

Computations are based on a paper (Theodoridis,
1996) and basic probabilistic model derived for
dependencies between the query and the aR-tree
nodes. This model presents query-object
containment probability as an equation 1 and query-
object crossing probability as an equation 2.

()∏
=

−=
n

i
iiz sqP

1

(1)

() ()∏∏
==

−−+=
n

k
kk

n

k
kkp sqsqP

11

(2)

7.1.2 Common Computations

Number of nodes at level j+1 can be computed based
on equation 3.

f
N

N j
j =+1

(3)

Node size at level j+1 (Theodoridis, 1996) can be
computed from equation 5.

() j
nj

n
j s

N
fs +⋅⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=+ 1

1

1
11

(4)

7.1.3 Selectivity Among Tree Nodes

The number of nodes that are returned is equals the
number of nodes that are contained in a query range.
It is assumed that ‘containment’ is computed only at

leaves level (always overvalued). The formula for
selectivity among aR-tree nodes (leaves) is derived
based on equations (1,3, 4). This formula is
presented in equation 7.

()

f
Ns

N
fq

f
NsqNPSEL

n

n

n

n
z

⋅
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
+⋅⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−

=⋅−=⋅=

01

1

11

11

(5)

7.1.4 Selectivity Among Spatial Objects

Selectivity for spatial objects takes into
consideration that a selection of objects are returned
in aggregates (query stops on higher R-tree levels).
It can be approximated by the number of leaves that
cross query range multiplied by a number of objects
in a single leaf and constant ‘a’ (within (0,1) range)
that describes how many objects in a leaf are
contained in a query. This constant was
experimentally set to 0.5. The formula for selectivity
among data objects is presented in equation 8.

faNPSEL po ⋅⋅⋅= 1 (6)

Using equations (2,6) and assumption of same
size among spatial objects in every dimension this
formula can be rewritten as shown in equation 7.

⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
−⋅⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−−

−
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
+⋅⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−+

⋅⋅=
n

n

n

n

n

n

o

s
N

fq

s
N

fq

aNSEL

01

1

01

1

11

11

(7)

7.2 MVB-tree

The paper investigates only one query for MVB-
tree, it is range aggregate query. This query is spitted
into two queries at extreme timestamps of time
range. Retrieval time for each of this queries may be
computed with equation 8 (Becker, 1996). The
number of node accesses for the whole time range
query is equal to this value multiplied by 2.

⎡ ⎤NNA bgle logsin = (8)

7.3 Final Model

The final model is a simple combination of formulas
introduced above. The number of queries posed on
temporal index equals the spatial result set size
multiplied by the doubled height of the tree (8). The
number of node accesses to spatial index is

STAH-TREE: Hybrid Index for Spatio Temporal Aggregation

117

relatively small (at least order of magnitude). The
number of node accesses in temporal index of
STAH-tree is presented in equation 9. This formula
may be derived from equations (5,7,8).

)(2 10sin SELSELNANA gleMVB += (9)

8 EXPERIMENTS

We performed multiple which proved correctness of
all assumptions presented in the paper. The
experiments prove that all presented modifications
(AGG, BATCH, MAP) result in high acceleration.
Objects selectivity prediction was highly accurate
(about 5-10% and less). The selectivity for leaves
was correct with the same precision when
aggregation was performed only on the leaves level.
When aggregation was allowed on all aR-tree levels
– the error reached 30% for large values (when more
than 50% of space was covered by a query). For
smaller queries the error did not rise above 10%.
Detailed results description is not included as paper
page count is limited.

9 CONCLUSIONS AND FUTURE
WORK DIRECTIONS

STAH-tree is a complete system that allows to pose
various queries over spatio-temporal data. The
system performance is highly data parameter-
independent. Even for parameters that have large
impact on performance in standard solutions (for
example relational database).

STAH-tree is based on widely recognized and
valued solutions from spatial and temporal data
processing domain (R-tree, aR-tree, MVB-tree,…).
These ideas are combined and adapted is order to
work together and assure required features. The
original solution was extended with additional
accelerating techniques (BATCH, AGG, MAP). The
presented solution is more robust than the one using
the components separately. Disadvantage is higher
storage space consumption.

Selectivity prediction model for aggregate R-tree
was introduced. Its accuracy was proved by
experiments. The selectivity model along with node
accesses formula for MVB-tree (available in
literature) are merged in order to achieve full
performance model for STAH-tree (with respect to
node accesses).

Several main directions of future fork have been
recognized: (1) selectivity model for non uniform
data distribution; (2) extension of presented

selectivity model for aR-tree nodes with the
possibility of aggregating on higher aR-tree levels;
(3) selectivity model for different types of spatial
queries (KNN, Spatial Join etc.); (4) replace spatial
and temporal indexes with other techniques (quad
trees, OVB-trees, …). (5) use more sophisticated
way to aggregate spatial objects (not only point
aggregates) as it is done in (Zhang, 2002). Work on
some of these issues has already started.

REFERENCES

Manolopoulos, Y., Nanopoulos, A., Papadopoulos A. N.,
Theodoridis Y. 2006. R- Trees: Theory and
Applications. Springer

Beckerman N., Kriegel H.P., Schneider R., Seeger B.
1990. The R*-tree: An efficient and robust access
method for points and rectangles. Proc. SIGMOD
International Conference on Management of Data,
pages 322-331

Guttman A. 1984 R-trees: A dynamic index structure for
spatial searching Proc. SIGMOD International
Conference on Management of Data, pages 47-57

Kamel I. Faloutsos. 1994. Hilbert R-tree: An improved R-
tree using fractals. Proc. International Conference on
Very Large Databases, pages 500-509

Kamel I. Faloutsos. 1993. On packing R-trees. Proc.
International Conference on Information and
Knowledge Management, pages 490-499

Becker B., Gschwind S., Ohler T., Seeger B., Windmayer
O. 1996 An Asymptotically Optimal Multiversion B-
tree VLDB Journal, 5(4), pages 264-275

Tao Y., Papadias D., Zhang J. 2002 Efficient Cost Models
for Overlapping and Multi-Version Structures. TODS,
27(3), pages 299-342

Tao Y., Papadias D. 2004 Range Aggregate Processing in
Spatial Databases. IEEE Trans. Knowl. Data Eng.
16(12), pages 1555-1570

Theodoridis Y., Sellis T., 1996. A model for the Prediction
of R-tree Performance. Proc. Symp. Principles of
Database Systems

Comer D., 1979. The Ubiquitous B-tree. ACM Computing
Surveys, Vol. 11, No 2, pages 121-137

Zhang D., Tsotras V. J., Gunopulos D. Efficient
aggregation over Objects with Extent. PODS 2002,
pages 121-132

Zhang D., Markowetz A., Tsotras V. J., Gunopulos D.,
Seeger B. Efficient Computation of Temporal
Aggregates with Range Predicates. PODS 2001

Bercken J., Seeger B. Query Processing Techniques for
Multiversion Access Methods. VLDB 1996

ICEIS 2007 - International Conference on Enterprise Information Systems

118

