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Abstract: This paper presents a new index that stores spatiotemporal data and provides efficient algorithms for 
processing range and time aggregation queries where results are precise values not an approximation. In 
addition, this technology allows to reach detailed information when they are required. Spatiotemporal data 
are defined as static spatial objects with non spatial attributes changing in time. Range aggregation query 
computes aggregation over set of spatial objects that fall into query window. Its temporal extension allows 
to define additional time constraints. Index name (i.e. STAH-tree) is English abbreviation and can be 
extended as Spatio-Temporal Aggregation Hybrid Tree. STAH-tree is based on two well known indexing 
techniques. R– and aR–tree for storing spatial data and MVB-tree for storing non-spatial attributes values. 
These techniques were extended with new functionality and adopted to work together. Cost model for node 
accesses was also developed.        

1 INTRODUCTION 

Nowadays, standard relational database systems are 
not able to assure efficient processing for detailed 
and aggregate queries over multidimensional spatial 
data that have some non-spatial attributes changing 
over time (‘spatio-temporal data’). There are many 
reasons for that, naming the most important: (i) 
multicolumn key for single object, (ii) spatial 
relations are hard to model, (iii) large volume of 
spatial data implies enormous number of temporal 
data. Efficient handling of such data becomes more 
and more urgent, as importance of telemetric 
solutions and user requirements (concurrent users, 
higher sampling rate, higher number of meters and 
more demanding time constraints) grow rapidly. 
Literature presents a number of dedicated solutions 
for spatial data processing (R-trees, quad-trees, 
…)(Guttman, 1984), (Beckerman, 1990), 
(Manolopoulos, 2003), (Kamel, 1994) temporal data 
processing (multiversion and overlapping 
techniques) (Becker, 1996), (Bercken, 1996), (Tao, 
2002) spatial aggregates processing (aR-tree, aP-
tree) (Zhang, 2002), (Tao, 2004), moving spatial 
objects (TPR*-tree) (Tao, 2003)  and finally 
temporal aggregate processing (Zhang, 2001). But 
no solution addressesing detailed and aggregate 
queries for spatio-temporal  data was found. 

This paper presents new hybrid index based on 
cooperating spatial (aR-tree) and temporal (MVB-
tree) indexes. These technologies were bounded 
together and modified in order to provide requested 
system properties.   

2 MOTIVATING EXAMPLE 

Last years were time of rapid growth of database 
solutions especially based on relational model. 
Despite many advantages this model is not 
applicable for some solutions. Telemetric system is 
one of those areas. Telemetric data are 
asynchronously gathered from meters (gas, water…) 
that have spatial location and unique identifier. 
Measurement is characterized by a timestamp and a 
meter identifier. Relational model for these data is 
very easy to create. But continuous updates and 
large volume of data cause query response time not 
acceptable. To illustrate this problem lets assume 
50000 spatial objects and data acquisition performed 
every hour. The volume of temporal data is reaching 
36 millions after a month (0,5 billion after a year) 
Efficient searching, aggregating or processing 
becomes impossible even with usage of large 
computer systems. Such telemetric system can be 
used in two modes. Normal user requires access to a 
detailed (history of changes during last month) and 
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aggregate (average energy consumption within a 
year) data about his energy consumption. Time 
constraints are not too high. On the other hand, 
producer of specific medium (gas, water, etc.) 
requires aggregate information about meters that are 
located in a specific region in various time scales 
(year summary, predicting future usage). Answer 
time should be known in advance and should be 
short.  

3 MODIFIED AR-TREE  

AR-tree is one of two applied indexes. R-tree family 
indexes are widely recognized and described in 
details in literature (Manolopoulos, 2003), 
(Beckerman, 1990), (Guttman, 1984), (Kamel, 
1993), (Kamel, 1994). This paper put emphasis on 
modifications that were introduced to base the 
structure and algorithms.  

Described system uses static R-trees (spatial data 
are known in advance, the algorithm builds tree from 
bottom to top. Such indexes are characterized by 
maximum node capacity usage. AR-Hilbert Tree 
(implementation based on (Kamel, 1994) and 
KNNR-tree (developed in previous research) is used.  

These trees were extended with aggregate info 
(stored in each node) about number of spatial objects  
contained in each sub tree (count aggregate). Every 
node is identified with a global unique identifier. 

3.1 Specific Queries 

This paragraph presents types of spatial queries that 
are used in the implementation. In all the cases 
query area is determined by a rectangle Q Range 
Query (RQ). This query is identical as in case of 
standard R-tree. It retrieves all objects that intersects 
Q Aggregate Query (AQ). This query was inspired 
by the range aggregate query. Query result contains 
aggregate value and identifiers of objects, leaves and 
nodes that are contained in Q. In other words, query 
returns objects that are contained in query range 
despite of their level. Update Query (UQ). Two 
input parameters (identifier and MBR) are used to  
find specific object. MBR is used to reach leaf level 
and  identifier is used for filtering. List of identifiers 
located on search path from root to leaf is returned. 
This list is used to update the temporal index.  

4 MODIFIED MVB-TREE 

STAH-tree uses MVB-tree that was presented in 
(Becker, 1996), (Tao, 2002). This paragraph 
describes modifications required for STAH-tree. 

Single temporal data entry is described with 
unique identifier (ID) and temporal validity range 
(T1,T2). It presents measurement made in T1 for 
object identified by ID. Value is valid till T2. 

Base MVB-tree version was designated for 
timestamp queries for single dimensional data and 
reaches asymptotically optimal node access cost. 
STAH-tree introduces modifications to achieve high 
efficiency for other query types. 

4.1 Structural Modifications 

This paper presents two structural modifications of 
the MVB-tree structure. There is no limitation to use 
them at the same time. Both require additional 
storage space and both accelerate query processing. 

4.1.1 Reverse Pointers 

Reverse pointers is a  technique for efficient time 
range query processing. Every entry is connected 
with previous measurement with a pointer – similar 
to backward-links presented in (Bercken, 1996).  

Pointer is created when new measurement is 
added into the MVB-tree as an insertion procedure 
locates previous version by default. With the 
pointers it is possible to retrieve all measurements 
for single object. Time range query finds object 
version (in T2) and follows reverse pointers till value 
for T1 is found. This approach is optimal in terms of 
node accesses as it visits leaves containing 
measurements changes and traverse tree height only 
once. 

4.1.2 Temporal Aggregates 

There is a number of applications for which access 
to a detailed data is not important or is forbidden and 
emphasis is put on fast retrieval of aggregates and 
summaries. STAH-tree  is designed to answer 
aggregate queries in efficient manner, but it also 
allows to reach detailed data as a standard R-tree and 
MVB-tree does. It also answers detailed time range 
queries when reverse pointers are used. 
Time range aggregate query summarizes or 
aggregates values for object with identifier equal to 
ID in given time range (T1,T2). Each entry in 
modified MVB-tree contains data that aggregates 
whole history of a specified object. Thanks to that it 
is possible to answer aggregate query with two 
timestamp queries and some additional computation 
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of final results based on the retrieved values. First 
query is executed for T1 and the second for T2. It is 
worth mentioning that MVB-tree is asymptotically 
optimal for this type of queries (Becker , 1996). 

This technique was inspired by aP-tree (Tao, 
2004). It gathers aggregates during measurement 
update. Beside value update (detailed data) system 
stores aggregates selected by user (sum, average 
etc.). These additional data increases space 
consumption and update time (by constant factor) 
but decreases answer time as aggregate computation 
is done once at the load time. 

4.2 Group Processing Algorithm 

Group processing algorithm uses previously 
described modified MVB-tree. It is based on an 
assumption that I/O operations dominate CPU cost.  
Multiple objects are queried in a single operation (at 
a single timestamp). It calls only these nodes that 
would be accessed by any of single queries. Many 
nodes that would be accessed multiple times are 
loaded only once. Further enhancement includes key 
sorting. This solution increases CPU cost and 
response time for single query. Amortized cost is 
many times lower but there is upper boundary for 
number of objects in query CPU cost becomes 
dominant. 

5 STAH-TREE  

This paragraph presents basic version of STAH-tree 
that does not use additional accelerating techniques. 
It makes the idea easier to understand. These 
extensions will be provided in the next paragraphs. 

5.1 Structure 

STAH-tree consists of two indexes. The first is 
responsible for spatial data (R-tree, without 
aggregates) It provides identifiers of objects that 
fulfill specific spatial conditions. The second is a 
modified version of MVB-tree (described above). 
Spatial objects generate value updates. These 
measurements are stored in MVB-tree with 
aggregates and reverse pointers. 

5.2 Queries 

There are several types of queries that may be posed 
to STAH-tree. STAH-tree supports original R- and 
MVB- tree queries as efficiently as original indexes. 
It allows also to pose new types of queries on both 

indexes (detailed time range query). The most 
important is the ability to pose queries that are 
handled by both cooperating indexes. 

Queries which operate on spatial attributes in 
order to retrieve list of identifiers (range query, 
nearest neighbors etc.) reference the R-tree. Any R-
tree query may be executed without performance 
loss. 

Queries with time constraints (range query, 
timestamp query etc.) requires list of identifiers for 
which they shall be executed.  They may be passed 
directly in the query (user knows his meter 
identifier) or may be selected by a spatial query.  

This approach may look not efficient as trees are 
processed separately. But these indexes are efficient 
and MVB-tree queries are optimized as there are 
many queries for the same timestamp. Thanks to 
buffering most of the operations are performed on 
nodes already loaded into memory  

This section presents the most important queries 
along with their processing techniques. Range 
query (RQ) operates only on spatial index (R-tree). 
Returns spatial objects (identifiers) which are 
contained within query range. Timestamp query 
(TQ). It is a standard query concerning value for 
object with known identifier in a specific timestamp. 
This query is executed directly on MVB-tree. Time 
range query (THQ). This query retrieves values for 
object in specific time range (T1,T2). It is executed 
directly on MVB-tree that applies reverse pointers 
technique. The algorithm was described in a section 
prsenting modified MVB-tree. Timestamp query 
for a set of objects. It is a query concerning values 
in a specific timestamp (T) for set of objects that 
fulfill spatial query (Q) that is (RQ+TQ). Such a 
query is processed in two steps. First, a set of spatial 
objects (identifiers) is taken from spatial index. 
Next, for each identifier a timestamp query is 
performed on MVB-tree (TQ). Time range query 
for a set of objects. This query retrieves values in a 
specific time range (T1, T2) for a set of objects that 
fulfill spatial condition (Q). That is (RQ+THQ). This 
query is processed in the same way, but the query is 
does not concern a single value of T but retrieves 
time range values for all objects. Time aggregate 
query for set of objects. This query computes 
aggregate over a time range (T1, T2) for objects that 
fulfills spatial condition (Q). It is performed in two 
steps.  First a set of spatial identifiers is retrieved 
from the spatial index. Next, range queries for all 
identifiers are performed over MVB-tree and overall 
result is calculated. 
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6 STAH-TREE EXTENSIONS 

Idea that was presented in previous point can be 
extended to achieve better performance. This section 
presents implemented extensions. All of them have 
strong (positive) impact on performance for all types 
of compound queries. Impact on standard query 
types in not negative. 

6.1 Using aR-tree 

Substituting R-tree with aR-tree (aggregate index) 
requires large structure modifications. Changes in 
loading and querying are also required.  AR- tree 
that is used in STAH was already described in 
paragraph 3. This tree is ‘equipped’ with ‘count’ 
aggregate, all nodes have identifiers.  

New value insertion is is performed in two steps. 
In first step, update query (UQ) is performed on aR-
tree for object that generates update. This query 
returns list of identifiers, object itself and identifiers 
of all nodes on the path to root. Next, update value is 
inserted for all identifiers from the list. Thanks to 
that, the values for whole nodes can be taken from 
spatial index if the whole node fulfils spatial 
condition. In other words, aR-tree properties for 
aggregating on higher levels were moved directly to 
MVB-tree. MVB-tree is not ‘aware’ that it contains 
various types of data – so no additional changes are 
required within the index. The only disadvantage of 
this solution is a larger number of temporal data 
(higher space consumption), but this has no impact 
on query efficiency. This technique will be 
referenced as AGG. 

6.2 Mapping of Spatial Identifiers 

Mapping of spatial identifiers was implemented 
based on experimental results of batch query 
processing. The number of buffer accesses was 
higher than expected because object identifiers were 
not following their spatial location. And identifiers 
in a query group were dissolved on large key range 
what leads to large number of node accesses. The 
best approach is to perform query for list of 
consecutive  identifiers. Mapping is a way to achieve 
this effect. Identifiers in R-tree are mapped to 
elements in the same node having consecutive 
identifiers. Objects are stored with these modified 
identifiers. While answering aR-query elements 
form near nodes will create a list of consecutive 
(more or less) identifiers. That list is sorted and used 
for querying MVB-tree.  

This solution needs to keep additional mapping 
(old-new key) if the detailed queries on original keys 

are supported. Aggregate query does not require 
that. If it is possible to change identifiers 
permanently, mapping in not required. This 
technique will be referenced as MAP. 

6.3 Batch Processing 

The number of queries that needs to be performed on 
MVB-tree may be large (especially for large queries) 
as their number is proportional to the number of 
spatial identifiers returned by an R-tree query. This 
situation is ideal to introduce batch processing 
technique with no modification in trees structures. 
Only the new algorithm, able to process multiple 
spatial objects at the same time is required. These 
queries reference the same timestamp so they require  
the same nodes. Most of disk operations will be 
buffered. This will reduce I/O cost but will increase 
CPU cost as query processing algorithm is more 
demanding. This technique will be referenced as 
BATCH. 

7 COST MODEL 

Cost model predicts query performance as a number 
of node accesses. It may be used to optimize query 
processing plan in query optimization module. This 
section shortly presents  the model for STAH-tree 
with the following assumptions: (1) aR-tree is used 
(AGG technique); (2) spatial data are uniform; (3) 
buffering is not taken into consideration – so 
predicted number of node accesses will be higher 
than in reality; (4) BATCH and MAP techniques are 
not used. This model require two equations: (1) 
selectivity of query on aR-tree; (2) number of node 
accesses for processing timestamp query on MVB-
tree. Some equations for number of nodes at R-tree 
levels, node sizes in R-tree and others were taken 
from literature (Theodoridis, 1996). 

7.1 AR-tree Selectivity 

In the case of STAH-tree aR-tree selectivity  is a 
sum of spatial objects and nodes that were returned 
by spatial query. It is assumed that size of a spatial 
area is bounded with (0,1) range in every dimension, 
query and object sizes in every dimensions are the 
equal. That simplifies computation with little loss of 
generality. Following symbols are defined (table 1). 
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Table 1: Symbols that are used in computation. 

Symbol Description 
J Tree level.  

j=0 for spatial objects; j=1 for leaves level  
I Dimension 
N Number of spatial objects 
Nj Number of objects at j level 
F ‘fanout’ – number of objects in node 
Q Spatial query range 
sj Average objects size at j level 
Pz Probability that object is contained in 

query range 
Pp Probability that object is crossing query 
A Factor used in describing how large part of 

objects falls in query range when leaf is 
crossing with query 

B MVB-tree node capacity 
NA Number of node accesses 
SEL Selectivity 

n Number of dimensions 

7.1.1 Dependencies between the Object and 
the Query  

Computations are based on a paper (Theodoridis, 
1996) and  basic probabilistic model derived for 
dependencies between the query and the aR-tree 
nodes. This model presents query-object 
containment probability as an equation 1 and query-
object crossing probability as an equation 2. 
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7.1.2 Common Computations 

Number of nodes at level j+1 can be computed based 
on equation 3.  
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Node size at level j+1 (Theodoridis, 1996) can be 
computed from equation 5.  

( ) j
nj

n
j s

N
fs +⋅⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=+ 1

1

1
11  

(4) 

7.1.3 Selectivity Among Tree Nodes  

The number of nodes that are returned is equals the 
number of nodes that are contained in a query range. 
It is assumed that ‘containment’ is computed only at 

leaves level (always overvalued). The formula for 
selectivity among aR-tree nodes (leaves) is derived 
based on equations (1,3, 4). This formula is 
presented in equation 7.     
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(5) 

7.1.4 Selectivity Among Spatial Objects 

Selectivity for spatial objects takes into 
consideration that a selection of objects are returned 
in aggregates (query stops on higher R-tree levels). 
It can be approximated by the number of leaves that 
cross query range multiplied by a number of objects 
in a single leaf and constant ‘a’ (within (0,1) range) 
that describes how many objects in a leaf are 
contained in a query. This constant was 
experimentally set to 0.5. The formula for selectivity 
among data objects is presented in equation 8. 

faNPSEL po ⋅⋅⋅= 1  (6) 

Using equations (2,6) and assumption of same 
size among spatial objects in every dimension this 
formula can be rewritten as shown in equation 7. 
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7.2 MVB-tree 

The paper investigates only one query for MVB-
tree, it is range aggregate query. This query is spitted 
into two queries at extreme timestamps of time 
range. Retrieval time for each of this queries may be 
computed with equation 8 (Becker, 1996). The 
number of node accesses for the whole time range 
query is equal to this value multiplied by 2. 

⎡ ⎤NNA bgle logsin =  (8) 

7.3 Final Model 

The final model is a simple combination of formulas 
introduced above. The number of queries posed on 
temporal index equals the spatial result set size 
multiplied by the doubled height of the tree (8). The 
number of node accesses to spatial index is 
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relatively small (at least order of magnitude). The 
number of node accesses in temporal index of 
STAH-tree is presented in equation 9. This formula 
may be derived  from equations (5,7,8). 

)(2 10sin SELSELNANA gleMVB +=  (9) 

8 EXPERIMENTS 

We performed multiple which proved correctness of 
all assumptions presented in the paper. The 
experiments prove that all presented modifications 
(AGG, BATCH, MAP) result in high acceleration. 
Objects selectivity prediction was highly accurate 
(about 5-10% and less). The selectivity for leaves 
was correct with the same precision when 
aggregation was performed only on the leaves level. 
When aggregation was allowed on all aR-tree levels 
– the error reached 30% for large values (when more 
than 50% of space was covered by a query). For 
smaller queries the error did not rise above 10%. 
Detailed results description is not included as paper 
page count is limited.  

9 CONCLUSIONS AND FUTURE 
WORK DIRECTIONS 

STAH-tree is a complete system that allows to pose 
various queries over spatio-temporal data. The 
system performance is highly data parameter-
independent. Even for parameters that have large 
impact on performance in standard solutions (for 
example relational database). 

STAH-tree is based on widely recognized and 
valued solutions from spatial and temporal data 
processing domain (R-tree, aR-tree, MVB-tree,…). 
These ideas are combined and adapted is order to 
work together and assure required features. The 
original solution was extended with additional 
accelerating techniques (BATCH, AGG, MAP). The 
presented solution is more robust than the one using 
the components separately. Disadvantage is higher 
storage space consumption.  

Selectivity prediction model for aggregate R-tree 
was introduced. Its accuracy was proved by 
experiments. The selectivity model along with node 
accesses formula for MVB-tree (available in 
literature) are merged in order to achieve full 
performance model for STAH-tree (with respect to 
node accesses).  

Several main directions of future fork have been 
recognized: (1) selectivity model for non uniform 
data distribution; (2) extension of  presented 

selectivity model for aR-tree nodes with the 
possibility of aggregating on higher aR-tree levels; 
(3) selectivity model for different types of spatial 
queries (KNN, Spatial Join etc.); (4) replace spatial 
and temporal indexes with other techniques (quad 
trees, OVB-trees, …). (5) use more sophisticated 
way to aggregate spatial objects (not only point 
aggregates) as it is done in (Zhang, 2002). Work on 
some of these issues has already started. 
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