
USING SEMANTIC WEB AND SERVICE ORIENTED
TECHNOLOGIES TO BUILD LOOSELY COUPLED SYSTEMS

SWOAT – A Service and Semantic Web Oriented Architecture Technology

Bruno Caires
Department of Communications and Computing, University of Madeira, Penteada, Funchal, Portugal

Jorge Cardoso
Department of Mathematics and Engineering, University of Madeira, Penteada, Funchal, Portugal

Keywords: Information Integration, Semantic Web, Ontology, Web Services, Middleware.

Abstract: The creation of loosely coupled and flexible applications has been a challenge faced by most organizations.
This has been important because organization systems need to quickly respond and adapt to changes that
occur in the business environment. In order to address these key issues, we implemented SWOAT, a
‘Service and Semantic Web Oriented Architecture Technology’ based middleware. Our system uses
ontologies to semantically describe and formalize the information model of the organization, providing a
global and integrated view over a set of database systems. It also allows interoperability with several
systems using Web Services. Using ontologies and Web services, clients remain loosely coupled from data
sources. As a result, data structures can be changed and moved without having to change all clients, internal
or external to the organization.

1 INTRODUCTION

A middleware for data integration should allow
users to focus on ‘what’ information is required and
leave the details on ‘how’ to obtain and integrate
information hidden from users. Thus, in general,
data integration must provide mechanisms to
communicate with data sources, handle queries
across heterogeneous data sources and combine the
results in an interoperable format, returning it to the
clients (Silva and Cardoso, 2006). During the
software lifetime, several changes that occur are
caused by maintenance tasks, either corrective,
adaptative, preventive or perfective (Vliet, 2000).
Client applications, when directly connected to the
database system, remain vulnerable to database
changes, most of them motivated by maintenance
tasks. To address these issues, we needed a solution
that takes all the advantages from the data
integration middleware, decoupling client
applications from database systems. We believe that
in order to achieve the above-mentioned objectives,
the solution resides in developing middleware with

two emerging technologies: Semantic Web
Technologies (SWT) and Service Oriented
Architectures (SOA).

Several reasons motivated the use o SWT in our
middleware. The four main reasons are (Noy and
McGuinness, 2001): (1) To share common
understanding of the structure of information among
people or software agents. This way, the model can
be understood by humans and computers; (2) to
enable reuse of already specified domain knowledge.
(3) To make domain assumptions explicit; this
means that concepts defined in the model have a
well defined an unambiguous meaning; (4) Analyze
domain knowledge is possible once a declarative
specification of the terms is available.

To prove that SWT has already some successful
and useful projects implemented, ten application
areas have been identified and described (Cardoso
and Sheth, 2006). Five examples are: (1) Semantic
Web Services; (2) Semantic Integration of Tourism
Information Sources; (3) Semantic Digital Libraries;
(4) Semantic Enterprise Information Integration; (5)
Semantic Web Search.

226 Caires B. and Cardoso J. (2007).
USING SEMANTIC WEB AND SERVICE ORIENTED TECHNOLOGIES TO BUILD LOOSELY COUPLED SYSTEMS - SWOAT – A Service and
Semantic Web Oriented Architecture Technology.
In Proceedings of the Ninth International Conference on Enterprise Information Systems - DISI, pages 226-232
DOI: 10.5220/0002386902260232
Copyright c© SciTePress

Ontologies, applied on middleware, in spite of not
having been identified as one of the ten potential
application areas, can be used in order to provide a
global virtual view over a set of database servers
(Alexiev et al., 2005). Our implementation has
shown that the use of SWT added value to our
middleware system, semantically describing
(focussing on ‘how’ and not on ‘what’) and
centralizing the information model of the
organization.

The other emerging technology used in SWOAT
is SOA. It provides a universal access mechanism to
all systems via Web Services (WS) and a universal
data representative via XML (Taylor, 2004). Based
on Web technologies, WS gain several advantages.
One of them is that being based on SOAP-over-
HTTP (Web based protocols), WS are designed to
work over public Internet. Another Web aspect is
that interoperability is achieved using SOAP that
defines a common standard allowing differing
systems to interoperate. Also, the XML is a standard
framework for creating machine-readable documents
(Fremantle et al., 2002). The Service (Web +
Service) main aspects of WS are that services are
available to all systems that wish to use them.
Another aspect is that services have a machine-
readable description that can be used to identify the
interface of the service, its location and access
information. Finally, the service interface is
available independently of the ultimate system
implementation (Fremantle et al., 2002).

Taking advantage of SWT and SOA, we
implemented SWOAT in order to use the synergy of
these two technologies. Using SWOAT to deploy
Information Systems (IS) we have identified three
main advantages:

• The request done by clients, formulated to
get the required data, specifies ‘what
information is needed’ and nothing about
‘how’ information is obtained. ‘How’
related aspects like database location and
SQL statements are transparent to the
clients.

• Changes that occur in the database are not
necessarily propagated to all clients. In this
way, clients are not aware of the database
changes, either syntactic (ex.: change of a
table name) or structural (added or deleted
table).

• Hides the local databases vocabulary,
providing a common vocabulary across
several databases. This way semantic
heterogeneity (Cardoso and Sheth, 2006) is
solved.

In the next section, we are going to describe the
scenario that motivated the development of
SWOAT.

2 MOTIVATING SCENARIO

Let us consider an organization with three thousand
users, where more than ninety percent of them use
the organization main information systems. The
organization owns several systems, either developed
internally or externally (COTS), and all of them
store their data on relational databases. Examples of
COTS are the human resource management system
and accounting system. The organization core
business is developed in-house and because it is the
main organization’s system, needs to extract and use
data stored in several other database systems (like
the human resource management system and the
accounting system). The core business system has
two types of clients: GUI and Web. GUI
applications are typically developed in java and used
by organization employees in order to perform
specific tasks (like insert the personal data in the
human resource management system). On the other
side, Web applications are typically developed using
languages such as php, asp, etc. These are used in
specific cases in other to allow access to applications
for all authenticated users, from internally or
externally of the organization.

Figure 1: Connections between clients and relational
databases.

As illustrated in Figure 1, in the current scenario
clients are directly connected to databases, which
mean that are vulnerable to database changes. For
example, changes in a table name may require
changes in several application clients and/or in
several database views.

USING SEMANTIC WEB AND SERVICE ORIENTED TECHNOLOGIES TO BUILD LOOSELY COUPLED
SYSTEMS: SWOAT – A Service and Semantic Web Oriented Architecture Technology

227

In this scenario, SWOAT will provide a global
and integrated view over the set of relational
databases and an abstraction layer, decoupling
clients (either GUI or Web) from database servers.
Client applications either distributed geographically
or not can interact with databases mediated by
SWOAT, using WS.

3 SWOAT TECHNOLOGIES

SWOAT middleware is based on Semantic Web
(Lassila and Swick, 1999), that is an extension of the
current Web in which information is given well
defined meaning, better enabling computers and
people to work in cooperation (Berners-Lee et al.,
2001). From the middleware perspective, SW
definition contains concepts that are particularly
useful in providing a global virtual view over a set
of databases: ‘well defined meaning’ and ‘enabling
computer and people’. In order to achieve the above-
mentioned concepts, ontologies are the solution
proposed. An ontology is specification of a
conceptualization (Gruber, 1993). A
conceptualization is the way we think about a
specific domain and a specification provides a
formal way of writing it down. Ontology represents
agreement and common terminology / nomenclature
and is in turn the centre price that enables resolution
of semantic heterogeneity. Ontology defines a
common vocabulary for researchers who need to
share information in a domain, including machine-
interpretable definitions of basic concepts in the
domain and relations among them. Our system
represents ontologies using the Web Ontology
Language (OWL), a semantic mark-up language for
publishing and sharing ontologies on the World
Wide Web. Other alternative formal languages can
also be used to express ontologies, for instance CycL
(CyCorp, 2006), KIF (Genesereth, 2006) or RDF
(Lassila and Swick, 1999). We choose OWL
because it is a W3C recommendation, designed for
use by applications that need to process the content
of information instead of just presenting information
to humans (McGuinness and Harmelen, 2004).

How are ontologies, specified in OWL, used in
SWOAT? An ontology is used to provide a unified
view over a set of relational database systems,
providing a common vocabulary. The ontology is
stored in the middleware, therefore centralized and
used by all applications that intent to extract data
from databases. As is going to be described in the
following sections, the mappings from the ontology
to the database are stored in the ontology instances.

Several languages that allow to query ontologies
exist, namely: RQL, RDQL, N3, SeRQL, SPARQL,

Versa, Triple, SquishQL, RxPath and RDFQL
(Haase et al., 2004). In SWOAT, we use SPARQL,
which is an effort of standardization to OWL query
languages, by W3C. A standardized query language
offers developers and end users a way to write and
to consume the results of queries across this wide
range of information (SPARQL-W3C, 2005).
SWOAT uses SPARQL to extract information from
the OWL instances in order to generate the SQL
statement that allows getting the required data from
the database. This is going to be illustrated in more
detail in the following sections.

SWOAT allows interoperability through Web
services. SWOAT has an interface described in a
machine-processable format (specifically WSDL,
which describes the services provided). Other
systems interact with SWOAT using SOAP
messages (which is intended for exchanging
structured information in a decentralized, distributed
environment), typically conveyed using HTTP.

4 SWOAT ARCHITECTURE

SWOAT is the middle-tier that is deployed between
the database tier and the client tier, as illustrated in
Figure 2. The database tier contains the databases that
store the data and the client tier represents the client
applications, internal or external to the organization
that invokes the services available by SWOAT,
which is the middle-tier.

SWOAT middle-tier is organized in three layers:
Data Source Layer (DSL), Business Layer (BL) and
Presentation Layer (PL). As illustrated in Figure 2,
DSL is identified by (1), BL by (4) and DSL by (11).
We are going to describe each layer separately,
referring to the numbers illustrated in Figure 2 to
facilitate the presentation.

4.1 Data Source Layer

This layer (1) is responsible for the communication
with the relational database management systems. In
SWOAT, this layer is implemented using Hibernate
(Hibernate, 2006), which is an open-source product
developed in java. It increases the developer
productivity enabling developers to focus more on
the business problem (Hibernate, 2006). It is
interoperable with any JDBC compliant database
and supports more than 20 popular dialects of SQL
including Oracle, DB2, Sybase, MS SQL Server,
PostgreSQL, MySQL, HypersonicSQL, Mckoi SQL,
SAP DB, Interbase, Pointbase, Progress, FrontBase,
Ingres, Informix and Firebird (Hibernate, 2006).

ICEIS 2007 - International Conference on Enterprise Information Systems

228

The Query Executer (2) allows executing SQL
queries on the databases. The returned data from the
‘Query Executer’ (2) is then transformed to XML in
the ‘XML Transformation’ (3). Two main reasons
motivated this transformation. The first one is that
having the data structured in XML is easier to
manipulate it in the ‘Business Layer’ (4), with the
final objective of returning XML to the clients. The
other reason is that with XML we decouple the DSL
from the DL, which means that independently from
the implementation of the DSL, the only thing that
has to be assured is the XML structure.

4.2 Business Layer

The BL (4) is where the domain model, described in
OWL is stored. The domain model (5) represents the
important concepts, its attributes, and relations
between concepts. The concepts are mapped to the
DSL, which allows access to the data described by
the concept, by creating instances (6) of the OWL
model. The instances contain the necessary
information (database, table, attribute) in order to
build the SQL queries that allows retrieving the
required data from the databases. It is the ‘Query
Generator’ (7) that is responsible for extracting the
necessary information from the ‘Domain Model
Instances’ (6) and ‘Domain Model’ (5) and generate
the SQL statement that is going to be executed in the
‘Query Executer’ (2) of the DSL. The language used
to query the OWL, in order to extract the data to
build the SQL expression, is SPARQL.

The ‘Controller’ (10) is responsible for
interacting with the ‘Query Generator’ (7) in order
to obtain the returned data, formatted in XML. The
data returned from the DSL is then transformed, in
the ‘Domain Transformation’ (8), and structured in a
format that reflects the OWL model. For example, if

in the domain model is specified that one person has
at least one address, the result XML will reflect this
hierarchical structure. This is going to be illustrated
in the running example section.

The ‘Domain Validator’ (9) is responsible for
validating the data accordingly to the specified
business rules (ex. one person must have at least one
address, which means that a person record without
the address is not a valid record). In this case, the
business rules represent the validations that have to
be verified in order to insert and retrieve data from
the databases.

4.3 Presentation Layer

The PL (11) is responsible for receiving and
processing the requests from the clients. Requests
are structured in XML, as is going to be described in
detail in the next section.

The ‘Query Processor’ (12) is responsible for
validating the request from the client, and interacting
with the ‘Controller’ (10) in order to get the desired
data.

Requests and responses are encapsulated in
SOAP, and exposed as Web Services. SWOAT Web
Services are implemented using JBoss (JBoss,
2006). JBoss Application Server is one of the most
used Java application server on the market, and it is
an open source project (JBoss, 2006).

5 RUNNING EXAMPLE

Let us suppose that we are interested in getting the
name of all persons and their address stored in a
relational database system. For this example, we will
describe the ontology that describes the personal
data, namely Person and Address. The database

Figure 2: SWOAT Architecture.

USING SEMANTIC WEB AND SERVICE ORIENTED TECHNOLOGIES TO BUILD LOOSELY COUPLED
SYSTEMS: SWOAT – A Service and Semantic Web Oriented Architecture Technology

229

structure that stores the data is also presented. It
follows with the ontology instances that contain the
mapping to the database layer. XML request and
response of the service layer are also illustrated.

In Figure 3 we illustrate the ontology classes and
their attributes (top left), the ontology instances that
contain the mappings to the database tables (top
right), and the database schema that contains the
data described by the ontology (bottom).

As depicted in the ontology (top left of Figure 3),
for this example, a Person has a name and a
birthDate. In the case of the Address, it contains an
address description (address) and an addressType.
The relation between them is hasAddress, which
means that a person has an address.

Illustrated at the bottom of Figure 3, the table
TablPerson, TablPersonAddress, TablAddress and
TablAddressType represent the database structure
that store the data described by the ontology. The
table TablPersonAddress is used because it is a
relation from n to m (which means that one person
may have one or more addresses and one address
may belong to one or more persons).

The ontology instances, illustrated at the top
right of Figure 3 contains the mappings from the
concepts of the ontology to the database tables.
There are instances of the ontology class Person and

Address. The name of the instances is equal to the
name of the database respective table, as illustrated
in Figure 3. For example, TablPerson is an instance
of the domain class Person, and its name represents
the database table name. The attributes ‘name’,
‘birthDate’ and ‘address’ are stored on the database
table that is equal to the ontology instance name, as
illustrated by (1), (2) and (3) in Figure 3. Since the
‘addressType’ attribute is not contained on the
TablAddress, but instead on the table
TablAddressType, a special mapping has to be done:
table=TablAddressType;
field=AddressType; path={field=IdAddressType;};
(4). The ‘table=’ contains the table name that stores
the data, ‘field=’ contains the attribute and ‘path=‘
contains the path from the table TablAddress (name
of the instance) to TablAddressType (name of the
attrubute in the mapping). As described in the
‘path=’ the attribute that related the two tables is
‘IdAddressType’.

Until now all tables and attributes are mapped,
but it is remaining the intermediary table:
TablPersonAddress. This type of mapping is
addressed in the relation property named hasAddress
(5). So, the property hasAddress, that directionally
connects two classes, will contain the flowing

Figure 3: SWOAT Mapings.

ICEIS 2007 - International Conference on Enterprise Information Systems

230

mapping:
field=IdPerson;table=TablPersonAddress;
field=IdAddress;. The field=IdPerson connects the
table TablPerson with the table TablPersonAddress.
The field IdAddress connects the table
TablPersonAddress with TablAddress.

This is all the information that is needed in order
to generate the SQL statement with the objective of
executing it to return the required data.

5.1 SWOAT Requests and Responses

Requests are structured in XML and allow clients
(applications, internal or external, and users) to
interact with SWOAT in order to get the desired
data. XML requests allow users to specify:

• Fields that should be returned, using the
XML outputFields element. It is a required
element.

• The order of the output fields (ascending,
descending) is specified using the XML
orderFields element.

• Filters (for example, return only names
started by letter A) are specified using the
XML filters element.

• Choose the path that connects domain
classes, using the outputProperties element.

For example, in order to get the name and

address information, the request would be structured
like:

<get_request version="1.0">
 <outputFields>
<outputField name="name" class="Person"/>
<outputField name="address" class="Address"/>
 </outputFields>
 <outputProperties>
 <outputProperty name="hasAddress"/>
 </outputProperties>
</get_request>

In the output fields, all required fields and the
classes, which contain the attribute, are specified. In
this particular case, we are interested in the name of
the person and in its address. The output property is
hasAddress, which means that the class Person and
Address are related by hasAddress. The data
returned would be:

<Root>
<Person name="John Doe">
 <hasAddress>
 <Address address="Statue Avenue"/>
 </hasAddress>
</Person>
</Root>

This response is structured ‘like’ the domain
model, as described in the top left of Figure 3. As
already depicted the domain class Person is
connected with the class Address through the
relation hasAddress.

6 RELATED WORK

Several tools and approaches to integrate
heterogeneous data sources and create an abstraction
layer exist today (Alexiev et al., 2005). Examples
are Corporate Ontology Grid, the Mediator
envirOnment for Multiple Information Systems,
OBSERVER, the Knowledge Reuse And
Fusion/Transformation and InfoSleuth.

Some of the approaches, like InfoSleuth and
KRAFT, are based on agents. InfloSleuth is a multi-
agent system for semantic interoperability in
heterogeneous data sources. Agents are used to
query and instance transformations between data
schemas (Nodine et al., 1999).

In the KRAFT project, users typically have their
own local ontology, which is mapped to the central
ontology. The basic philosophy of KRAFT is to
define a “communication space” within certain
communication protocols and languages must be
respected (Grayy et al., 1997).

OBSERVER uses multiple pre-existing
ontologies to access heterogeneous distributed and
independently developed data repositories. It is a
component based approach to ontology mapping and
provides brokering capabilities across domain
ontologies to enhance distributed ontology querying
(Mena et al., 1996).

COG aims to create a semantic information
management in which several heterogeneous data
sources are integrated into a global virtual view
(Bruijn, 2004).

MOMIS goal is to give the user a global virtual
view of the information coming from heterogeneous
data sources (Beneventano and Bergamaschi, 2004).

None of the solutions described are based on
Semantic Web technologies defined and specified by
W3C. In the described solutions, the ontology,
which describes the domain model of the
application/organization is described in a non-
standard language, most of the times proprietary or
adapted in order to address the needed requirements.
Interoperability of the described solutions with other
applications / organizations is not fully addressed. In
fact, XML and Web Services are not used. Getting
the data from the data sources involves questioning
the middleware. Most of the times, a proprietary
“SQL like” query language is used to get the data

USING SEMANTIC WEB AND SERVICE ORIENTED TECHNOLOGIES TO BUILD LOOSELY COUPLED
SYSTEMS: SWOAT – A Service and Semantic Web Oriented Architecture Technology

231

from the databases, leading to a specific and
proprietary query language.

7 CONCLUSION

SWOAT was implemented in order to address the
advantages of the three tier architecture. In fact, it
acts like an abstraction layer between the client and
the database servers. This way, aspects like database
location, database technology among others, are
transparent to clients. The main objective is that the
clients focus on ‘what information’ and not on ‘how
to get it’ and ‘where to get it’. The other objective is
to impede that changes on database be propagated to
all clients, generating unnecessary maintenance.

Our developed system uses Semantic Web
Technologies (SWT), more precisely ontologies, to
formally describe the domain model, which is stored
and centralized in the middleware. Being a formal
model, it is particular suitable to describe and be
used by humans and computers.

With the use of service-oriented technology,
using Web services, SWOAT allows interoperability
with other clients, either internal or external to the
organization.

SWOAT is a good solution to quickly create an
abstraction layer between clients and database
servers, exposing its services as Web Services.
Mappings to database are achieved by creating
instances of the ontology, allowing that the OWL
model can be distributed and reused. Independently
of the database structure, the domain model can be
mapped to the database tables, exposing information
in a format that described the domain model and not
the database structure.

To sum up, we can state three main SWOAT
characteristics. The first one is that it is an
interoperable solution through Web Services (open
standards). The second is that it uses OWL to
describe the domain model, which is a W3C
recommendation that semantically describes the
domain model. The third one is that SWOAT XML
requests allow clients to specify ‘what’ information
they need, in a non-technical way. These three
characteristics will allow the construction of loosely
coupled systems.

REFERENCES

Alexiev, V. et al., 2005. Information Integration with
Ontologies. John Wiley &Sons, Ltd.

Beneventano, D. and Bergamaschi, S., 2004. The MOMIS
Methodology for Integrating Heterogeneous Data
Sources.

Berners-Lee, T., Hendler, J. and Lassila, O., 2001. The
Semantic Web, Scientific America.

Bruijn, J.d., 2004. Semantic Integration of Disparate
Sources in the COG Project.

Cardoso, J. and Sheth, A., 2006. Semantic Web Services,
Processes and Applications. Springer.

CyCorp, 2006. Cyc KNowledge Base
Fremantle, P., Weerawarana, S. and Khalaf, R., 2002.

Enterprise Services. In: C.o.t. ACM (Editor), pp. 77-
82.

Genesereth, M., 2006. Knowledge Interchange Format
(KIF).

Grayy, P.M.D. et al., 1997. KRAFT: Knowledge Fusion
from Distributed Databases and Knowledge Bases.

Gruber, T., 1993. A Translation Approach to Portable
Ontology Specifications. In: http://ksl-
web.stanford.edu/KSL_Abstracts/KSL-92-71.html
(Editor).

Haase, P., Broekstra, J., Eberhart, A. and Volz, R., 2004.
A Comparison of RDF Query Languages, Third
International Semantic Web Conference.

Hibernate, 2006. Hibernate Reference Documentation.
Horridge, M., Knublauch, H., Rector, A., Stevens, R. and

Wroe, C., 2004. A Practical Guide To Building OWL
Ontologies Using The Protégé-OWL Plugin and CO-
ODE Tools Edition 1.0.

JBoss, 2006. JBoss Application Server.
Lassila, O. and Swick, R., 1999. Resource Description

Framework (RDF) model and syntax specification.
McGuinness, D.L. and Harmelen, F.v., 2004. OWL Web

Ontology Language Overview.
Mena, E., Kashyap, V., Sheth, A. and Illarramendi, A.,

1996. OBSERVER: An Approach for Query
Processing in Global Information Systems based on
Interoperation across Pre-existing Ontologies

Nodine, M. et al., 1999. Active Information Gathering in
InfoSleuth

Noy, N.F. and McGuinness, D.L., 2001. Ontology
Development 101: A Guide to Creating Your First
Ontology

Silva, B. and Cardoso, J., 2006. Semantic Data Extraction
for B2B Integration, International Workshop on
Dynamic Distributed Systems.

SPARQL-W3C, 2005. SPARQL Query Language for
RDF - W3C Working Draft 20 February 2006.

Taylor, J., 2004. Enterprise Information Integration: A
New Definition. In: I. Consortium (Editor), Thoughts
from the Integration Consortium.

Vliet, H.V., 2000. Software Engineering - Principles and
Practice. John Wiley & Sons.

ICEIS 2007 - International Conference on Enterprise Information Systems

232

