
DYNAMIC ARCHITECTURE BASED EVOLUTION OF
ENTERPRISE INFORMATION SYSTEMS

Sorana Cîmpan, Herve Verjus and Ilham Alloui
University of Savoie – Polytech’ Savoie - LISTIC Lab

B.P. 806 - 74016 Annecy Cedex - France

Keywords: Software architecture, formal language, evolution scenarios, enterprise information system.

Abstract: Enterprise Information Systems have to co-evolve with the enterprise they support. Their evolution is the
one of an important software system. Software evolution should be addressed at all developpement phases
in order to notably reduce costs (Lehman, 1996). The issue of software systems evolution has been
addressed mainly at the code level. In this paper we present how evolution of enterprise information systems
can take place at higher abstraction levels, when using an architecture-centred development process. The
evolutions addressed are dynamic, i.e. they take place at runtime and concern both planned and unplanned
evolutions of the enterprise information system.

1 INTRODUCTION

Human-centric activities are more and more
supported by software applications, most enterprises
relying on an enterprise information system, which
has to evolve according to requirements, new
technologies, etc. Thus, evolution and quality of
software systems is a major issue (Andrade et. al.,
2004, Mens et. al., 2003), related to changes that
may occur at different level (market, functionalities,
needs, etc.).

The evolution is often considered at the latter
stages of software system development process, i.e.
implementation and execution, mostly by adopting
pragmatic approaches (Demeyer et. al., 2002), but it
is rarely studied in the earlier stages (design,
modelling, specification). We agree with (Lehman,
1996), which indicates that evolution should be
studied at each software development process stage
in order to notably reduce costs. We claim (Verjus
et. al., 2006) that some evolutions could be taken
into account during the design and would not have to
be postponed to latter phases, namely the
implementation or runtime.

In this paper, we focus on system evolution using
a software architecture centric approach
experimented and validated in the ArchWare
European project (ArchWare, 2001). The project
address evolutions that may have impact on the

system software architecture; maintenance tasks that
have no impact on the architecture are managed
using classical approaches.

We classified the system evolution according to
moment when it takes place, i.e. static or at runtime,
and to their predictability during the design, i.e.
planned and unplanned (Cîmpan and Verjus, 2005).
This paper does not address static evolutions, which
are taken into account by all the (architectrure)
modelling approaches (Ding et. al., 2001, Barais et.
al., 2005, Tibermacine et. al., 2005). A simplist
description of such changes (be them planned or not)
is: stop the system, do the change, check
consistency, run again the system. We focus here on
cases where the system cannot be stopped, and thus
the change has to take place at runtime. We illustrate
how our architecture-centric approch allows taking
into account, during runtime, planned and unplanned
dynamic evolutions.

Planned dynamic evolutions are managed at the
architectural level and enacted automatically (self-
contained architecture) without external help.
Unplanned dynamic evolution management implies
that the considered architecture provides an
evolution entry point and that an evolution
mechanism is available for the external environment.
Thus, human or other external means could
dynamically evolve the system (architecture) by
using such entry points. Unplanned dynamic

221
Cîmpan S., Verjus H. and Alloui I. (2007).
DYNAMIC ARCHITECTURE BASED EVOLUTION OF ENTERPRISE INFORMATION SYSTEMS.
In Proceedings of the Ninth International Conference on Enterprise Information Systems - ISAS, pages 221-229
DOI: 10.5220/0002387002210229
Copyright c© SciTePress

evolution appears to be the most common situation
(Mens et. al., 2005, Demeyer et. al., 2002, Mens et.
al., 2003), particularly when considering the
maintenance of existing software systems. We show
how our approach allows to manage software
architecture evolution using a formal architecture
description language, ArchWare ADL (Oquendo et.
al., 2002). The language covers both structural and
behavioural aspects of architecture descriptions as
well as the expression of architectural constraints
and properties.

This paper is organized as follows: section 2
presents the ArchWare related foundations and
technologies; section 3 introduces scenarios that will
illustrate evolution (both planned and unplanned).
Then, we focus on planned dynamic evolution in
section 4 and on unplanned dynamic evolution in
section 5. Conclusions and perspectives will close
the paper.

2 THE ARCHWARE PROJECT
AND LANGUAGES

The work presented here has been partially funded
by the European Commission in the framework of
the IST ArchWare Project (Archware Consortium,
2001) and by the French ANR Cook project (Cook
2006). The ArchWare project proposes an
innovative architecture-centric software engineering
framework, i.e. architecture description and analysis
languages, architectural styles, refinement models,
architecture-centric tools, and a customisable
software environment. The main concern is to
guarantee required quality attributes throughout
evolutionary software development (initial
development and evolution), taking into account
domain-specific architectural styles, reuse of
existing components, support for variability on
software products and product-lines, and run-time
system evolution. The Cook project studies the role
of software architectures in the reengineering of
object-oriented applications (Pollet et. al., 2007).

In ArchWare, a software architecture is
considered as a set of typed nodes connected by
relations. When describing architectures, the nodes
are termed components and the relations termed
connectors. These components and connectors and
their compositions have specified behaviours based
on π-calculus (Milner 1999), and are annotated with
quality attributes. ArchWare proposes a set of
languages for: (1) describing the architecture
(ArchWare ADL), (2) architecture properties
(ArchWare AAL), (3) architecture refinement

(ArchWare ARL). ArchWare ADL offers different
language layers for describing architecture, from the
more generic one (the core language), to language
that are more and more specific. Such layers can be
defined by the user, using the style mechanism.
(Cîmpan et al., 2005) presents the layered
construction of the language.

The core description language ArchWare π-ADL
is based on the concept of formal composable
components and on a set of operations for
manipulating these components (Oquendo et. al.,
2002). The ADL supports the concepts of
behaviours and abstractions of behaviours, to
represent respectively running components and
parametric component types. Behaviour is described
using all the basic π-calculus operations as well as
composition and decomposition. Communication
between components is via channels represented by
connections (representing component interfaces as
well). The ArchWare ADL allows the definition of
evolvable architectures, i.e., where new components
and connectors can be incorporated and existing
ones can be removed, governed by explicit policies.

A language based on well-known component
connector, Archware C&C-ADL, is proposed as a
layer built on top of the core language. Given its
formal foundation on π-calculus, its ability to
represent both structural and behavioural aspects of
architectures, as well as architectural constraints
ArchWare ADL has an expressive power higher than
most existing ADLs (Medvidovic et. al., 2000,
Verjus et. al., 2006).

In this paper we use the Archware C&C-ADL for
illustrating the planned dynamic evolution and the
core language for illustrating the unplanned dynamic
evolution. In both cases, properties are represented
using ArchWare AAL.

3 EVOLUTION SCENARIOS

The chosen evolution scenarios are related to a
Supply Chain Management System (SCMS),
entailing an enterprise information system, with its
clients and its suppliers. The enterprise information
system and its suppliers constitute what we will call
hereafter an EAI solution. The SCMS architecture
will be modified according to particular
requirements and/or constraints. Other case studies
using the ArchWare approach in have been
published (Blanc dit Jolicoeur et. al., 2002, Pourraz
et. al., 2006, Ratcliffe et. al., 2005, Revillard et. al.,
2005).

ICEIS 2007 - International Conference on Enterprise Information Systems

222

Client

Client ToEAI
connector

EAI

Evolution port

choreographer

command
port quote

port

command
port

quote
 port

evolution
port

suppliers
port

suppliers
port

Initial scenario. Whenever a client passes an
order to the EAI, it first asks for a quotation. If the
quotation satisfies the client, it makes an order. The
ordering system (or component), takes the order,
updates the stock and may ask a supplier for
restocking if the current stock is not enough to
satisfy the order.

Planned dynamic evolution scenario. Two
dynamic evolutions are planned. One concerns the
dynamic change of the invoice system, and another
the arrival of new clients in the global architecture.
The architecture is self-contained and evolves in
response to external stimulus .

Unplanned dynamic evolution scenario. The
initial restocking process no loger fits the
requirements. We show how the architect can
improve the restocking process by adding a new
supplier and by modifying the restocking request
process. This evolution will both modify the
structure as well as the intern behaviour of
components.

4 PLANNED DYNAMIC
EVOLUTION

We consider in this section dynamic evolutions that
were planned by the system architect, while
architecting the system. ArchWare C&C-ADL offers
mechanisms for representing such evolving
architecures (Cîmpan et. al., 2005). The language
continues and improves previous language
propositions for the description of dynamic
architectures, such as Dynamic Wright (Allen et. al.,
1998) or π-Space (Chaudet et. al., 2000).

Figure 1: The SCMS global architecture.

In our scenario the clients comunicate with the
EAI component either for demanding a quote for a
product (using their respective quote port), either for

passing an order for a product (using their respective
order port).

As it is represeted by a composite component,
the supply chain has a special architectural element,
the choreographer, which handles its evolution. The
choreographer is implicitly connected to all
components and connectors in the composite. Its
ArchWare C&C-ADL description is given later.

Two planned dynamic evolutions are considered
here: (1) the integration of a new invoice system,
intern to the EAI and (2) new clients join the supply
chain (transparently for EAI and the existing
clients).

First planned dynamic evolution. The EAI
component entails four components, dedicated to the
management of respectively quotes, orders, stocks
and invoices, connected as shown in Figure 2. The
invoice handler is intern to the composite, the other
components being attached to composite ports. The
connectors among components are basic, and not
represented here.

Quote
handler

Invoice
handler

Stock
Handler

Order
System

EAI

Choreographer

evolution
port order port

quote
port

suppliers port

Figure 2: The EAI composite component.

Let us have a look at the ArchWare C&C-ADL
definition of the order component, which is an
atomic component with three ports. (cf. Figure 3).
OrderHandler is component with{
 ports {
 stockP is InvoiceDemandPort;
 invoiceP is InvoiceDemandPort;
 orderP is OrderPort; }
 configuration { new stockP ; new stockP; new
orderP }
 computation {
 via orderP~orderReq receive product:String,
quantity:Integer;
 via stockP~invoiceReq send product,
quantity ;
 via stockP~invoiceRep receive ack: String;
 via orderP~orderRep send ack;
 if (ack==“OK”) then {
 via invoiceP~invoiceReq send product,
quantity ;
 via invoiceP~invoiceRep receive invoice:
String;
 via orderP~invoice send invoice
 }
 recurse
 } }

Figure 3: Order system atomic component.

DYNAMIC ARCHITECTURE BASED EVOLUTION OF ENTERPRISE INFORMATION SYSTEMS

223

The orderP port is connected to one of the
composite ports, and allows the reception of orders
from clients, containing both a product identification
and a desired quantity. The stockP port allows the
order system to ask the stock handler to check if the
product is available in the required quantity. The
stock handler confirms the resource availability or
indicates it’s unavailability. The message is
transmitted to the client. If the product is available,
the order system asks the invoice handler (to which
it is connected via the the invoiceP port) an
invoice, which once received is sent to the client.
This behaviour is repeted recursively.

The ArchWare C&C-ADL EAI composite
component definition is presented in Figure 4. Every
component in a composite is potentially dynamic,
several instances can be created at runtime. The
constituents part entails the declaration of different
component types, an instance of each being created
in the configuration part. The later entails equally
the expression of different attachements among
components.
EAI is component with{
 ports {
 erpOrderP is OrderPort;
 eaiQuotationP is QuotationPort;
 eaiEvolveP is EAIEvolutionPort; }
 constituents {
 orderComponent is OrderHandler;
 invoiceComponent is InvoiceHandler;
 stockComponent is StockHandler;
 quotationeComponent is QuoteHandler}
 configuration {
 new orderComponent; new invoiceComponent;
new stockComponent; new quotationeComponent;
 attach orderComponent~orderP to eaiOrderP;
 attach quotationComponent~quotationP to
eaiQuotationP;
 attach orderComponent~stockP to
stockComponent~stockP;
 attach orderComponent~invoiceP to
invoiceComponent~invoiceP; }
 choreographer {
 via eaiEvolveP~newInvoice receive
newInvoiceComponent:InvoiceSystem;
 detach orderComponent from invoiceComponent ;
 insert component newInvoiceComponent in
invoiceComponent;
 attach orderComponent~invoiceP to
invoiceComponent#last~invoiceP;
 via eaiEvolveP~ackP send “ok”;
 recurse;
 }} – end of the meta-component EAI

Figure 4: EAI composite component.

As already mentioned, a composite evolution is
handled by its choreographer. For the EAI
composite, a port is dedicated to the reception of the
evolution message (the evolution decision is taken
elsewhere). The EAI composite is ready to evolve its
invoice system, a new component version can be
received via the evolution port. Once the new
invoice component is received, the choreographer
detaches the current orderComponent and the

invoiceComponent. The newly received invoice
handler is inserted as instance of invoiceComponent
type. We recall that all components are dynamic,
meaning that several instances can co-exist at
runtime. The last instance can be addressed using the
component type name followed by #last. Thus
using invoiceComponent#last the choreographer
attaches the new invoice component version to the
order system.

Second planned dynamic evolution. We will
see how new clients can dynamically join the supply
chain, this evolution being handled by the
SupplyChain choreographer. The arrival of a new
client is completely transparent to the EAI
component. The connector that links the clients to
the EAI component also evolves, but this evolution
will not be shown here.
SupplyChain is component with{
 ports {
 eaiEvolveP is EAIEvolutionPort;
 newClientP is ClientPort; }
 constituents {
 clientComponet is Client;
 eaiComponent is EAI;
 clientToEai is ClientToEAIConnector;}
 configuration {
 new clientComponet; new eaiComponent; new
clientToEai;
 attach clientComponent~orderP to
clientToEai~clientOrderP;
 attach clientToEai~eaiOrderP to
eaiComponent~eaiOrderP;
 attach clientComponent~quotationP to
clientToEai~clientQuotationP;
 attach clientToEai~eaiquotationP to
eaiComponent~eaiQuotationP; }
choreographer {
choose {
 via eaiEvolveP~newInvoice
 receive newInvoiceComponent:InvoiceSystem;
 via eaiComponent~eaiEvolveP~newInvoice
 send newInvoiceComponent;
 via eaiComponent~eaiEvolveP~ack
 receive ack:String;}
or {
 via newClientP~createOut receive c : Client;
 insert component c in Client ;
 via clientToEai~newClientP~createIn send ;
 via clientToEai~newClient~createOut receive ;
 attach clientComponent#last~orderP to
 clientToEai~clientOrderP#last;
 attach clientComponent#last~quotationP to
 clientToEai~clientQuotationP#last;}
then recurse
} } – end meta-component SupplyChain

Figure 5: Supply chain composite component.

The supply chain choreographer handles both the
arrival of a new client, and the reception of a new
version of the invoice handler (which is passed to
the EAI component). Any new client is inserted in the
composite as instance of the Client component type.
A request for evolution is sent to the ClientToEAI
connector, which will create in response two ports in
order to allow the connection of the new client.
Once the connector indicates that the new ports have

ICEIS 2007 - International Conference on Enterprise Information Systems

224

been created, the choreographer makes the
attachement between the client and the newly
created connector ports. The access to the last
instance (for both the client and the connector ports)
are made as previously using the #last suffix.

Using these two evolution examples we shown
how ArchWare C&C-ADL allows the definition of
dyanmicaly evolving architectures.

Besides the verification of component types, as
in the reception of a new invoice component or a
new client, other properties verification can be
performed in order to ensure the global coherence
for the system. Such properties can concern both
structural and behavioural aspects. Examples of
structural properties include components
connectivity (no unconnected component), the
existence of particular components (imposing the
existence of at least one instance of invoice
component is the EAI composite), etc. Behavioural
properties concern the components or ports
behaviour. In Figure 6, the property
requestBeforeReplyOfOrderSystem states that an
order system cannot send a reply befor receiving a
request. This property has to be preserved after the
system evolves (reception of the new invoice
system, or new client).
requestBeforeReplyOfOrderSystem is property { on
OrderSystem.instances apply

 forall {os | (on os.actions apply isNotEmpty)
implies
 (on os.orderP~orderReq.actionsIn apply

 exists {request | on
os.orderP~orderRep.actionsOut apply
 forall {reply | every sequence {(not
request)*. reply}

 leads to state {false} } }) } }

Figure 6: Property ensuring the order between send and
request.

The evolutions presented in this section have to
be planned during the system architecture definition.
In the following we will show how it is possible to
handle unplanned dynamic evolutions.

5 UNPLANNED DYNAMIC
EVOLUTION

Research activities leaded in the ArchWare project
encompass a virtual machine able to interpret
architectural descriptions coded using the core
language ArchWare π-ADL (cf. section 1 above). In
the following, the illustrating example is specified
using the core language (and not in the C&C layer,
as in the previous section). The ArchWare
environment proposes specific components that

allow managing such evolutions (Oquendo et. al.,
2004).

Figure 7: The initial architecture.

value client is abstraction(String:
quotationRequest, Integer: qty);{
 value quotationReq is free connection(String);
 value quotationRep is free connection(Float);
 value orderReq is free
connection(String,Integer);
 value orderRep is free connection(String);
 value invoiceToClient is free
connection(String);
 value quotationBeh is behaviour {
 via quotationReq send quotationRequest;
 via quotationRep receive amount:Float;
 unobservable; }
 quotationBeh();
 choose {
 quotationBeh();
 or
 behaviour {
 via orderReq send quotationRequest, qty;
 unobservable;
 via orderRep receive ack:String;
 if (ack == "OK") then {
 via invoiceToClient receive
invoice:String;
 } } }
 done };
value supplier1 is abstraction(); {
 value restockingOrder1Req is free
connection(String, Integer);
 value restockingOrder1Rep is free
connection(String);
 via restockingOrder1Req receive wares:String,
quantity:Integer;
 unobservable;
 via restockingOrder1Rep send "OK";
 done };
value quotationSystem is abstraction(Float:
price); { … }
value orderSystem is abstraction();{ … }
value stockingControl is abstraction(Integer:
stock); { … }
value restockingSystem is abstraction();{ … }
value invoiceSystem is abstraction();{ … }
value erp is abstraction(Float: price, Integer:
stock); {
 compose { quotationSystem(price)
 and orderSystem()
 and invoiceSystem()
 and stockingControl(stock)
 and restockingSystem() } };
value eai is abstraction(Float: price, Integer:
stock); {
 compose { supplier1(20)
 and erp(price, stock)
 } }

Evolver

SCMS

Client

ERP

Supplier

1

ERP

EAI

Restock

Invoice

Order

Stock

Quotation

DYNAMIC ARCHITECTURE BASED EVOLUTION OF ENTERPRISE INFORMATION SYSTEMS

225

};

Figure 8: Initial architecture description (extract).

We do not present here all the tools and how they
interact and cooperate together but we focuse on
how the description language and its associated
virtual machine allow such evolution to take place.

Before focusing on the architecture evolution
process, let us recall that whenever a customer is
asking for an order, if the desired product quantity is
less that the corresponding stock quantity, a
restocking request is emited to a supplier in order to
satisfy the customer order request.

At the beginning, (cf. Figure 8), we assume that a
sole supplier is involved and is always able to satisfy
restocking requested by the restocking system. (cf.
Figure 7). Let us imagine now that this supplier is no
longer able to satisfy restocking requests, or the
restocking manager has decided to change the
restocking process by involving more than one
supplier. If the desired restocking quantity exceeds
the initial supplier (named supplier1) restocking
ability, a second request is then addressed to another
supplier (named supplier2); the second restocking
request quantity is computed by subtracting the
quantity the supplier1 is willing to provide to the
customer's initial request. This evolution scenario is
interesting: on one hand it implies changes in the
system architecture structure by adding a new
supplier (cf. Figure 9); on another hand, it enforces
the dynamic change of the restocking process for
taking into account that a restocking request may not
be satisfied; in this case, a new supplier joins the
architecture and the initial restocking request has to
be split among the two suppliers. The system
behavior has to be dynamically changed according
to the new configuration and process (cf. Figure 9).

 Figure 9: The architecture after evolution.

Let us see now how the evolution is managed at
the architectural code level and enacted by the

virtual machine. The architectural element named
evolver (cf. Figure 10) is notified (via the evolReq
connection) by the SCMS abstraction as soon as an
evolution (an architectural change) is mandatory.
value evolver is abstraction(); {
 value evolReq is free connection();
 value evolRep is free connection(Boolean,
abstraction);
 via evolReq receive;
 choose {{via evolRep send false, any();}
 or {value evol_arch_part is ARCH-EVOLUTION;
 via evolRep send true, evol_arch_part ;}}
};
value scms is abstraction(); {
 value evolReq is free connection();
 value evolRep is free connection(Boolean,
abstraction());
 compose {
 behaviour {
 via evolReq send;
 via evolRep receive evolution:Boolean,

evol_arch_part:abstraction(Float,Integer);
 if (evolution) then {
 evol_arch_part(100.00, 32)
 } else {
 eai(100.00, 32) }
 }
 and client("rollings", 12)}
};
-- The SCMS abstraction that is the entire system
architecture
value scms_arch is abstraction(); {
 compose { scms()
 and evolver()}
};

Figure 10: The evolver and scms abstractions containing
evolution mechanisms and managing evolution process.

The way the architectural elements are organized
is quite important regarding the evolution: because
the evolver is attached to a specific abstraction, only
this abstraction (and all of its sub-abstractions) may
evolve. If it is unknown (or difficult to anticipate) on
which abstraction the evolution will occur, one
should attach the evolver to the abstraction that
contains the entire system (the root abstraction). The
side effect of attaching the evolver to the root
abstraction is that for a small evolution (implying a
very small part of the system), all of the architecture
has to be expressed again in the evolution
abstraction (called ARCH-EVOLUTION in the following
and in the code examples) as shown later.

Notice that we do not make any assumptions
about the nature of the evolution and what really the
changes and the evolution policy will be. However,
we have to specify where the evolution may occur.
In the previous architectural description (cf. Figure
10), when the evolver is requested, either (choose in
the piece of code) the architect decides that no
evolution/change is required (i.e., the evolution
parameter received on the connection is equal to
false), either the architect asks for an evolution (i.e.,
the evolution parameter received on the connection

Evolver

SCMS

Client

ERP

Supplier

1

ERP

EVOL_ARCH_PART

Restock

Invoice

Order

Stock

Quotation

Supplier

2

ICEIS 2007 - International Conference on Enterprise Information Systems

226

is equal to true). In the latter case, the virtual
machine looks for a specific architectural abstraction
(called ARCH-EVOLUTION), by dynamically loading an
ARCH-EVOLUTION.adl file. Thus it is up to the
architect to define the evolution and to produce the
ARCH-EVOLUTION.adl file when it is required.
The ARCH-EVOLUTION abstraction is first sent on the
evolRep connection, and then dynamically applied:
the evolved architecture currently behaves as the one
integrating the changes expressed in the ARCH-
EVOLUTION abstraction (cf. architectural abstraction
7). The evolved architecture now contains a new
supplier (called supllier2) and the restocking
process has changed accordingly. Notice that the
new supplier (supplier2) does not behave as the
existing supplier (supplier1) (i.e., it is not the same)
because the evolution we introduced (cf. section 3)
requires two different suppliers; we assume that a
restocking request to the new supplier (supplier2)
will only be satisfied if the requested quantity is less
or equal to the supplier2’s stock quantity for a given
product.

The restocking process has now to take into
account the existence of a new supplier, and the
initial demand may be split (according to the
quantity requested) between two suppliers (cf.
Figure 11). The eai abstraction has been replaced by
the evol_arch_part abstraction (corresponding to the
ARCH-EVOLUTION described in the ARCH-
EVOLUTION.adl file), integrating all architectural
changes (cf. Figure 11). The transformation from the
initial architecture (without evolution) and the
evolved one (integrating the changes) takes place in
the scms abstraction (cf. Figure 10), by using the
evolReq and evolRep connections as we saw. These
mechanisms allow several evolution strategies, each
coded in a specific abstraction expressed in the
evolver architectural element.
value supplier2 is abstraction(Integer capacity);
{
 value restockingOrder2Req is free
connection(String, Integer);
 value restockingOrder2Rep is free
connection(String, Integer);
 via restockingOrder2Req receive wares:String,
quantity:Integer;
 unobservable;
 if (quantity > capacity) then {
 via restockingOrder2Rep send "NOK",capacity; }
 else {
 via restockingOrder2Rep send "OK",capacity;
 }
 done
};
value restockingSystem is abstraction(); {
 value restockingReq is free connection(String,
Integer);
 value restockingOrder2Req is free
connection(String, Integer);
 value restockingOrder2Rep is free
connection(String, Integer);
 value restockingOrder1Req is free
connection(String, Integer);

 value restockingOrder1Rep is free
connection(String);
 via restockingReq receive wares:String,
quantity:Integer;
 via restockingOrder2Req send wares, quantity;
 via restockingOrder2Rep receive ack:String,
qtyReceived:Integer;
 if (ack == "NOK") then {
 via restockingOrder1Req send wares, (quantity-
qtyReceived);
 unobservable;
 via restockingOrder1Rep receives ack2:String;
}
 unobservable;
 done
}
value erp is abstraction(Float: price, Integer:
stock); {
 compose { quotationSystem(price)
 and orderSystem()
 and invoiceSystem()
 and stockingControl(stock)
 and restockingSystem()
}
-- The evolved abstraction implying two suppliers
value ARCH-EVOLUTION is abstraction(Float:price,
Integer: stock); { compose { erp(price, stock)
 and supplier1()
 and supplier2(20) }
};

Figure 11: ARCH-EVOLUTION.adl architectural
description (extract).

Dynamically changing an architecture may cause
drawbacks (inconsistency, lost properties). In order
to limit their importance, architectural constraints
can be defined and the architecture can be analyzed
whenever the architect wishes. Such constraints and
properties are expressed using the ArchWare AAL
language (Alloui et. al., 2003). Details on the
properties checking and architecture validation and
verification can be found in (Alloui et. al., 2003,
Alloui et. al., 2005). Remember that the modified
architecture can be checked against the initial
architecture identified properties. If such verification
succeeds, changes can be applied by dynamically
evolving the architecture as presented.

6 CONCLUSION

Enterprise information systems require evolution in
order to support enterprise activities, to adapt to
market changes and enterprise evolutions. In our
scenario, we illustrated changes that are related to
the composition of the system (by adding for
example a supplier) as well as the behaviour of the
system (in other words the business process) by
modifying the restocking process. Other case studies
have been realized using the ArchWare approach
and technologies, i.e., for a Manufacturing
Execution System for a Grid-based application in a
health-related project (Manset et al., 2006). Other

DYNAMIC ARCHITECTURE BASED EVOLUTION OF ENTERPRISE INFORMATION SYSTEMS

227

reserarch activities are directly inspired from these
results (Pourraz et al., 2006).

Architecture evolution support is an important
issue (Andrade and Fiadeiro, 2003). Current
researches in this area are concentrated either on low
abstraction levels (implementation), either on a very
high levels (traditionnaly called conceptual level).

Firstly, we claim that the ADL has to support
evolution: architecture evolution has to be expressed
using the language itself. Few ADLs have such
features (Darwin (Magee et al., 1995), π-Space
(Chaudet and Oquendo, 2000), Piccola (Nierstrasz
and Achermann, 2000)), while most of them are
based on process algebras. Secondly, the
architecture descriptions have to be enactable and on
the fly change mechanisms have to be provided.
This latter point is very important. Most research
activities focusing on architecture evolution can only
address static evolution because they are not based
on an adequate ADL: changes on architectures are
made either on abstract architectures (Egyed and
Medvidovic, 2001), either directly in the code (cf.
(Pollet et al., 2007) for a good survey on research
leaded in this topic). In this context, the consistency
between the two abstractions levels becames an
important issue (Oreizy et al., 1998, Garlan et. al.,
2003, Carriere et. al., 1999, Erdogmus, 2000, Van
der Hoeck et. al., 2001, Aldrich et. al., 2002, Pinzger
et al., 2004, Rank, 2005, Roshandel et. al., 2004,
Nistor et. al., 2005).

The approach presented in this paper proposes
the following interesting features:

• ArchWare ADL is a formal high level
Architectural Description Language that
covers structural and behavioural
architecture description; it is also an
interpretable language (accompanied by
a virtual machine) with specific
evolution support mechanisms;

• The ArchWare development process is
shorter than most of the software-
intensive system development
processes: conceptual (or abstract) level
and implementation are unified. Thus,
there is no need to manage consistency
between them avoiding gaps and
discrepancies: the executing system
architecture is the specified one;

• The ArchWare ADL formal foundations
allow the architect to formally describe
enterprise information systems, to check
the system architecture;

• The evolution is managed directly and
dynamically at the architectural code,
each change consequence(s) on the
architecture being verifyied before
being applied.

In our illustrating scenario, we showed that the
initial system is able to evolve dynamically by
applying architectural abstractions that are unknown
at the beginning (before system execution) but that
can be formalized during system (architecture)
execution. Evolution could be a cascading process
for which changes may be applied on a previously
modified architecture (with properties checking at
each evolution step).

REFERENCES

Allen R., Douence R. , Garlan D., 1998. Specifying and
Analyzing Dynamic Software Architectures, In
Proceedings on Fundamental Approaches to Software
Engineering, Lisbon, Portugal.

Alloui I., Garavel H., Mateescu R., Oquendo F., 2003. The
ArchWare Architecture Analysis Language. ArchWare
Deliverable D3.1b.

Alloui I., 2005. Property verification and change impact
analysis for model evolution, 1ères journées sur
l’Ingénierie Dirigée par les Modèles (IDM'05), Paris.

Aldrich J., Chambers C., Notkin D., 2002. ArchJava:
Connecting Software Architecture to Implementation,
24th International Conference on Software
Architecture (ICSE 2002), Orlando, Florida.

Andrade L.F., Fiadeiro J.L., 2003. Architecture Based
Evolution of Software Systems. LNCS 2804: 148-181.

ArchWare Consortium, 2001. The EU funded IST–2001–
32360 ArchWare – Architecting Evolvable Software -
project : http://www.arch-ware.org

Barais O., Lawall J., Le Meur A-F., Duchien L., 2005.
Providing Support for Safe Software Architecture
Transformations. In 5th IEEE/IFIP Working
Conference on Software Architecture (WICSA),
Pittsburgh, USA.

Blanc dit Jolicoeur, L., Braesch, C., Dindeleux, R.,
Gaspard, S., Le Berre, D., Leymonerie, F., Montaud,
A., Chaudet, C., Haurat, A., Théroude, F., 2002. Final
Specification of Business Case 1, Scenario and Initial
Requirements. Deliverable D7.1b, ArchWare project.

Carriere S., Woods S., Kazman R, 1999. Software
Architectural Transformation. In 6th Working
Conference on Reverse Engineering, IEEE Computer
Society.

Chaudet C., Oquendo F., 2000. π-SPACE: A Formal
Architecture Description Language Based on Process
Algebra for Evolving Software Systems, 15th IEEE
International Conference on Automated Software
Engineering (ASE’00), Grenoble - France.

Cîmpan S., Verjus H., 2005. Challenges in Architecture
Centred Software Evolution, CHASE: Challenges in
Software Evolution, Bern, Swizerland.

Cîmpan S., Leymonerie F., Oquendo F., 2005. Handeling
Dynamic Behaviour in Software Architectures. In the
European Workshop on Software Architectures, Pisa,
Italy.

ICEIS 2007 - International Conference on Enterprise Information Systems

228

Cook 2006
http://www.iam.unibe.ch/~ducasse/Research/Cook/ind
ex.html

Demeyer S., Ducasse S., Nierstrasz O., 2002. Object-
Oriented Reengineering Patterns, Morgan Kaufmann,
1-55860-639-4.

Ding L., Medvidovic N., 2001. Focus: A Light-Weight,
Incremental Approach to Software Architecture
Recovery and Evolution, In 2001 Working IEEE/IFIP
Conference on Software Architectures (WICSA-2),
Amsterdam, Netherlands.

Egyed, A., Medvidovic, N., 2001. Consistent Architectural
Refinement and Evolution using the Unified Modeling
Language, In 1st Workshop on Describing Software
Architecture with UML, co-located with ICSE 2001,
Toronto, Canada.

Erdogmus, H., 1998. Representing Architectural
Evolution, In Proceedings of CASCON '98. Toronto,
Ontario, Canada.

Garlan D., Cheng S.-W., Schmerl B., 2003. Increasing
System Dependability through Architecture-based
Self-repair. In Architecting Dependable Systems, R.
de Lemos, C. Gacek, A. Romanovsky (Eds), Springer-
Verlag.

Lehman M. M., 1996. Laws of Software Evolution
Revisited, In European Workshop on Software
Process Technology.

Magee J., Dulay N., Eisenbach S. Kramer J., 1995.
Specifying Distributed Software Architectures. In 5th
European Software Engineering Conference (ESEC
'95), Sitges, LNCS 989.

Manset D., Verjus H., McClatchey R., Oquendo F., 2006.
A Formal Architecture-Centric Model-Driven
Approach For The Automatic Generation Of Grid
Applications. In 8th International Conference on
Enterprise Information Systems (ICEIS’06), Paphos,
Chyprus.

Medvidovic N., Taylor R.N., 2000. A Classification and
Comparison Framework for Software Architecture
Description Languages, IEEE Transactions on
Software Engineering, vol. 26, no. 1, pages 70-93.

Mens T., Buckley J., Rashid A., Zenger M., 2003.
Towards a taxonomy of software evolution, In
Workshop on Unanticipated Software Evolution,
Varsovie, Poland.

Mens T., Wermelinger M., Ducasse S., Demeyer S.,
Hirschfeld R., 2005. Challenges in software evolution,
In 8th International Workshop on Principles of
Software Evolution. IEEE Press.

Milner R., 1999. Communicating and Mobile Systems: the
pi-calculus. Cambridge University Press.

Nistor E., J. Erenkrantz, S. Hendrickson, and A. v. d.
Hoek, 2005. ArchEvol: Versioning Architectural-
Implementation Relationships, In 12th International
Workshop on Software Configuration Management
(SCM05), Lisbon, Portugal.

Nierstrasz O., Achermann F., 2000. Supporting
Compositional Styles for Software Evolution,
International Symposium on Principles of Software
Evolution, IEEE, Kanazawa, Japan.

Oquendo F., Alloui I., Cîmpan S., Verjus H., 2002. The
ArchWare ADL: Definition of the Abstract Syntax and
Formal Semantics. ArchWare Deliverable D1.1b.

Oquendo F., Warboys B., Morrison R., Dindeleux R.,
Gallo F., Garavel H., Occhipinti C., 2004. ArchWare:
Architecting Evolvable Software. In First European
Workshop on Software Architecture (EWSA 2004), St
Andrews - UK.

Oreizy P., Medvidovic N., Taylor R., 1998. Architecture-
based runtime software evolution, In Inernational
Conference on Software Engineering, Kyoto, Japan.

Pinzger M., Fischer M., Gall H., 2004. Towards an
Integrated View on Architecture and its Evolution,
Elsevier Electronic Notes in Theoretical Computer
Science, Rome, Italy.

Pollet D., Ducasse S., Poyet L., Alloui I., Cîmpan S.,
Verjus H., 2007. Towards A Process-Oriented
Software Architecture Reconstruction Taxonomy, In
11th European Conference on Software Maintenance
and Reengineering (CSMR 2007), Amsterdam, the
Netherlands.

Pourraz F., Verjus H., Oquendo F., 2006. An Architecture-
Centric Approach For Managing The Evolution Of
EAI Service-Oriented Architecture, In 8th
International Conference on Enterprise Information
Systems (ICEIS’06), Paphos, Chyprus.

Rank S., 2005. Architectural Reflection for Software
Evolution, In Workshop on Reflection, AOP and Meta-
Data for Software Evolution (RAM-SE 2005), held at
ECOOP, Glasgow, UK

Ratcliffe O., Cîmpan S., Oquendo F., 2005. Case study on
architecture-centered design for monitoring views at
CERN, In 5th Working IEEE/IFIP Conference on
Software Architecture (WICSA 2005), Pittsburgh,
Pennsylvania, USA.

Revillard J., Benoit E., Cîmpan S., Oquendo F., 2005.
Architecture-centric development for Intelligent
Instrument Design, IEEE Int. Conf. on Computational
Intelligence for Measurement Systems and
Applications (CIMSA 2005), Giardini Naxos, Italie.

Roshandel R., van der Hoek A., Mikic-Rakic M.,
Medvidovic N., 2004. Mae: A System Model and
Environment for Managing Architectural Evolution,
ACM Transactions on Software Engineering and
Methodology, Vol. 13, Issue 2, pages 240-276.

Tibermacine C., Fleurquin R., Sadou S., 2005. Preserving
Architectural Choices throughout the Component-
Based Software Development Process. In 5th
IEEE/IFIP Working Conference on Software
Architecture (WICSA'05), Pittsburgh, Pennsylvania,
USA.

Verjus H., Cîmpan S., Alloui I., Oquendo F., 2006.
Gestion des architectures évolutives dans ArchWare,
1ère Conférence francophone sur les Architectures
Logicielles (CAL 2006), Nantes, France.

DYNAMIC ARCHITECTURE BASED EVOLUTION OF ENTERPRISE INFORMATION SYSTEMS

229

