
USABILITY ISSUES IN SERVICE-ORIENTED ARCHITECTURE

Jaroslav Kŕal and MichalŽemlička
Department of Software Engineering, Faculty of Mathematics and Physics,Charles University

Malostransḱe ńam. 25, 118 00 Praha 1, Czech Republic

Keywords: Service orientation, usability in SOA systems, user involvement, autonomous service, user-oriented compo-
nent interface, software confederations, agile development of large systems.

Abstract: Usability is of a growing importance. It is crucial for the acceptance of software systems nowadays. Software
usability in its classical sense is mainly the property of the user interface of a system. Usable interface should
have at least three properties: it must be easily understood and remembered and not too laborious in use. We
show that in SOA systems called confederation the first two properties should have the interfaces of constituent
application services. It is a precondition for the usability of user system interface. The properties are crucially
important for the software engineering aspects of confederations (scalability, modifiability, reuse of existing
systems, stability) as well as for their functions, e.g. for business processes (flexibility, on-line modifiability,
etc.). We discuss some standardization issues.

1 INTRODUCTION

Service orientation is the hot topic and crucial is-
sue of contemporary software engineering. There is
no agreement on the definition of service orientation,
compare (MacKenzie et al., 2006; W3 Consortium,
2002). In fact, under service orientation quite dif-
ferent systems are understood. Based on our several
decades experience with SOA-like software flexible
manufacturing systems (Král andŽemlička, 2005) we
will discuss a more specific class of SO systems called
confederations.

Confederations are systems having service ori-
ented architecture (SOA) in which the constituent ser-
vices ”know each other”. It follows that partner ser-
vices need not be looked for at the stat of the commu-
nication between the partners. The world-wide stan-
dards need not be applied. It opens the possibility
to use proprietary communication protocols or pro-
prietary (e.g. user oriented) message formats. It as
obvious drawbacks, but due current state of art of the
development of SOA systems and due to the low ma-
turity of some standards the advantages prevail. Con-
federations appear to be the systems having the most
important impacts in practice.

Confederations are typical result of integration of

legacy systems (e.g. information services of offices)
into a new whole (software of e-government). They
are typical for heath service systems, information sys-
tems of local authorities, ERP of global enterprises,
etc. It is advantageous to develop confederation as
a p2p network of services of two types (Král and
Žemlička, 2005):

• Application services, often wrapped legacy sys-
tems of third party products, providing the basis
business capabilities (functions),

• Architecture servicesenabling to build system ar-
chitecture. The services are used to enhance mid-
dleware functions supporting the collaboration of
application services (filtering, routing, data stores,
etc.) or as a service orchestration tools. The us-
ability of service interfaces can be often enhance
by architecture services calledfront-end gates
or proxies (Král and Žemlička, 2002; Kŕal and
Žemlička, 2005) staying logically between appli-
cation service and middleware and transforming
e.g. fine-grained implementation-oriented mes-
sages into coarse-grained ones usable by users as
well as communication partners.

We will show that the functionality of confedera-
tions crucially depends on the property which can be

482
Král J. and Žemlička M. (2007).
USABILITY ISSUES IN SERVICE-ORIENTED ARCHITECTURE.
In Proceedings of the Ninth International Conference on Enterprise Information Systems - DISI, pages 482-485
DOI: 10.5220/0002387704820485
Copyright c© SciTePress



viewed as a generalization of usability for classical
(monolithic) systems (Nielsen, 1993). The usability
of the interfaces of application services has crucial
consequences for the system.

Usability is of growing importance as it is the ker-
nel of trends to consumerisation (Morello, 2005) of
software. Consumerized software should be very sim-
ple for use (usable), adaptable to user needs,and re-
liable. Usability of software is usually understood to
be mainly the property of client layer of modern sys-
tems. In confederations the classical usability issues
are solved in portals. The usability in this sense has
only a little influence on the quality of system capa-
bilities and properties of the functions provided by the
system. It is not the case in confederations.

2 CONFEDERATIONS AND
USABILITY

As service-oriented architecture (SOA) we under-
stand the architecture of the systems consisting of a
collection of components behaving like the real-world
services; i.e. the components are:

• autonomous and permanently active providing
some capability to service consumers;

• allowing to have more than one unsettled service
request at a time; there can be in principle no lim-
itations on service consumers exits;

It is not difficult to see that SOA in our sense must
have the properties of a virtual peer-to-per network
N of services. The basic service communication
mode inN in asynchronous. The software compo-
nents in SOA called in the sequel application services
provide collections of capabilities (atomic services).
The atomic services are invoked by service requests.
The application services mutually communicate. Two
cases arise: (i) the communication partners of the ap-
plication service are known to the service developers,
(ii) the developers do not know the communication
partners of the developed service. The first case we
call software confederation, the secondalliance.

The confederations are quite common. They are
typically the result of the integration of existing appli-
cations (usually existing information systems) by at-
taching connectors to the inerconnected applications.
The connectors connect the applications to a middle-
ware. A confederation usually contains user inter-
faces and architecture services having specific roles.
Confederations are often the result of the integration
of legacy systems like information systems of offices
to provide software of e-government, collaboration
of departments/divisions of an enterprise, the system

supporting collaboration of a health care institution,
or cooperation of companies within supply chain or
in specific coalitions. Note that in all these examples
we must distinguish what components (services) form
the system and what are their interfaces.

Confederations are the way of reuse software sys-
tems by a smooth integration which is now an ultimate
request to save software investments and even to have
such systems likee-government in reasonable terms.
The solution usually fails if the application services
are not properly designed, it is, if they do not mirror
the real-world services.

3 ENGINEERING ADVANTAGES
OF SERVICE USABILITY

Usable systems having application services with us-
able interfaces1 have some important software engi-
neering advantages:

Stability in time: As user-oriented interfaces mimic
the interfaces of real-world services being used
for long time, it is a good chance that they will
not be changed in the future. They will be well
understandable for all communication parties. It
is especially true for operational information sys-
tems.

Agile development and use: User-oriented inter-
faces must be developed in tight cooperation
with users. Other principles of agile development
must be used too. It therefore opens the way
of the application of agile philosophy in the
development of large systems.

Easy insourcing and outsourcing: User-oriented
interfaces are advantageous for insourcing
and outsourcing as technically insourcing and
outsourcing must be implemented by message
redirection. The same turn can be used for screen
prototyping of non-existing services. In this case
the messages are redirected to portals.

Incremental development: This turn is very useful
in the case of incremental development. It enables
debugging allowing user involvement.

Agile business processes: Confederations enable
such an implementation of business processes
allowing business agility.

1Service interfaces are usable only if they reflect user
domains’ knowledge and languages. As such they must be
usually declarative and coarse grained. We say that such
interfaces areuser-oriented.

USABILITY ISSUES IN SERVICE-ORIENTED ARCHITECTURE

483



4 BUSINESS PROCESSES

One of the crucial requirements on information sys-
tems is the ability of information systems to support
business processes. The implementation must take
into account that the processes must in their individual
steps use capabilities of basic (application) processes
and coordinate (orchestrate) their tasks.

Business processes are of various complexity:
some are just a short linear list of simple tasks,
some complex networks of such activities. They of-
ten evolve in time. They must immediately react
on changes in the surrounding environment – e.g.
changes in law, changes in cooperating companies, or
changes in market demand or in the availability of re-
sources needed for it (see (Král andŽemlička, 2005)).
This requirement of immediate adaptation of business
processes to the changes of environment is a difficult
challenge for software developers.

There should always be someone (process owner)
responsible for the business consequences of the pro-
cess. No process owner will agree with the responsi-
bility unless he/she can certificate/commit the process
steps and have the possibility to modify the process if
necessary. It is process owners must be able to super-
vise and control the process and modify it online. It
includes its specification, creation, and also modifica-
tion during the process run. It implies that the busi-
ness processes cannot be fixed in the software, they
must be specified by users and use specific process
control data (process model).

The supervision by the process owners implies
in fact that basic (atomic) services providing atomic
steps of the business processes must have user-
oriented interface as otherwise the quick modifica-
tions of the process would be impossible. In this case
it is necessary to involve programmers transforming
the non-user oriented interfaces into the user-oriented
ones. It is inflexible, expensive, and time consuming.

User orientation of the interfaces implies that the
messages are declarative (i.e. saying rather what to do
that how to do it) and therefore not procedural (like
SOAP). Problem is the optimal standardization pol-
icy for user-oriented message formats (see below the
details of this topic).

The requirements on business processes support
by modern software (possibility to supervise, user-
modifiability and definability, extensibility by newly
defined and encoded trivial activities, maximal ro-
bustness) are (or should be) crucial for the software
architecture of software implementing business pro-
cesses. The possible way how to implement busi-
ness processes to have the desired properties can be
based on the generation of a new service called pro-

cess manager (peer) for every new business process,
see (Kŕal andŽemlička, 2005) for details.

5 USABILITY AND STANDARDS

The most important objection against user-oriented
interfaces of services is based on the fact that at least
nowadays and in the near future there is only a very
little chance that such an interface is fully standard-
ized. It is correct but if we want to use current stan-
dards based on universal standards we have to give up
the idea that we can use declarative (and often coarse
grained as well) interfaces and the advantages depen-
dent on it.

The use of standards like SOAP implies that we
must use low-level programming concepts like remote
procedure calls. The reward is that there are tools sup-
porting the use of SOAP as well as such tools like
WSDL allowing to obtain the definition of the inter-
face in executable form and a tool (not too successful)
allowing to find an appropriate service. The tools are
necessary ine-commerce where communication part-
ner must in principle be looked for.

Note that the hurried standardization of the inter-
faces could lead (and usually leads) to premature stan-
dards. It will not be the case if the standards are based
on the interface formats that have been used for some
time. So it seems to be bearable to sacrifice standard-
ization (i.e. standardized XML dialects and associ-
ated tools as well) for some time and to some extend.
Using modern XML-related tools like XSLT the sac-
rifice need not be absolute.

The user-oriented interfaces strongly tend to be
coarse grained. It to some degree contradicts the
recommendations from SOA Open Reference Model
(MacKenzie et al., 2006) or at least indicates that
there is a broad class of very important service-
oriented systems for which is the use of coarse-
grained interfaces essential. The recommendation of
the Model is therefore in this respect from the prag-
matic point of view a bit misleading.

6 INFORMATION SYSTEMS
INTEGRATION

Current trends in economy towards integration and
globalization enforce the necessity to integrate orga-
nizations and their information systems. Integration
of information systems can be done as follows:

1. replacing the individual systems by new ones;

ICEIS 2007 - International Conference on Enterprise Information Systems

484



2. integration the services of the individual subsys-
tems into business processes (typical for insourc-
ing or for purchasing of new organizational units,
integration of newly developed components or
third party products, system integration);

3. removing a service from the system (outsourcing,
selling out an organizational unit).

The first type of integration is possible only when the
developers of the new system can have access to all
necessary information and when individual systems
are of similar type and about at the same security
level. It is applicable in the case when individual in-
formation systems of one organization are integrated
– if the subsystems are information systems and not
control systems.

The second type seems to be the only solution in
the case when heterogeneous systems are to be in-
tegrated or if the legacy systems are based on some
knowledge that is currently inaccessible. This type
of integration is usually achievable at lower costs and
in shorter time for its implementation than for the re-
development of the entire system from scratch. The
resulting system is usually a confederation.

7 CONCLUSIONS

The ability to integrate and reuse existing applications
is probably the most important property and crucial
effect of service orientation. It allows saving of rede-
velopment investments but also investments into staff
(user) training and related expenses (DeForest and
Rosenbloom, 2005). The use of legacy systems is not
without problems – especially in the cases when there
are no good user-oriented interfaces of the legacy sys-
tems.

If we are able to use good user interfaces, we gain
many advantages of technical as well as managerial
nature. The advantages are so important that it quite
frequently makes sense not to use some world-wide
standards.

The experience with the use of user-oriented inter-
faces makes it possible to define standards for them
and to find a proper balance between fully standard-
ized and proprietary solutions.

We did not discuss the case when the system has
a heterogeneous architecture, e.g. some parts are con-
federative, some are batch ones and in other parts the
services are web services. Such systems can be inte-
grated using a generalization of data stores (Král and
Žemlička, 2005) known from structured development
(Yourdon, 1988).

We believe that much research in service-
orientation is overly oriented towards full computeri-

zation. We believe that such systems must take people
(users) as an integral part of the system with their abil-
ities as well as disabilities. It is also the case for such
systems like web services in semantic web.

An open problem is the balance between decen-
tralization and centralization of services. The im-
portant of this topic is clearly visible on the history
of UDDI (W3 Consortium, 2001; UDDI Initiative,
2003).

ACKNOWLEDGEMENTS

This research was partially supported by the Program
”Information Society” under project 1ET100300517.

REFERENCES

DeForest, B. and Rosenbloom, S. (2005). SOA: The peren-
nial legacy issues.Business Integration Journal.

Král, J. andŽemlička, M. (2002). Autonomous compo-
nents. In Hamza, M. H., editor,Applied Informatics,
pages 125–130, Anaheim. ACTA Press.

Král, J. andŽemlička, M. (2005). Implementation of busi-
ness processes in service-oriented systems. InPro-
ceedings of 2005 IEEE International Conference on
Services Computing, volume II, pages 115–122, Los
Alamitos, CA, USA. IEEE Computer Society.

MacKenzie, C. M., Laskey, K., McCabe, F., Brown,
P. F., and Metz, R. (2006). Reference model
for service-oriented architecture 1.0, commitee
specification 1, 19 july 2006. http://www.oasis-
open.org/committees/download.php/19361/soa-rm-
cs.pdf.

Morello, D. (2005). The IT professional outlook: Where
will we go from here?

Nielsen, J. (1993).Usability Engineering. Academic Press,
New York.

UDDI Initiative (2002–2003). Universal definition, dis-
covery, and integration, version 3. An industrial ini-
tiative, http://www.oasis-open.org/committees/uddi-
spec/doc/tcspecs.htm#uddiv3.

W3 Consortium (2001). Web service definition language.
http://www.w3.org/TR/wsdl.

W3 Consortium (2002). Web services activity.
http://www.w3.org/2002/ws/.

Yourdon, E. (1988).Modern Structured Analysis. Prentice-
Hall, 2nd edition.

USABILITY ISSUES IN SERVICE-ORIENTED ARCHITECTURE

485


