
INTEGRATING AGENTS INTO COOPERATIVE INTELLIGENT
DECISION SUPPORT SYSTEMS

Abdelkader Adla
IRIT, Paul SABATIER University, 118 Route de Narbonne, Toulouse, France

Department of Computing, Oran University, Algeria

Keywords: Decision Support Systems, Cooperative Intelligent DSS, Agent-based DSS.

Abstract: In this paper, we propose to integrate agents in a cooperative intelligent decision support system. The
resulting system, ACIDS (Agent-based Cooperative Intelligent Decision-support System) is a decision
support system designed to support operators during contingencies by giving them detailed, real-time
information, allowing them to integrate and interpret it and then transmit and monitor their decisions
through the chain of incident command. During the contingency, the operator using the ACIDS should be
able to: gather information about the incident location; access databases related to the incident; activate
predictive modelling programs; support analyses of the operator, and monitor the progress of the situation
and action execution. The decision making process, applied to the boilers management system, relies in
ACIDS on a cycle that includes recognition of the causes of a fault (diagnosis), plan actions to solve the
incidences and, execution of the selected actions.

1 INTRODUCTION

Decision Support Systems (DSS) were designed to
resolve ill or non-structured decision problems.
Problems where priorities, judgements, intuitions
and experience of the decision-maker are essential,
where the sequence of operations such as searching
for a solution, formalization and structuring of
problem is not beforehand known, when criteria for
the decision making are numerous, in conflict or
hard dependent on the perception of the user and
where resolution must be acquired at restricted time.

Successful cooperative intelligent DSS and their
subsystems act intelligently and cooperatively in a
complex domain with potentially high data rates and
make judgements that model the very best human
technicians. It is also crucial that human technicians
maintain control over the final judgments, either by
focusing the system on particular reasoning goals, or
by modifying the basic knowledge on which the
systems judgements rely.

In this way, the cooperative intelligent DSS is
able to capture the domain knowledge and provide
intelligent guidance during the process. While the
data and model manipulations are done through the

DSS, decision makers can focus solely on the
process issues.

In this paper, we propose a cooperative
intelligent decision support system based on a multi-
agent architecture. The use and the integration of
software agents in the decision support systems
provides an automated, cost-effective means for
making decisions

The rest of the paper is organized as follows:
First we present a literature review of some related
work in section 2. Then we propose a multi-agent
architecture for cooperative intelligent decision
support systems in section 3. We also present an
example application to illustrate the feasibility of the
idea in section. Finally, we conclude with a
summary and future research direction in section 4.

2 LITERATURE REVIEW

2.1 Decision Support

Decision support systems (DSS) are computer-based
systems designed to support and enhance managerial
decision making. Since 1970s, the field has evolved

440
Adla A. (2007).
INTEGRATING AGENTS INTO COOPERATIVE INTELLIGENT DECISION SUPPORT SYSTEMS.
In Proceedings of the Ninth International Conference on Enterprise Information Systems - AIDSS, pages 440-446
DOI: 10.5220/0002388904400446
Copyright c© SciTePress

from the disciplines of management science and
management information systems.

It has come to include personal decision support
systems, group decision support systems, negotiation
support systems, intelligent decision support
systems, knowledge management based DSS,
executive information systems/business intelligence
systems, and data warehouses (Power, 2000).

According to Turban and Aronson (1998), the
central purpose to a DSS is to support and improve
decision making. Zarate (2005) defines DSS as a
“model-based set of procedures for processing data
and judgements to assist a manager in his decision
making”. He argues that to be successful such a
system needs to be adaptive, easy to use, robust and
complete on important issues. These features are
desired but not required in a DSS. Holtzman (1989)
defines a DSS as a computer-based system
consisting of three interacting components: a
language system, a knowledge system and a problem
processing system. This definition covers both old
and new DSS designs, as the problem processing
system could be a model-base or an ES or an agent-
based system or some other system providing
problem manipulation capabilities.

While each type of DSS varies in their
technologies, their common purpose is to aid human
judgement in decision making. A DSS might
achieve this through advanced capabilities in
information storage and retrieval. Using
mathematical modelling techniques, a DSS may also
provide forecasting capabilities, including
calculations of the best solutions to “what-if”
scenarios.

A number of frameworks or typologies have
been proposed for organizing our knowledge about
decision support systems (Power, 2000). The two
most widely implemented approaches for delivering
decision-support are Data-Driven and Model-Driven
DSS. Data-Driven DSS help managers organize,
retrieve, and synthesize large volumes of relevant
data using database queries, OLAP techniques, and
data mining tools. Model-Driven DSS use formal
representations of decision models and provide
analytical support using the tools of decision
analysis, optimization, stochastic modelling,
simulation, statistics, and logic modelling. Three
other approaches have become more wide spread
and sophisticated because of collaboration and web
technologies: Communication-Driven DSS rely on
electronic communication technologies to link
multiple decision makers who might be separated in
space or time, or to link decision makers with
relevant information and tools. Knowledge-Driven

DSS can suggest or recommend actions to managers.
Finally, Document-Driven DSS integrate a variety of
storage and processing technologies to provide
managers document retrieval and analysis. Classic
standalone DSS tool design comprises components
for: (1) database management capabilities with
access to internal and external data, information and
knowledge; (2) powerful modelling function
accessed by a model management system; and (3)
user interface design that enable interactive queries,
reporting and graphic functions.

2.2 Intelligent Decision Support
Systems

Intelligent decision support systems (IDSSs) are
interactive computer-based systems that use data,
expert knowledge and models for supporting
decision makers in organizations to solve complex,
imprecise and ill-structured problems by
incorporating artificial intelligence techniques. They
draw on ideas from diverse disciplines such decision
analysis, artificial intelligence, knowledge-based
systems and systems engineering. In general, the
need for IDSS derives from: (i) the growing need for
relevant and effective decision support to deal with a
dynamic, uncertain and increasingly complex
management environment, (ii) the need to build
context-tailored, not general purpose systems, and
(iii) standard support technology is becoming
obsolete as a way to improve decision quality and
work productivity (Ribeiro et al., 2006).

Intelligent decision support systems (IDSSs) use
Expert Systems (ES) technology to enhance the
capabilities of decisions makers in understanding a
decision problem and selecting a sound alternative.
Because of the people-centred focus of such
technologies, it is important not only to assess their
technical aspects and overall performance but also to
seek the views of potential users. Turban and
Aronson (2001) suggested two fundamental ES/DSS
integration models: (1) ES is integrated into DSS
components, and (2) ES is a separate component in
the DSS. In (Power, 2000), the second model is
used, where the DSS is responsible for both data and
model manipulation, while the ES provides domain
knowledge and recommends resolutions during the
planning the process. The proposed architecture
signifies the integration of a DSS and an ES. During
the process, data and models are manipulated
through the DBMS and model base management
system (MBMS), respectively. Instructions for data
modifications and model execution may come from
the ES interface directly. The MBMS obtains the
relevant input data for model executions from the

INTEGRATING AGENTS INTO COOPERATIVE INTELLIGENT DECISION SUPPORT SYSTEMS

441

DBMS and, in return, results generated from model
executions are sent back to DBMS for storage. The
database also provides facts for the ES as part of the
knowledge base. Using these facts together with the
predefined rules, the inference engine of the ES
performs model validations and planning
evaluations, according to what a domain expert is
supposed to do. Conclusions and recommendations
are then passed to the interface, where they are
displayed to the decision maker and transferred to
the MBMS and DBMS, in the form of procedures
calls for various actions.

However, making a simple machine act
intelligently may be much less useful or important
than being able to cooperate in an environment with
the users. It is found that “lack of attention to the
human and organizational aspects of IT is a major
explanatory factor and is manifest in a failure to
involve users appropriately (Guerlain, 2000)

Indeed, despite their impressive functionalities,
DSS of all of types are focused on supporting, not
replacing, a human decision maker for important
decision tasks, as many of the problem situations
faced by managers are unstructured in nature and
require the use of reasoning and human judgement.
Therefore, as articulated by Lévin and Pomerol
(1995), “the DSS and the decision maker form a
united problem solver”. In DSS, the user is defined
by physical and purposeful interaction with the
system. Therefore, a system might have one, or
many users, each interacting with the system in
different ways, for different purposes, and with
varying frequencies. As Keen (1981) stated, decision
support systems “support, rather than replace,
judgement in that they do not automate the decision
process nor impose a sequence of analysis on the
user”. Therefore, judgement and decision making
must occur throughout the entire problem solving
process, that is, during the user’s physical interaction
with the system, and as the final human decision is
being made. Because of this, the user’s decision
processes must be factored into the design process of
successful cooperative intelligent decision support
systems.

Some other advantages proposed by Marakas
(2003) gives the advantages of using intelligent
components with DSSs as opposed to plain DSSs as
increased timeliness in making decisions, improved
consistency in decisions, improved explanations and
justifications for specific recommendations,
improved management of uncertainty, and
formalisation of organisational knowledge. The most
useful of these advantages is the improved
explanations and justifications which is an extremely

useful feature particularly in the fields like medicine,
etc. where it helps if the real expert can validate the
machine reasoning.

2.3 Multi-Agent Systems

Using agent provides a means of modelling the
various information flows and interactions with the
user and within the environment. The working
definition of an agent is adapted from (Jennings,
1996): an agent is an artificial, computational entity
that can perform certain tasks with a certain degree
of autonomy or initiative whilst intelligently
adapting to its environment. Note that a human is
not an agent in this definition.

The definition of multi-agent systems (MAS) is
well known and accepted as a loosely coupled
network of agents that work together to find answers
to problems that are beyond the individual
capabilities or knowledge of each agent and there is
no global control system. An agent’s architecture is
a particular design or methodology for constructing
an agent. Wooldridge and Jennings refer to an
agent’s architecture as a software engineering model
of an agent (Jennings, 1996). Using these guidelines,
agent architecture is a collection of software
modules that implement the desired features of an
agent in accordance with a theory of agency. This
collection of software modules enable the agent to
reason about or select actions and react to changes in
its environment.

A broad range of architectures for agents
(including reactive, deliberative…) have been
studied. Properties that distinguish the version agent
architectures include reasoning capabilities, resource
limitations, control flow, knowledge handling,
autonomy, user interaction, temporal context, and
decision making.

Integrated architectures that include both
deliberative or classical planning and reactive
components can support a more autonomous agent
than either architecture can support alone. An
integrated architecture provides a mechanism that
enables an agent to both deliberate and respond
efficiently to exogenous events.

ICEIS 2007 - International Conference on Enterprise Information Systems

442

3 AGENT-BASED
COOPERATIVE
INTELLIGENT DSS

3.1 Cooperative Intelligent DSS

To cooperate, particularly means distributing tasks
to be carried out among both the system and the
user. Sharing tasks is a condition to implement
cooperation between the two agents. The task that is
the subject of cooperation is decomposed in
consistent subsets. The decision to be made is
modelled in tasks and sub-tasks as well as the
associated methods to achieve them. This modelling
is based on a hierarchy (tree) of tasks and sub-tasks
introducing then a relation of order between the
different tasks to be achieved.

The task distribution between the system and the
user is dynamically made, according to the
performances of the couple man/machine and of the
workload of the user. Competences of the user and
the system are sometimes complementary,
sometimes “redundant”. In the latter case, user and
system are often able to play the same role. The
choice question of the appropriate agent which will
have to play one role settles therefore. According to
the context, different indications could be made to
direct this choice. The set of indications on the
manner to allocate different roles to the agents
defines the cooperation modes.

For the implementation of the system/user
cooperation, we use a structure based principally on
conceptual models of expertise: Domain Conceptual
Model Task Conceptual Model (of the application
for the system, but also of the users). The proposed
architecture (Adla, 2006) for the design of a
cooperative intelligent decision support system
extends that of Soubie (1998) developed for
cooperative knowledge-based systems.

The proposed architecture is composed of the
following main components:

Data Base Management System (DBMS):
mainly contains a relational database which is
managed by a software program called the database
management system, and which provides speed data
retrieval, updating, and appending. The data in a
DSS database are usually extracts or copies of
operational databases, so using a DSS does not
interfere with critical operation systems.

Model Base Management System (MBMS):
The model base subsystem includes many statistical,
management scientific models, or other quantitative
models that offer the system’s analytical or

forecasting capability to solve future outcomes.
There are many types of models: Statistical models
generally contain the full range of expected
statistical functions including means, medians,
deviations and scatter plots, Optimization models,
such linear programming and dynamic
programming, are often adopted to determine the
optimal resource allocation to maximize or minimize
an objective function.

Knowledge Base Management System
(KBMS): it can support any of the other subsystems
or play an independent role. It suggests alternatives
or actions to decision makers. Additionally, it can be
inter-connected with the knowledge base.

Task Management Tool (Control): This tool
has as objective to offer resolutions or parties of
resolutions to the users. It insures the task
decomposition in sub-tasks as well as the assignment
of roles to the system or to the user. This planning
tool allows collaboration between the machine and
the user, and assigns the tasks beforehand modelled
to them. Particularly, this planning tool is able to
manage this task allocation in a dynamic way and, to
change planning initially implemented according to
the controls of the different tasks. This tool
constitutes essential provision in cooperation
management. The man-machine cooperation is
possible only if this task management tool allows a
quick re-planning as well as a re-counting of
allocations if there is a context modification or an
evolution of the problem. This approach insures the
dynamic character of the tool.

3.2 Integrating Agents

3.2.1 The Boilers Management System

The management system of the boiler combustion is
one of the most critical systems for the good
functioning of the plant and has a high impact on the
methods of cogitation and apprehension of various
problems related to maintenance. The exploiting
staff is often confronted with situations that impose
a quick reaction of decision-making. This requires
consequent human and material resources and
adapted skills. We experiment our system on a case
of boiler breakdown to detect a functioning defect of
the boiler, to diagnose the defect and to suggest one
or several appropriate cure actions.

Usually, in a situation of contingency
(breakdown of a boiler), the exploiting engineers
(the process administrator and the direct operators),
tent to identify the breakdown, to analyse and
diagnose it on the local site, to make contact with

INTEGRATING AGENTS INTO COOPERATIVE INTELLIGENT DECISION SUPPORT SYSTEMS

443

other exploiting engineers of the parent company
and send for the technicians of the boilers
constructor company, in general located abroad.
This type of situation, compel the plant to work in
degraded functioning if not to stop the process (case
of shutdown alarm) waiting for the problem solving.

Different sensors are set up to detect anomalies
at different stages of the process. Breakdown can be
automatically signposted by means of an alarm or
intercepted by the exploiting engineers (case of
defectiveness of the sensor where no alarm is
triggered off but the boiler does not work). If there is
a defect, an alarm will be triggered off. In case an
alarm is signposted to the operator: the flag (the
reference given to every alarm) is pointed out on the
board (control room). It acquaints with an alarm and
locates the defect. To solve this problem, diagnosis
and actions of cure are generated by the system.
Otherwise, a breakdown is directly raised by the
operator (not triggered off alarm). This scenario
occurs when a sensor defect doesn’t allow to
automatically signpost the breakdown. In this case,
the operator must explore a large research space of
potential defects with a series of tests. In both cases,
the operator tries to solve the problem by using the
Agent-based Cooperative Intelligent DSS (ACIDS).
Managing this process is a complex activity which
involves a number of different sub-tasks: monitoring
the process, diagnosing faults, and planning and
carrying out maintenance when faults occur.

3.2.2 The Multi-agent Architecture

Agents were integrated into the DSS for the purpose
of automating more tasks for the user, enabling more
indirect management, and requiring less direct

manipulation of the DSS. Specifically, agents were
used to collect information outside of the
organisation and to generate decision-making
alternatives that would allow the user to focus on
solutions that were found to de significant.

A set of agents is integrated to the system and
placed in the DSS components, according to our
architecture of Cooperative Intelligent DSS (figure
1). Note that agents have placed in each of the
components.

The Interface Agent (IA): continuously
receives data from the process – e.g. alarm messages
about unusual events and status information about
the process components. From this information, the
IA periodically produces a snapshot which describes
the entire system state at the current instant in time.
It also performs a preliminary analysis on the data it
receives from the process to determine whether there
may be a fault. Interface agents have the following
knowledge: User models and knowledge of what
must be displayed to the user and in what way. User
models could be interactively updated. The main
functions of an interface agent include; 1) collecting
relevant information from the user to initiate a task,
2) presenting relevant information including results
and explanations, 3) asking the user for additional
information during problem solving, and 4) asking
for user confirmation, when necessary. From the
user’s viewpoint, interacting only through a relevant
interface agent for a task hides the underlying
information gathering and problem solving
complexity.

A Task Management Agent (TMA) performs
most of the autonomous problem solving. It exhibits
a higher level of sophistication and complexity than
other agents.

Figure 1: The ACIDS multi-agent architecture.

DB

MB

KB

IRA

MA

DA

AA

IA

D
i
a
l
o
g

M
a
n
a
g

Decision
Maker

D
M
A

ICEIS 2007 - International Conference on Enterprise Information Systems

444

A TMA (1) receives user delegated task
specifications from an IA, (2) interprets the
specifications and extracts problem solving goals,
(3) forms plans to satisfy these goals, (4) identifies
information seeking sub-goals that are present in its
plans, (5) decomposes the plans and coordinates
with appropriate Information Retrieval Agent (IRA),
Modelling Agent (MA), Diagnosis Agent (DA) and
Action Agent (AA) for plan execution, monitoring,
and results composition. A TMA has the following
knowledge: 1) knowledge for performing the task
(e.g. query decomposition, sequencing of task steps),
2) information gathering needs associated with the
task model, 3) knowledge about relevant
information, modelling, diagnosis, and action agents
that it must coordinate with in support of its
particular task, 5) protocols that enable coordination
with the other relevant agents.

An Information Retrieval Agent (IRA)
primarily provides intelligent information services.
The simpler of these services is a shot retrieval of
information in response to a query: a more enhanced
information service is constant monitoring of
available database for the occurrence of predefined
information patterns. An even more advanced
information agent can, in addition to communication
with other agents, monitor its data base for the
appearance of particular patterns. A typical
information specific agent knows: 1) model and
associated meta-level information of the databases
that it is associated with, such size, average time it
takes to answer a query, 2) procedures for accessing
databases, 3) conflict resolution and information
fusion strategies, and 4) protocols for coordination
with other relevant software agents.

A Modelling Agent (MA): anticipates the
occurrence of contingencies using mathematical and
computational models. It integrates data from
different sources with mathematical and
computational models that model the contingency in
order to predict its behaviour and consequences.

A Diagnosis Agent (DA) is activated by the
receipt of information from TMA which indicates
that there might be a fault. It uses IA snapshot
information to update its knowledge model of the
process on which its diagnosis is based. It pinpoints
the approximate region of the fault then it generates
and verifies the cause of the fault in the process.

The Action Agent (AA) generates a plan of
action which can be used to repair the process once
the cause and location of the fault have been
determined.

The DA (respectively AA) takes as input a set of
goals: faults (respectively causes) and produces a
plan that satisfies the goals.

3.3 Task Resolution

When the task management agent (TMA) receives a
task from an interface agent (IA), it decomposes the
task based on the domain knowledge it has and then
delegates the primitive tasks to the other agents
(IRA, MA, DA or AA). The task management agent
will take responsibility for retrieving data,
modelling, diagnosing fault, planning action,
resolving conflicts, coordinating among the related
agents and finally reporting to the interface agent
which conveys the results to the user.

The task management agent first gets input data
through the interface agent. Next, the modelling
agent searches for rules to select a suitable model
and to execute the model to get analytical results.
Additionally, all the parameters values needed by
the models are retrieved from the database via the
information retrieval agent. After finishing model
analysis, the diagnosing and the action agents use
the results of the model analysis to identify the fault
causes and to perform a suggested action plan. Of
course, sometimes, the diagnosis and the action
agents may independently infer knowledge rules
without using any model.

Different methods to achieve a task can be
envisaged. Given a task, the system can then choose
a method dynamically to achieve it. In order to do
that, given the name of the task to be solve (wording
of problem), the system constructs an action plan to
be carried out (a sub-graph of tasks-methods
hierarchy).

To this end, first candidate actions are proposed.
Next, these candidates are checked upon feasibility
and relevance. Finally from the approved actions a
repair plan is prepared. The execution of this plan
(guided by the human operator) is monitored
cooperatively by IA, which groups any alarm
messages coming from the process, and DA which
checks that PA’s predictions about the various
intermediate states of its recover plan are in fact
reflected in the real process.

Obviously, one of the major issues involved in
multi-agent systems is the problem of
interoperability and communication between the
agents. In our framework, we use the KQML
language for inter-agent communication. Agents
communicate through messages. An agent transfers
its request to one or more agents and receives the
information requested as a result through messages.
When an action is performed, the related
information is also transferred by the IA to the
decision maker as messages.

INTEGRATING AGENTS INTO COOPERATIVE INTELLIGENT DECISION SUPPORT SYSTEMS

445

4 CONCLUSIONS

The multi-agent system paradigm represents one of
the most promising approaches to address decision
making problems. We have integrated agents into
DSS for the purpose of automating more tasks for
the user, enabling more indirect management, and
requiring less direct manipulation of the DSS.
Specifically, agents were used to collect information
and generate alternatives that would allow the user
to focus on solutions that were found to be
significant.

The proposed architecture is under
implementation and experimentation on the boilers
management system. The next phase in our research
could be the validation of the prototype and testing
its value par practitioners.

Proposal for future research is to integrate this
architecture in a distributed one for cooperative
intelligent decision system where several decision
makers are geographically dispersed and work to
reach a common decision.

REFERENCES

Adla, A., 2006. Système coopératif d’aide à la décision,
IHM’06, Montréal, Canada.

Adla, A., Soubie, J-L., Zarate, P., 2006. A distributed
architecture for cooperative decision support systems.
EuroWorgroup Workshop on decision support
systems, London, England.

Arnott, D., Pervan, G. 2005. A critical analysis of decision
support systems research. Journal of Information
Technology, 20(2), pp67-87.

Courtney, J.F., 2001. Decision making and knowledge
management in inquiring organizations: toward a new
decision making paradigm for DSS. Decision Support
Systems 31/1, pp17-38.

DeSanctis, G., Gallup, B., 1997. A foundation for the
study of group decision support systems. Management
Science, Vol. 13 No 12, pp1589-1609.

Gachet, A., 2003. A Software Framework for Deloping
Disributed Cooperative Decision Support Systems.
Inaugural Dissertation. University of Fribourg,
Switzerland.

Guerlain, G., 2000. Interactive advisory systems. In
Proceedings of HPSAA Conference, Savannah, GA.

Holtzman, S., 1989. Intelligent decision systems. Addison
Wesley.

Jennings, E., 1996. Using intelligent agents to manage
business processes. In B. Crabtree and N. R. Jennings
editors, Proceedings of the 1st international
conference on practical applications of intelligent
agents and multi-agent technology (PAAM96), pp345-
360.

Keen, P.G.W., 1981. Value analysis: Justifying Decision
Support Systems. MIS Quaterly, 5(1), pp15-25.

Lévine, P., Pomerol, J-C., 1995. The role of decision
maker in DSSs and representation levels. In
Proceedings of Hawaii International Conference on
System sciences, pp42-51.

Marakas, G., 2003. Decision support systems in the 21st
century. Prentice Hall.

Power D. J., 2000. Supporting Decision-Makers: An
Expanded Framework, http://dssresources.com,
version 1.0, December 15.

Ribeiro, R., 2006. Intelligent Decision Support Tool for
Prioritizing Equipment Repairs in Critical/Disaster
Situations. In Proceedings of the workshop On
Decision Support Systems.

Soubie, J.L., 1998. Modelling in cooperative based
systems. In Proceedings of COOP’98, Cannes France,
may.

Turban, E., Aronson, J., 2001. Decision support systems
and intelligent systems. Prentice-Hall International,
Upper Saddle River, New Jersey.

Zarate, P., 2005. Des systèmes interactifs d’aide à la
décision aux systèmes coopératifs d’aide à la décision:
Contributions conceptuelles et fonctionnelles.
Mémoire HDR, INP de Toulouse.

ICEIS 2007 - International Conference on Enterprise Information Systems

446

