
TRANSACTION SERVICE COMPOSITION
A Study of Compatibility Related Issues

Anna-Brith Arntsen and Randi Karlsen
Computer Science Department, University of Tromsoe, 9037 Tromsoe, Norway

Keywords: Flexible Transaction Processing Environment, Dynamic service composition, Compatibility, Integration.

Abstract: Different application domains have varying transactional requirements. Such requirements must be met by
applying adaptability and flexibility within transaction processing environments.ReflecTS is such an envi-
ronment providing flexible transaction processing by exposing the ability to select and dynamically compose
a transaction service suitable for each particular transaction execution. A transaction service (TS) can be seen
as a composition of a transaction manager (TM) and a number of involved resource managers (RMs). Dy-
namic transaction service composition raises a need to examine issues regardingVertical Compatibility
between the components in aTS. In this work, we present a novel approach to service composition by eval-
uatingVertical Compatibility between aTM andRMs- which includesProperty andCommunication
compatibility.

1 INTRODUCTION

New application domains and execution environ-
ments have transactional requirements that may ex-
ceed the traditional ACID properties. Such domains,
including workflow, cooperative work, medical in-
formation systems and e-commerce, are constantly
evolving and possess varying and non-ACID require-
ments. The travel arrangement scenario is a well-
known example of a long-running transaction with
requirements that goes beyond the ACID properties.
Such a transaction consists of a number of subtasks
(booking flights, hotel rooms, theater tickets, etc),
possible with adjacent contingent transactions and of
dissimilar importance (vital vs. non-vital). Resources
cannot be locked for the entire duration of the trans-
action. So, to increase performance and concurrency,
this transaction must be structured as a non-ACID
transaction with relaxed (i.e. semantic) atomicity
based on the use of compensating activities in case
of failure.

Varying transactional requirements demand a flex-
ible transaction execution environment. Such require-
ments are not met by current transaction processing
solutions where merely ACID transactions are sup-

ported. Thus, there is a gap between offered and re-
quired support for varying transactional requirements.

A number of advanced transaction models (Elma-
garmid, 1992; Garcia-Molina and Salem, 1987) have
been proposed to meet different transactional require-
ments. Many advanced models where suggested with
specific applications in mind, and with fixed trans-
actional semantics and correctness criteria. Conse-
quently, they do not provide sufficient support for
wide areas of applications.

The characteristics of the proposed transaction
models support our conviction that the ”one-size fits
all” paradigm is not sufficient and that a single ap-
proach to extended transaction execution will not suit
all applications. To close the gap between offered
and required support for varying requirements, we
designed the flexible transaction processing platform
ReflecTS (Arntsen and Karlsen, 2005).ReflecTS
is a highly adaptable platform offering an extensi-
ble number of concurrently running transaction ser-
vices, where each service supports different transac-
tional guarantees.

Generally, a transaction service (TS) can be
viewed as a composition of a transaction manager
(TM) and a number of resource managers (RMs),

239
Arntsen A. and Karlsen R. (2007).
TRANSACTION SERVICE COMPOSITION - A Study of Compatibility Related Issues.
In Proceedings of the Ninth International Conference on Enterprise Information Systems - DISI, pages 239-245
DOI: 10.5220/0002392602390245
Copyright c© SciTePress



one for each involved source. Today’s systems keeps
mainly oneTM, giving a predefined and staticTS
composition.ReflecTS, on the other hand, exposes
the ability to dynamically select aTM and subse-
quently compose aTSsuiting particular transactional
requirements. Dynamic service composition raises a
need to evaluateVertical Compatibility between
eachTM - RM pair. This must be done both with
respect toProperty and Communication compati-
bility. The goal of this paper is to investigate these
issues, with a particular focus onProperty compat-
ibility and problems related to the integration of het-
erogeneous commit and recovery protocols.

In the remainder of this paper we first, in sec-
tion 2, present the architecture ofReflecTS. Sec-
tion 3 presents the service composition procedure and
compatibility related issues. Section 4 follows with
related work, and section 5 draws conclusions and
presents future work.

2 REFLECTS

ReflecTS (Arntsen and Karlsen, 2005) is a flexible
and adaptable transaction processing system suiting
varying transactional requirements by providing an
extensible number of transaction managers (TMs).

The main functionalities ofReflecTS are transac-
tion manager (TM) selection, transaction service (TS)
composition and transaction activation. We present
the architecture ofReflecTS and the specifications
involved inTScomposition and compatibility evalu-
ation.

2.1 Architecture

ReflecTS, shown in Figure 1, is a composition of
components. TSInstall handles requests forTM con-
figurations and reconfigurations, and TSactivate han-
dles requests for transaction executions. The TM-
Framework hosts theTM implementations, and the
InfoBase keepsTM and resource manager (RM) de-
scriptors and results from the compatibility evaluation
procedures.

The IReflecTS interface (Arntsen and Karlsen,
2005) defines the interaction between the application
program (AP) andReflecTS, and is called to demar-
cate global transactions and to control the direction of
their completion. Its design has been influenced by
the TX-interface defined in the X/Open Distributed
Transaction Processing (DTP) model (Group, 1996),
but differ from it to conform to varying transactional
requirements. This is, among others, done by in-
cluding the transactional requirements and informa-

Framework

Base
Info

TSActivate TSInstall

RM

ReflecTS Framework

TM
TM

Program
Application ReflecTS

Admin

IReflecTS

i.e. XA−compliant interface

Figure 1: Overview of ReflecTS.

tion about requestedRMsin theTransBegin()request.
The interaction between aTM and aRM is gener-
ally determined by the X/Open standard and the XA-
interface (Group, 1996).

Applications initiating TransBegin() embeds a
XML-document describing the transactional require-
ments and a list of requestedRM identifications.
Based on the transactional requirements and descrip-
tors of availableTMs, a suitableTM is selectedfor
the transaction execution. The mapping of require-
ments to aTM need not be one-to-one. A specific
set of requirements can be mapped to differentTMs,
in which case a list is stored in the system for use if
incompatibility arises. Consecutively, theTM is com-
posedtogether with requiredRMsinto aTS. ThisTS
is responsible for coordinating the execution of the
particular transaction while preserving the requested
transactional requirements.

TSactivate performsTS composition based on
the descriptor of the selectedTM, TM_Descriptor,
and the descriptors associated with involvedRMs,
RM_Descriptors. For each pair ofTM and RM,
compatibility is evaluated. When this compatibility,
which includesProperty andCommunication com-
patibility, is fulfilled between the involved parties -
composition takes place, and eventually, the transac-
tion is started.

Transaction activation presupposes successful
evaluation ofHorizontal Compatibility, which is
compatibility between concurrently active transaction
services. This is part of future work.

2.2 Transaction Service Specifications

ReflecTS introduces two specifications sustaining
service composition and compatibility evaluation: the
TM_Descriptor and theRM_Descriptor.

ICEIS 2007 - International Conference on Enterprise Information Systems

240



2.2.1 TM Descriptor

TheTM_Descriptor describes aTM and includes in-
formation about: 1) a TMID 2) transactional prop-
erties (ACID or non-ACID), 2) transactional mecha-
nisms (commit/recovery, global concurrency control),
and 3) compatibility with a standard (i.e. XA) or not.

The following is an example of aTM with ACID
guarantees running a 2PC protocol with presumed
abort, supporting the XA-interface:

<TM Descriptor>
<ServiceID>TM ID</ServiceID>
<Properties>ACID</Properties>
<Standard>XA</Standard>
<TaskList>
<Task>
<TaskId>2PC</TaskId>
<TaskParameters>
<Parameter>PrA</Parameter>

</TaskParameters>
</Task>

</TaskList>
</TM Descriptor>

2.2.2 RM Descriptor

A RM_Descriptor holds information about a regis-
teredRM and includes the following: 1) a resource
identificationRM_ID, 2) ResourceID with the DNS
name of the resource, 3) whether theRM is XA-
compliant or not, and 4), information about theRMs
transactional mechanisms.

The specification ofResourceID corresponds to
the content of theRMlist following theStart Trans()
request. An example of a XA-compatibleRM running
a two-phase commit protocol with presumed abort
(PrA) follows.

<RM Descriptor>
<RM ID>Resource ID</RM ID>
<ResourceID>mypc.mydom.edu</ResouceID>
<Standard>XA</Standard>
<TaskList>
<Task>
<TaskId>commit</TaskId>
<TaskParameters>
<Parameter>PrA</Parameter>

</TaskParameters>
</Task>

</TaskList>
</RM Descriptor>

3 SERVICE COMPOSITION AND
COMPATIBILITY

3.1 Introduction

A transaction serviceTS is a composition of a trans-
action managerTM and a set of n compatible re-

source managersTS = (TM, R M ) where R M
= {RM1, . . . ,RMn}. To compose aTS, Vertical
Compatibility must be successfully evaluated with
respect to the following:

• Each pair ofTM andRM must match with respect
to local and global transaction control to assure
the requested transactional requirements. This we
refer to asProperty compatibility

• Each pair ofTM andRM must be able to commu-
nicate through some common interface while as-
suring requested transactional requirements. This
we refer to asCommunication compatibility

Results from these evaluations are kept in the
InfoBase. This means that it is unnecessary to re-
peatedly evaluate the same pair ofTM andRM.

3.2 Composition Procedure

This section presents the service composition proce-
dure,TS_Composition(), which followsTM selec-
tion.

Code regarding selection, service composition and
incompatibility is presented below.RT represents
the transactional requirements of a transactionT, and
RMlist, the list of RMs requested byT. The proce-
dureSelectTM() takes as input theTM_Descriptors
of the deployedTMs and the transactional require-
mentsRT , and returns a list ofTMs (TMlist) assur-
ing RT . In the case of unsuccessful composition, an-
otherTM may be selected, andTS_Composition()
restarted. This sequence is repeated either until the
composition completes or there are no availableTMs
in the list. If the composition does not complete, in-
compatibility is managed by theResolveIncomp()
procedure (see 3.5).ResolveIncomp() takes as input
a list of compatibleRMs (Complist), returned from
theTS_Composition() procedure. If there is no so-
lution to the incompatibility problem, the procedure
stops.

TMlist = SelectTM(TM Descriptor[]* TM,RT)

while TS not composed {

if TS_Composition(TM,RMlist,RT,Complist)

{

Compose and return TS

} else {

if More TM’s available {

TM = ChooseNewTM(TMlist)

} else {

if ResolveIncomp(TM,Complist,RT)

{

Compose and return TS

} else STOP

}

TRANSACTION SERVICE COMPOSITION - A Study of Compatibility Related Issues

241



}

}

In the TS_Composition() procedure following
below, the proceduresComm() and Property() are
initiated for each involvedRM. Based on the re-
sults of these calls,InfoBase and CompList are
updated with information about compatibleTM-RM
pairs. TheComplist contains information regard-
ing the transaction service composition for use while
managing incompatibility.

boolean TS Composition(TM Descriptor*
TM, RM ID[]* RMlist, RT) {

for (each RMi in RMlist) {

if Comm(TM,RMi,RT) {

if Property(TM,RMi) {

Update Infobase

Update Complist

return true

}

} else return false

}

}

3.3 Property Compatibility

Formally, a composition of a transaction serviceTS
for the execution of a transactionT over a set of com-
patible resource managersR M T is denotedTST =
(TMi ,R M

T), whereR M T = {RM1, . . . ,RMM} and
where the transaction managerTMi is selected for
the specific transactionT. TST has the properties
P (TST). The principal goal ofTST is to coordinate
the execution of transactionT while assuring the re-
quested transactional requirementsRT .

Evaluating property compatibility involves exam-
ining thetransactional mechanismsof theTMi with
the corresponding mechanisms of each involvedRMj
with the aim to assure the requested transactional re-
quirements.

3.3.1 Transactional Mechanisms

The main transactional mechanisms ofTMsandRMs
are commit/recovery and concurrency control. Gen-
erally, a TM controls global commit/recovery and
global concurrency control, and aRM performs lo-
cal transaction control (logging, concurrency control,
persistency, commit/recovery). When heterogeneous
commit protocols cooperate for the commitment of a
distributed transaction, problems and incompatibility
may arise. In this work, we focus on integration of
heterogeneous commit protocols, and leaves concur-
rency control issues for future work.

Traditionally, two-phase commit (2PC) is the pro-
tocol used to ensure the ACID properties of dis-
tributed transactions, and the X/Open Distributed
Transaction Processing (DTP) model (Group, 1996)
is the most widely used standard implementing the
2PC protocol.

Some optimizations of the 2PC protocol are pro-
posed. For instance presumed abort (PrA), presumed
commit (PrC), presumed nothing (PrN), presumed
any (PrAny), and three phase commit (3PC) (Gupta
et al., 1997; Tamer and Valduriez, 1999; Al-Houmaily
and Chrysanthis, 1999). These 2PC optimizations en-
sures atomic commit of global transactions. Other op-
timizations ensures weaker notions of atomicity, e.g.
semantic atomicity. These include for instance the
Optimistic 2PC (O2PC) protocol (Levy et al., 1991),
the OPT (Gupta et al., 1997) protocol, and one-phase
commit (1PC). Compared with 2PC, 1PC omits the
first phase, thereby permitting immediate commit of
subtransactions. Consequently, one-phase commit-
ment is feasible in a X/Open environment. A com-
bination of 1PC and 2PC protocols is realized in the
dynamic 1-2PC protocol (Al-Houmaily and Chrysan-
this, 2004). The 1-2PC protocol switches from 1PC
to 2PC when necessary.

A prerequisite for aRMparticipating in a 2PC pro-
tocol is to support a visible prepare-to-commit state.
RMs not supporting prepare-to-commit are not able
to participate in a 2PC protocol and can thus not con-
tribute in assuring global atomicity. Integrating the
different commit protocols may cause problems and
a visible prepare-to-commit may not be enough for
a practical integration of commit protocols. For in-
stance, in (Al-Houmaily and Chrysanthis, 1999) they
show that it is impossible to ensure global atomicity
of distributed transactions executed at both PrA and
PrC participants if PrA, PrC or PrN is running at the
transaction manager. Consequently, they presented
PrAny, which is a protocol that successfully integrates
PrN, PrA and PrC.

3.3.2 Evaluating Property Compatibility

Assume a transactionT with the set of transactional
requirementsRT . If eachRMj requested by the trans-
action can participate in the selectedTMi ’s commit
and abort protocols so that the requirementsRT of T
are assured, theTST with the propertiesP (TST) will
be composed. The requirementsRT and the properties
P (TST) need not be equivalent.

The following definition must be sustained.

Definition 1: (Assured transactional require-
ments). The set of transactional requirements
RT of a transactionT is assured if and only if

ICEIS 2007 - International Conference on Enterprise Information Systems

242



RT is semantically a subset of the set of trans-
actional propertiesP (TS) of the transaction
serviceTST , whereTST=(TMi ,R M

T) and
TMi is the manager selected for this particu-
lar transactionT:

RT ⊆s P (TST)

The definition states that the set of transactional
requirementsRT of the transactionT must be ase-
mantic subsetof the set of propertiesP of TST such
that every element of the setRT is semantically con-
tained in the setP (TST). This definition is used dur-
ing evaluation of property compatibility. If the equa-
tion does not hold andRT *s P (TST), the composi-
tion will not take place.

Definition 1 must hold for eachTM - RM combi-
nation, and it must hold even though theTM changes
or RMs are added. ConsiderTST=(TMi ,R M

T)
where R M T = {RM1, . . . ,RMi−1} and RT ⊆s

P (TST). Assume adding the resource managerRMi
so thatR M T = R M TS{RMi}. Then, according
to definition 1, transaction managerTMi and the re-
source managerRMi are property compatible for the
execution ofT if and only if RT ⊆s P (TST).

According to definition 1 and deduced from our
perception, asemantic subsetrefers to a set of transac-
tional properties belonging a transaction service that
are powerful enough to assure a specific set of trans-
actional requirements.

To illustrate thesemantic subsetrelationship, con-
sider a transaction service (TS1) having the following
set of properties:P (TS1) = (A), where A refers to the
atomicity property. Assume a set of requirements de-
duced from a particular transaction specification:RT
= (SAsaga), which refers to semantic atomicity as sup-
ported by Sagas (Garcia-Molina and Salem, 1987).
TS1 assures atomicity by implementing a variant of
2PC or a 3PC protocol. Since these protocols are able
to commit individual transactions one-phase as is re-
quired to assure semantic atomicity,TSi guarantees
RT , (SAsaga) ⊆s (A), and definition 1 is fulfilled. If
the transaction require full atomicity,RT = (A), defi-
nition 1 still holds asTS1 assures atomicity, and(A)
⊆s (A).

Next, consider a serviceTS2 with the properties
P (TS2) = (SAsaga) - semantic atomicity. This service
implements a Sagas-like commit protocol supporting
compensation. The resource managers of the compo-
sition may implement either a 2PC variant, 1PC, or
just committing transactions as soon as they are fin-
ished (like in for instance a web service). If a trans-
action requires semantic atomicityRT = (SAsaga),
the equation(SAsaga) ⊆s (SAsaga) is fulfilled and the
requirements guaranteed. If a transaction requires
ACID, the serviceTS2 will not be composed for the

T4

TM1 TM2 TM3
Sagas

RM3RM2RM1
PrC PrA

XA XA WS

PrAny PrC

T1 T2

T3

Figure 2: Transaction Examples.

transaction unless incompatibility can be solved (see
section 3.5).

3.3.3 Exemplifying Property Compatibility

Assume an environment with three transaction man-
agers,TM1, TM2 andTM3. TM1 assures ACID by
implementing PrC,TM2 implements PrAny, andTM3
assures relaxed atomicity as required by Sagas. The
environment also includes three resource managers,
RM1 running PrC,RM2 running PrA, and aweb ser-
vice, RM3, not supporting prepare-to-commit. Fig-
ure 2 illustrates this environment with four proposed
transaction services composed for four different trans-
actions. These are denotedT1 to T4, and are sur-
rounded with drawn lines.

First, consider a transactionT1 that requests ACID
and the resourcesRM1 andRM2. For T1, TM1 im-
plementing PrAny is selected.RM1 implements PrC
andRM2 PrA. As seen in (Al-Houmaily and Chrysan-
this, 1999), this combination implies compatibility as
PrAny successfully integrates both PrC and PrA.

Next, a transactionT2 requests the same proper-
ties and resources asT1, namely ACID andRM1 and
RM2. However, forT2, TM2 implementing PrC is se-
lected. We know from (Al-Houmaily and Chrysan-
this, 1999) that atomicity cannot be guaranteed when
a PrC protocol controls the execution of transactions
over PrA and PrC protocols. In fact,Definition 1will
prevent this service from being composed. Instead,
the procedure managing incompatibility will be initi-
ated, and the problem can be solved by for instance
reconsidering the choice ofTM (see 3.5).

TransactionT3 requests ACID and the resources
RM1, RM2 and RM3. TM1 is selected for the exe-
cution. RM3 does not support prepare-to-commit, so
PrAny implemented byTM1 cannot control the exe-
cution ofT3. Consequently, global atomicity cannot
be assured, incompatibility exists and the procedure
managing incompatibility will be initiated.

TRANSACTION SERVICE COMPOSITION - A Study of Compatibility Related Issues

243



The fourth transaction,T4, is a Sagas requesting
semantic atomicity and the execution overRM1, RM2,
andRM3. For T4, TM3 is selected. The Sagas-like
commit protocol implemented byTM3 require the un-
derlying resources to respond to immediate commit
of individual transactions. This is assured by the in-
volvedRMs, compatibility is present and the require-
ments are assured.

3.4 Communication Compatibility

Communication compatibility evaluates the commu-
nication capabilities of a specificTM - RM pair.
The ultimate goal is to assure requested transactional
properties.

The interface implemented by the involved parties
determines the ability to communicate. At present,
the XA-standard (Group, 1996) defines the most
widely used interface. XA-compatibility and non-
XA compatibility is a natural classification of com-
munication capabilities forTMs and RMs. XA-
compatibility in our sense means conformance to
the XA-interface, not necessarily assuring specific
transactional requirements. In our definition, a XA-
compatibleTM or RMcan assure either ACID or non-
ACID. Non-XA compatible participants may conform
to any other standard (or interface), or none at all.

The XA-interface provides the methods necessary
for transaction coordination, commitment, and recov-
ery between aTM and one or moreRMs. The XA-
interface supports both atomic commit by the use of a
2PC variant and relaxed atomicity by having the abil-
ity to perform 1PC.

The Comm() procedure (see 3.2) handling com-
munication compatibility, takes as input the particu-
lar TM and RM, and a set of transactional require-
ments RT . The Comm() procedure discovers XA-
compatibility by investigating thestandardtag of the
TM and theRM descriptor. Then, the transactional
requirements,RT are used in the process of evalu-
ating communication compatibility. Based onRT ,
the requirements regarding communication can be de-
duced. We will see that a specificTM - RM combi-
nation may satisfy a particularRT set, but not another
one.

If both theTM and theRM are XA-compatible,
communication compatibility exists irrespective of
the content ofRT . In this case, theTM most likely im-
plements a 2PC variant, and the XA-compatibleRM
supports a visible prepare-to-commit state. Conse-
quently, within this communication, both ACID and
relaxed (i.e. semantic) atomicity are provided.

In the combination of a XA-compatibleTM and
a non XA-compatibleRM and whenRT demand re-

laxed (i.e. semantic) atomicity, communication is
most likely satisfied. However, independent of the
content ofRT , the descriptors are consulted ahead of
the evaluation. If theRT claims ACID, the communi-
cation might be fulfilled even though theRM is non-
XA compatible. For instance, a non-XA compatible
RM may be able to support prepare-to-commit.

Consider a non-XATM in combination with a XA
RM. If the TM implements a Saga-like commit pro-
tocol andRT requests semantic atomicity, communi-
cation is satisfied.

3.5 Managing Incompatibility

Incompatibility may be detected either during eval-
uating property or communication compatibility. In
each case, the following actions are considered:

• Communication incompatibility: 1) add an
adapter (or wrapper) to eitherRM or TM to make
them conform to each other’s interfaces, or 2)
choose another TM with different communication
characteristics, but with the same transactional
guarantees.

• Property incompatibility: 1) choose another TM
with different transactional mechanisms, but with
the same transactional guarantees, or 2) negotiate
to find an alternative way to execute the transac-
tion by either modifying the transactional require-
ments or the list of involved resources.

4 RELATED WORK

Today’s transaction processing platforms supports the
execution of distributed transactions, but with lim-
ited flexibility. Present platforms, like for instance
Microsoft Transaction Server (MTS) (Corporation,
2000), Sun’s Java Transaction Server (JTS) (Subhra-
manyam, 1999) provide merely one transaction ser-
vice with ACID guarantees.

Other approaches support more than one transac-
tion service, although not concurrently. One is given
by the CORBA Activity Service Framework (Hous-
ton et al., 2001), where various extended transaction
models are supported. Others are the WS-transactions
(Group, 2004), the OASIS BTP (Little, 2003) spec-
ification and the Arjuna XML Transaction Service
(Ltd, 2003) describing solutions providing two differ-
ent transaction services, one for atomic transactions
and the other for long-running business transactions.

Flexibility within transactional systems can be
found in the works of Barga (Barga and Pu, 1996)
and Wu (Wu, 1998), implementing flexible transac-
tion services. Related work on dynamic combination

ICEIS 2007 - International Conference on Enterprise Information Systems

244



and configuration of transactional and middleware
systems can for instance be found in Zarras (Zarras
and Issarny, 1998). References to other works can be
found in (Arntsen and Karlsen, 2005). These works
recognizes the diversity of systems and their different
transactional requirements, and describes approaches
to how these needs can be supported.

Our work on the flexible transaction processing
environmentReflecTS, contrasts previous work in
several matters. First, by supporting an extensible
number of concurrently running services, and next, by
providing dynamic transaction service selection and
composition according to the needs of applications.

5 CONCLUSION AND FUTURE
WORK

The transactional requirements of advanced appli-
cation domains and web services environments are
varying and evolving, demanding flexible transaction
processing. On the basis of the flexible transaction
processing platformReflecTS, this work presents a
novel approach to dynamic transaction service com-
position and compatibility related issues. From
ReflecTS a suitable transaction manager can be se-
lected for a particular transaction execution, and dy-
namically composed together with requested resource
managers into a complete transaction service. To
complete transaction service composition, this work
evaluatesProperty andCommunication compatibil-
ity between a transaction manager and resource man-
agers. The main contributions of this work are the
procedures and the formalisms related to these com-
patibility issues.

Ongoing and future work includes an in-depth
evaluation of local and global transactional mecha-
nisms (including concurrency control) with respect
to transaction service composition. Further, ongo-
ing work includes developing rules for managing in-
compatibility, and future work includes an exami-
nation of compatibility related to service activation,
Horizontal Compatibility.

REFERENCES

Al-Houmaily, Y. J. and Chrysanthis, P. K. (1999). Atomicity
with incompatible presumptions. InPODS ’99: Pro-
ceedings of the eighteenth ACM SIGMOD-SIGACT-
SIGART symposium on Principles of database sys-
tems, pages 306–315, New York, NY, USA. ACM
Press.

Al-Houmaily, Y. J. and Chrysanthis, P. K. (2004). 1-2pc:

the one-two phase atomic commit protocol. InSAC
’04: Proceedings of the 2004 ACM symposium on
Applied computing, pages 684–691, New York, NY,
USA. ACM Press.

Arntsen, A.-B. and Karlsen, R. (2005). Reflects: a flexible
transaction service framework. InARM ’05: Proceed-
ings of the 4th workshop on Reflective and adaptive
middleware systems, pages 1–6, New York, NY, USA.
ACM Press.

Barga, R. and Pu, C. (1996). Reflection on a legacy trans-
action processing monitor.

Corporation, M. (2000). The .net framework.

Elmagarmid, A. K., editor (1992).Database Transaction
Models for Advanced Applications. Morgan Kauf-
mann Publishers.

Garcia-Molina, H. and Salem, K. (1987). Sagas. InPro-
ceedings of the 1987 ACM SIGMOD international
conference on Management of data, pages 249–259.
ACM Press.

Group, O. (1996). X/open distributed transaction process-
ing: Reference model, version 3.

Group, W. W. (2004). Web services architecture, working
draft.

Gupta, R., Haritsa, J., and Ramamritham, K. (1997). Revis-
iting commit processing in distributed database sys-
tems. InSIGMOD ’97: Proceedings of the 1997 ACM
SIGMOD international conference on Management of
data, pages 486–497, New York, NY, USA. ACM
Press.

Houston, I., Little, M. C., Robinson, I., Shrivastava, S. K.,
and Wheater, S. M. (2001). The corba activity ser-
vice framework for supporting extended transactions.
Lecture Notes in Computer Science, 2218.

Levy, E., Korth, H. F., and Silberschatz, A. (1991). An
optimistic commit protocol for distributed transac-
tion management. InSIGMOD ’91: Proceedings of
the 1991 ACM SIGMOD international conference on
Management of data, pages 88–97, New York, NY,
USA. ACM Press.

Little, M. (2003). Transactions and web services.Commun.
ACM, 46(10):49–54.

Ltd, A. T. (2003). Web services transaction management
(ws-txm) ver1.0.

Subhramanyam, A. (1999). Java transaction service.

Tamer, . M. and Valduriez, P. (1999).Principles of Dis-
tributed Database Systems. Prentice Hall.

Wu, Z. (1998). Reflective java and a reflective component-
based transaction architecture. InOOPSLA workshop.

Zarras, A. and Issarny, V. (1998). A framework for system-
atic synthesis of transactional middleware.

TRANSACTION SERVICE COMPOSITION - A Study of Compatibility Related Issues

245


