
BPEL PATTERNS FOR IMPLEMENTING VARIATIONS IN SOA
APPLICATIONS

Samia Oussena, Dan Sparks and Balbir Barn
Computing Department, Thames Valley University, Slough, Berkshire, UK

Keywords: BPEL, business process, patterns, Service-Oriented Architecture, process variation, reference model.

Abstract: The main purpose of the COVARM research project is to define a candidate reference model utilizing a
framework of web services to support a key UK Higher Education business process. Any given business
domain may offer a level of complexity such that process activities, terminology (the ontology) and
business rules may vary between organizations belonging to same domain While a generic process can and
has been built as part of the reference model, the flexibility (or variability) is afforded by the
implementation strategy for the canonical model / generic process. We have implemented the following
variations: activity ordering, cross-site terminology harmonization, and specific business rules to address the
variability requirements. This paper presents our experience with explicitly managing the variability within
the implementation technology. With the use of BPEL patterns, we describe how the management of these
variations can be dealt with in an SOA application implementation.

1 INTRODUCTION

Reference models are used as an effort to define
common terms, such as; a well defined framework
for extending aspects of the specification; an attempt
to define a general, overarching structure of the
domain, and; a focus on interoperability and
standardisation. Thus the reference model will
provide a strong steer on how systems for a
particular domain should be implemented. The
COVARM project aims to define a candidate
reference model utilising a framework of web
services to support a canonical business process to
support course validation within UK Higher
Education institutions.

Service Oriented Architecture (SOA) is a
strategy currently being pursued by the Joint
Information Systems Committee (JISC), the
sponsors of the COVARM project [Olivier B. et al,
2006]. The project therefore followed an SOA
approach.

The trend of SOA development is to maximise
the separation of concerns in software development.
The idea of separating an interface from its
implementation to create a software service
definition has been well proven in J2EE, CORBA
and COM (Emmerich 2000). Web Services provide
the ability to more cleanly and completely separate a
service description from its execution environment.
The real value of this separation comes when these

web services are deployed in the context of an SOA,
making it easier to develop new applications by
orchestrating web services. The main benefits
provided by adopting an SOA can be summarised as
follows (Newcomer et al 2005):

 Reuse: the ability to create services that are
reusable in multiple applications
 Efficiency: the ability to quickly and easily

create new services and new applications using a
combination of new and old services
 Loose technology coupling: the ability to

compose applications independently of the
execution environment of the services

SOA applications should therefore provide
flexibility and adaptability to respond to changes to
requirements. Implementation of these changes
should require localised changes to either specific
services or to the orchestration of these services
through a Business Process Execution Language
(BPEL) process (Juric et al, 2006). The focus on
flexibility and adaptability should mean that
adapting an application to a new domain will be
much faster and cheaper than a ground-up approach.
Changes such as these will still require developer
intervention with appropriate expertise in either the
services implementation or the BPEL process.
Minimising this developer intervention is consistent
with the concepts of SOA. To do so requires that we
deal explicitly with the variations within the
implementation, should be externalised and

295
Oussena S., Sparks D. and Barn B. (2007).
BPEL PATTERNS FOR IMPLEMENTING VARIATIONS IN SOA APPLICATIONS.
In Proceedings of the Ninth International Conference on Enterprise Information Systems - ISAS, pages 295-300
DOI: 10.5220/0002393802950300
Copyright c© SciTePress

parameterised by an interface to remove developer
intervention.

In this paper we present a set of BPEL patterns
that record our experience of dealing with three
types of variations. The variations are not specific to
our project domain; they are general variations that
could occur in any SOA development.

2 BACKGROUND

The objective of COVARM is to develop a reference
model for H.E. course validation. Course validation
can include the specification of a new course at
various levels, e.g. undergraduate and postgraduate
level. Course specifications address areas such as
rationale, appropriateness, resources required for the
course, assessment strategy and so on. The
specification is determined by local institutional
constraints but there are other requirements imposed
by national bodies. Therefore even though the
process may be implemented differently in the
different institutions, the constraints imposed by the
national bodies such as the Quality Assurance
Agency (QAA) provide some standardisation for the
process and its outputs. The approach that we took
was to build process models of four institutions and
then derive a synthesised process including a
canonical process and a set of options and
extensions that would be required to enable
customisation for any HEI (Barn et al 2006). Our
approach was to create a synthesised model to
represent an aggregation of concepts rather than a
homogenised, re-engineered process.

3 RELATED WORK

Customization has often been dealt with in the
implementation phase by providing a developer with
abstractions. Abstraction hides and emphasises
characteristics of a subject in ways that are relevant
to a particular usage or purpose (Parnas 1976). There
are two ways of providing the bridge between the
abstract model and the implementation [Johnson
2000]. One way is by providing a software
framework that specifically addresses a well defined,
narrow problem domain, and using the abstractions
in a model to define how requirements for variability
points in the framework must be met (Greenfield
2004). This has worked specifically well in
graphical user interface development; Java Faces
(Bergsten 2004), for example, effectively employ
abstraction in the domain of graphical user interface
manipulation. Alternatively, patterns can be used to

implement the abstractions. This becomes a very
powerful technique when a collection of patterns are
combined and implemented in a toolset, providing
developers a way of applying patterns to solve
similar kinds of problems (Johnson 2005).

Generative programming has emerged as one
way of improving software productivity (Csarnecki
et al 2000). Instead of building a single software
system as a solution to a certain problem, generative
programming involves designing a system from
which configurable solutions can be generated based
on an assembly plan or a configuration specification.
Although a wealth of work has been undertaken in
this area (Van Zyl 2002), these methods tend to
focus on the early stages of the software life cycle
and address product line issues at a high-level of
abstraction. Connecting product-line concepts with
established implementation technologies is thus
largely left to the user, for example, in Feature–
Oriented Domain Analysis (FODA) (Kang et al
2002), where mandatory and variant requirements
are depicted in a graphical form as trees. We can
therefore find out which variants have been
anticipated during the domain analysis, but there are
no guidelines for how the domain analysis with the
variant requirements can be realised. To address this,
two main approaches have been followed; either
module replacement or data controlled variation.

All these approaches still require developer
intervention at some point, whether at a relatively
high level, such as replacing one service with
another, or at a lower level, such as modification,
recompilation and redeployment of source code.

Our approach leverages the data controlled
approach, but is applied to the BPEL orchestration
level of the architecture. The variations have been
externalised and parameterised by an interface to
remove developer intervention. Abstraction has been
applied at the BPEL level; we have formalised our
implementation of these variations in three design
patterns.

4 IMPLEMENTING PRODUCT
VARIATIONS WITHIN BPEL
PROCESSES

The rest of the paper presents our experience with
explicitly managing variability within an SOA
application implementation. In our case the
variations that we identified and addressed can be
summarised in the following three categories:

 Terminology variations: These include the
domain concept name. For example, some
institutions refer to an organisation structure unit as

ICEIS 2007 - International Conference on Enterprise Information Systems

296

a school where others refer to it as a department.
Other variations refer to the format of the
documentation that exists within the process.
 Activity ordering variations: The variation may

refer to the order of the activity execution, in some
cases the activity may need some specialisation, or
is even not required.
 Business rule variations; for example a course

validation panel structure varies from one
institution to another. Some institutions will
require at least two external panel members
whereas for others one is sufficient.

5 IMPLEMENTING THE
VARIATIONS WITH BPEL
DESIGN PATTERNS

In this section we are going to look at each type of
variation that we had to deal with and discuss the
implementation that we adopted.

Each pattern has been implemented with the
following:

 BPEL WSDL definitions which allow the
variation parameters to be passed to the process at
runtime;
 A JSP page which passes an XML document

created from either user-specified values, or a
selection of pre-written XML documents, to
process, thereby executing the process with the
variations specified in the XML document, and;
 A BPEL process which accepts the XML

document as an input parameter, and applies each
of the three design patterns in turn.
More information and sample code for these
patterns can be found at
http://covarm.tvu.ac.uk/BPELVariations.html

Software design patterns offer flexible solutions
to common software development problems
(Gamma et al. 1995). Each pattern is comprised of a
number of parts, including purpose/intent,
applicability, structure, and sample implementations.

A design pattern is a general repeatable solution
to a commonly occurring problem in domain; it is a
description or template for a solution to a problem.
Our format for describing a pattern is:

 Pattern name
 Intent
 Motivation
 Applicability
 Implementations
 Sample code
 Related patterns

5.1 Terminology Variation Pattern

Pattern Name and Classification: Terminology
Variation Pattern.

Intent: To provide a flexible way to implement
terminology customisation.

 Motivation: Where two or more organisations
use the same process, there are likely to be
variations in the terminology used. For example,
one organisation may refer to a ‘course’, another to
a ‘programme’, and yet another to a ‘syllabus’, yet
the process will need to:
 deal with all these references as if they are the

same thing;
 return information using the correct terminology;
 where appropriate, use the specified terminology

to retrieve the correct information
Implementation: This can be achieved by the

process using a meaningfully named variable that
can hold the terminology variant. For each attribute
in the domain that can be predicted to change, i.e. is
likely to be a terminology variant, a BPEL variable
should be used. These variables are initialised at
process runtime.

Applicability: This pattern can be applied
wherever there may be variations in terminology for
a ‘shared meaning’ term within a BPEL process.

Sample code: In the course validation example,
such a variable could be called
‘LEARNING_PRODUCT_STRING’ and may refer
to ‘course’ in one organization , ‘programme’ in
another organization , or ‘syllabus’ in yet another .
Considering this, if we wished to display
information about an educational institution, the
BPEL code that concatenates the information string
would look like this:

concat(bpws:getVariableData('INSTITUTION_
STRING'), ' is a ',
bpws:getVariableData('INSTITUTION_TYPE_STRIN
G'), '. Its organisational unit is called a
',
bpws:getVariableData('ORGANISATIONAL_UNIT_ST
RING'), ', and its learning product is
called a ',
bpws:getVariableData('LEARNING_PRODUCT_STRIN
G'), '. ')

The same process, using different terminology
variants would then produce a different, and
relevant, string for each institution:

“TVU is a University. Its organisational
unit is called a Faculty, and its learning
product is called a Module.”

“CCC is a College. Its organisational
unit is called a Department, and its
learning product is called a Course.”

It is therefore also possible to create
terminology-specific input to calls to external

BPEL PATTERNS FOR IMPLEMENTING VARIATIONS IN SOA APPLICATIONS

297

services, for example as a search string to retrieve a
course/programme/module name from a document.
The process simply needs to assign the value of the
variable to the service’s input variable:

<assign
name="setLearningProductNameString">

 <copy>
 <from

variable="LEARNING_PRODUCT_NAME_STRING"/>
 <to

variable="getLearningProductNameInput"/>
 </copy>
 </assign>
This has the effect that even where different

institutions have documents where the learning
product name may be tagged as <programme-
name/>, <course-title/>, or <module-name/>, the
process can still retrieve the correct field within the
document with no customisation necessary.

Consider an example where a generic
‘document’ data type is being used. The document
contains ‘sections’ and each ‘section’ has a ‘section
name’. If we wanted to retrieve data from a
particular section, such as the
course/programme/module name, the process would
be able to apply this pattern to select the
appropriately named section from the document,
regardless of the terminology used by the invoking
institution.

The process would simply need to say “retrieve
the value stored in the section called
‘LEARNING_PRODUCT_NAME_STRING’”, and,
because the correct value for that string has been
supplied at runtime, it will be possible to retrieve the
correct data without any process customization at
all.

Related patterns: Adaptor pattern, bridge
pattern

5.2 Activity Order Variations Pattern

Pattern Name and Classification: Activity Order
Variations.

Motivation: During our analysis of the different
institutions’ processes, we found that while there
were certain ‘core’ tasks, the order that these tasks
occurred in varied, as well as, in some cases, certain
tasks not being invoked at all by some institutions.

Implementation: For the following example we
assume that there are 3 tasks, Task A, Task B, and
Task C. These tasks may be performed in any order.

This pattern involves a while loop which will
loop once for each task that can occur. Each task is
executed when the condition in the switch case is
met for that task. The condition is simply whether
the while loop’s index is equal to the task order
specified by each institution. Each institution can

specify the task order by passing integer values (in
this case 1-3) for each task to occur in, 1 being the
earliest, and 3 being the latest. -1 signifies a task that
does not occur.

In our demonstration example, as each task is
executed, it simply appends ‘…Doing task X’ to a
string. If a task is not done ‘…1 Task Not Done’ is
appended.

The task order is specified in variables which are
initialised at the start of the process’ execution. In
our demonstration, the variables are simply
Task_A_Order, Task_B_Order, and Task_C_Order.

Altering the values of these variables provides
variations in task order with no change necessary to
the process:

“...doing Task B ...doing Task A ...1
Task Not Done”

 “...doing Task C ...doing Task A ...
doing Task B”

This pattern demonstrates that it is possible to
implement variations in task order with no process
customisation. It is even possible for an institution to
avoid completing any of these tasks if it is required,
by setting the order of each to -1.

Applicability: This pattern can be applied to any
set of activities within a process that may run in a
different order, as required by users of the process.
The granularity of the pattern can be altered to apply
to sub-processes (themselves entire individual
processes).

Of course, it is possible to wrap instances of this
pattern within other instances; all that is required at
the BPEL design / development stage is to move
each scope / task into a switch case. If we had
wanted to vary the order in which our ‘terminology’,
‘processOrder’ and ‘businessRules’ sections of our
process had run in, we could have moved each scope
into its own switch case.

5.3 Business Rules Variation Pattern

Pattern Name and Classification: Business Rules
Variation

Intent: Isolate business policies from the rest of
the process implementation

Motivation: Our analysis of different
institutions showed that business rules and policies
can vary both within the same process, and in
relation to specific activities within the process.

Implementation: We suggest that business rules
variation can be supported by the use of a defined
rule schema within the process WSDL. The process
is written to manipulate the data type, rather than a
specific instance of it, therefore allowing for
variations in element attributes.

Let’s look at an example from our domain; a
course validation process which includes a sub

ICEIS 2007 - International Conference on Enterprise Information Systems

298

process for managing a validation event. Here, a
course is formally reviewed by a panel. The rule
governing the panel composition is different from
one institution to another. For most institutions a
panel is composed of a chair, and a number of
internal and external panel members. However, the
number of external attendees can vary depending on
the type of event, and also may vary per institution.

Applicability: This pattern can be applied to any
business rule or policy which can be expressed in
schema form; provided this is possible the pattern
will provide a higher level of abstraction.

Sample code: We considered the variations
posed by different institutions’ policies regarding
panel composition for validation event meetings.
These variations concerned the required roles, and
minimum and maximum panel members for each of
these roles. In addition, role names vary across
institutions; the head of a meeting might be called a
‘chair’, a ‘chairperson’, or ‘meeting head’. Using
only terminology variations would not help here,
because it is not possible to know in advance how
many different roles may be required for a particular
institutions panel.

In this case we defined a data type that could
express a panel’s constitution:

<element name="panelRole">
 <complexType>
 <sequence>
 <element name="roleName"

type="string"/>
 <element name="min" type="int"/>
 <element name="max" type="int"/>
 </sequence>
 </complexType>
 </element>
 <element name="panelComposition">
 <complexType>
 <sequence>
 <element ref="client:panelRole"

maxOccurs="unbounded"/>
 </sequence>
 </complexType>
 </element>
Put simply, a ‘panelConstitution’ contains any

number of ‘panelRoles’, which each contain the
name of the role, and the minimum and maximum
members for that role.

The process is written to manipulate the data
type, rather than a specific instance of it, therefore
allowing for institutional variations in role names,
numbers, and so on.

To implement this pattern, we simply
constructed a string description of the panel
constitution as passed to our process. A while loop
loops once for each panelRole specified in the
panelConstitution, and appends the data from that to

the description. The variations produced completely
different panel constitutions with no customisation
of the process necessary:

“The panel is composed of: A minimum of 1
and a maximum of 1 Chair, A minimum of 3 and
a maximum of 6 Internal, A minimum of 2 and
a maximum of 4 External”

“The panel is composed of: A minimum of 1
and a maximum of 2 Chairperson, A minimum of
2 and a maximum of 3 Department Head, A
minimum of 2 and a maximum of 4 Department
Administrator, A minimum of 1 and a maximum
of 2 Department Lecturer”

While this is a relatively simple example, it
should be clear that this approach can be applied to
more complex operations, such as guiding a user to
select appropriate panel members based on each role
and minimum / maximum requirements, with
variations appropriate to any institution, without
requiring any customisation of the process at all.

6 REFLECTIONS

In this paper we have described how the need for
developer interaction to facilitate application
customisation can be a hindrance to SOA ideals.
Process and service customisation and replacement
all require intervention from developers with
specific and specialised skills. Such application
customisation can also require code re-compilation
and redeployment. This can lead to delays in
implementing change, and also to version
management issues, where there can be any number
of variant processes and services in operation.

To address this, we have implemented three
design patterns to be applied at the BPEL process
level of an SOA application. The patterns adhere to
the concepts of abstraction, flexibility, and
responsiveness to change with the minimum of
developer intervention.

The Terminology Variation pattern provides a
mechanism whereby a process can deal with
variations in terminology where a shared meaning is
implicit. The pattern is effective provided the
meaning of the shared term is effectively
communicated to any invoking partners. The ease of
use of this pattern may also be a drawback, in that
the possibility of customising each and every term in
a process could lead to a huge number of variables
which would need to be passed and configured at
runtime.

The Activity Order Variations pattern provides a
way for invoking institutions to customise the order
tasks are invoked within a process. The pattern can
be applied almost anywhere within a process, and

BPEL PATTERNS FOR IMPLEMENTING VARIATIONS IN SOA APPLICATIONS

299

even as a wrapper to itself. Areas where this pattern
is not applicable at present are where certain tasks
may run in parallel, however; the pattern only makes
it possible to run one task per loop. Given though
that this pattern makes it possible to execute varying
sub-processes by specification at run time, it is a
powerful pattern for implementing variations to a
process without developer intervention. Problems
may arise as the number of activities increases; it
would be helpful if this pattern could eventually be
integrated into a BPEL IDE in a similar manner to
the FlowN construct, which allows for the parallel
execution of a number of tasks specified at runtime.

The Business Rules Variations pattern allows
variations in policy to be implemented by one
process, thus increasing reuse and flexibility; as well
as different organisations being able to use the same
process, should one organisation change its rules, it
will be possible to do so without requiring
modification of the process. The rule definitions
need to be created carefully, however, in order to
take the level of abstraction to a high enough level to
make it usable by different parties, while still
retaining enough relevance to provide value.

These patterns are not independent of each other
either; indeed it could be argued that the Business
Rule Variations pattern employs the Terminology
Variations pattern, such as in our panel constitution
example, where ‘role-name’ is the generic term
which is specialised by the invoking institution at
runtime.

7 CONCLUSIONS

BPEL and SOA provide ways in which product
variation can be implemented far more efficiently
than the alternative of a ground-up solution. There
are, however, still bottlenecks and impediments to
the vision of truly flexible applications. It is our
belief that the patterns presented in this paper could
point in the direction of solutions which could
remove some of these barriers.

We hope that these patterns can be examined,
and improved, to provide future developers with the
tools to build genuinely flexible and customisable
applications.

ACKNOWLEDGEMENTS

This work has been funded in part by the Joint
Information Systems Committee (JISC).
http://www.jisc.ac.uk

REFERENCES

Barn, B., Dexter H., Oussena, S. and Sparks, D. 2006,
SOA-MDK: Towards a Method Development Kit for
Service Oriented System Development, Proceedings of
the 15TH International Conference on Information
Systems Development: Methods and Tools, Theory
and Practice, Budapest, Hungary

Barn, B., Dexter, H., Oussena, S. Petch, J., 2006, An
Approach to Creating Reference Models for SOA
from Multiple Processes. In: IADIS Conference on
Applied Computing, Spain.

Bergstein, H., 2004, JavaServer Faces, O’Reilly.
Csarnecki, K., Eisenecker, U., 2000, Generative

Programming: Methods, Tools and Applications,
Addison-Wesley.

Emmerich, W., 2000, Software Engineering and
Middleware: A Roadmap. In: The Future of Software
Engineering, ACM Press.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J., 1995,
Design patterns: elements of reusable object-oriented
software, Addison-Wesley.

Greenfield, J., and Short, K., 2004, Software Factories:
Assembling applications with patterns, Frameworks,
Models and Tools, John Wiley and Sons.

Johnson, R., 2005. J2EE Development Frameworks,
Computer, Vol. 38.

Johnson, R. 2000, Documenting Framework using
Patterns, ACM SIGPLAN notices, Vol. 27, Number
10.

Juric, M. et al, 2006, Business Process Execution
Language for Web Services 2nd Edition

Kang, K.C., Lee, J., Danohoe, P., 2002, Feature-oriented
Product Line Engineering, IEEE Software, Vol. 19,
Number 4

Newcomer, E., Lomow, G., 2005, Understanding Web
Services with SOA, Addison Wesley Professional

Olivier B., Roberts T., and Blinco K. "The e-Framework
for Education and Research: An Overview". DEST
(Australia), JISC-CETIS (UK), www.e-
framework.org, accessed December 2006.

Parnas, D., 1976, On the Design and Development
Families. IEEE Transaction on Software Engineering,
March 1976.

Van Zyl, J.A., 2002, Product Line Architecture and the
Separation of Concerns, Second Software Product
Line Conference – SPLC 2, San Diego, Kluver
Publication.

ICEIS 2007 - International Conference on Enterprise Information Systems

300

