
SIMPLIFIED QUERY CONSTRUCTION
(Queries Made as Easy as Possible)

Brad Arshinoff, Damon Ratcliffe, Martin Saetre and Reda Alhajj∗

Department of Computer Science University of Calgary Calgary, Alberta, Canada

TanselÖzyer
TOBB Ekonomi ve TeknolojïUniversitesi, Ankara, Turkey

Keywords: Visual Query Language, SQL, Data Extraction, Relational Query Language, Form Based Query Language,
HCI, Data extraction.

Abstract: QMAEP- Queries Made as Easy as Possible, is intended to be a system that greatly simplify the process of
query construction for statisticians and researchers. This document is focused on the usability of the database
query language and deals with visual representations of the query process, in specific the select query. Methods
of integrating simple Graphical User Interfaces (GUIs) for building queries into pre-existing database forms
is explored to provide users an intuitive method for query construction. This paper explores data mining as it
pertains to clinical research with emphasis on simplifying the data extraction process from complex databases
so as to accommodate analysis using important statistical software such as SASS, QMath and MS Excel.

1 INTRODUCTION

Database systems are common and expandable tools
used to accommodate the storage and manipulation of
data. On the other hand, graphical Interfaces design
techniques and the field of Human Computer Inter-
actions (HCI) have evolved so much over the last 20
years that it is no longer uncommon for users with
little general computing skills to be able to master
the art of database navigation (Preece et al., 2002).
Unfortunately, most GUIs in today’s databases are
static views of data that cannot accommodate all re-
search. To accommodate new research, new views
of data must be constructed, which bring data to-
gether in previously undefined ways. Designing and
constructing new GUIs, however, is a time consum-
ing and expensive way to reorganize how data is dis-
played. Adding new Graphical view of data into a
database requires trained database developers, which
is not a feasible way to accommodate all researchers.
For this reason, the most commonly created views
of data are not graphical form based views, but tab-
ular table like views which are easier to construct.
Furthermore, most researchers do not want to merely

∗Reda Alhajj is also affiliated with Department of Com-
puter Science, Global University, Beirut, Lebanon

reorganize their view of data from a database, but
want to perform statistical software analysis on it as
well (Ezekiel, 2004). The process of composing such
a query from a large and complex research database
structure is a tedious and often arduous task (Ezekiel,
2004). Users composing queries may be unaware of
SQL and database design specific conventions such
as relationships, field naming, primary keys, con-
straints and types. Also, filtering criteria entry is com-
mon (Celko, 2004) and causes errors (Show et al.,
1993). Most query utilities offer little support in
the way of solving logic errors in filtering expres-
sions (Siau, 1998). The goal of QMAEP is to set
these researchers free from design and development
specifics and allow them to concentrate on their re-
search. This paper explores the development of the
QMAEP system and the algorithms and research that
have made it possible.

2 RELATED WORK

Little research has been put forward to user-database
interaction research (Owei et al., 2002). This is
mainly due to the low priority assigned to such re-
search as most research put towards the designing

125
Arshinoff B., Ratcliffe D., Saetre M., Alhajj R. and Özyer T. (2007).
SIMPLIFIED QUERY CONSTRUCTION - (Queries Made as Easy as Possible).
In Proceedings of the Ninth International Conference on Enterprise Information Systems - DISI, pages 125-130
DOI: 10.5220/0002398601250130
Copyright c© SciTePress



of new database architectures. A paper by Keng
Siau (Siau, 1998) deals with Object Relationship
(OR) modeling to explore the relationships within
databaseVORQL (visual object relational query lan-
guage). It adopts the natural view that the real world
consists of objects and relationships. Shortcomings of
this paper include the problem with overflow of infor-
mation and screen clutter problems confusing users.
It also requires users to understand QBE (query by
example) table structure, which is no longer used
in practice; with the QMAEP system it is hoped a
new table structure which is simpler and easier to
use than QBE can be offered. Similarly it also re-
quires users to have at least some understanding of the
low level query’s possible. Again the intention of the
QMAEP system is to improve on this idea by creating
a GUI to deal with Queries at the most generic User
level- working through interfaces already present in
the database, rather than confusing spider web of ob-
jects already connected (as seen in Siau (Siau, 1998)
and apparent in the MS ACCESS visual database
model). The QMAEP Select Query Tool was devel-
oped in the GUI type relating to database forms. The
implementation of forms comes from the apparent ad-
vantages to using them as seen in Doan’s paper (Doan
et al., 1995). GUI or ’form’ based interaction offers
many advantages such as the ability to provide default
values easily for all elements and easy error check-
ing on the values entered textually. Also reduction
of cognitive load on users by seeing only applicable
values, which is beneficial for consistency and appro-
priate data (Ezekiel, 2004).

3 OVERVIEW OF THE QMAEP
APPROACH

The QMAEP system has been successfully integrated
into an existing clinical research database for Stroke
studies belonging to researchers at a medical univer-
sity in Turkey. This database is based on collecting
strict, detailed information on volunteer stroke pa-
tients in an effort to enhance stroke research. In fact,
in an effort to avoid costly omissions in data collec-
tion that could result in an inability to corroborate
future research, an immensely large volume of data
is collected on every patient. Much of the data is
collected in a quasi-duplicate fashion, i.e., from the
perspective of more than one physician or at multi-
ple time points. Querying such data was previously
particularly troublesome. Because there are multi-
ple records relating to a single patient in such tables,
when queried the result is a cross-product of related
records meaning duplicated rows of the same patient

with varying values for some fields and repeated val-
ues for others. Such a format, beyond being difficult
to read for human beings, is difficult to analyze with
statistical software.

Though the potential research implications of
gathering a greater quantity of data then is imme-
diately required are constructive and substantial, the
immediate effect of gathering the excess informa-
tion has actually been, according to some involved
researchers, a hindrance on short term accomplish-
ment. Narrowing down the pertinent information for
a particular research topic has become something of a
chore and physicians and statisticians alike were be-
coming impatient with the clumsy MS Access query
editor they were using to construct queries to gather
their data.

Figure 1: QMAEP position in a database framework.

3.1 Qmaep’s Position in Database
Framework

QMAEP can be viewed as a new layer for processing
data retrieval which is referred to as “Formed Based
Query Interface”. It lies in a level just above the
query optimizer in the database framework depicted
in Figure 1. The QMAEP system itself is composed
of several components designed to allow translation
of a users actions on a form-based query composer
into syntactically and logically correct SQL. It allows
mapping from a displayed value in a form to a value
data field in a database table, and finally to the cre-
ation of a new field in a query result. This requires
a large degree of dynamic processing of a database
schema. Under the QMAEP system of data retrieval,
the users are completely abstracted from any low level
representation. In terms of data mining, this tool is a
rather simple method of retrieving the appropriate in-
formation.

ICEIS 2007 - International Conference on Enterprise Information Systems

126



3.2 Query Context Fields and Query
Context Tables

In QMAEP terminology, the group of fields to which
all other fields associate is called the query context-
field/s. The source table from which the query-
context field/s are taken is called the query context-
table. All fields in a query that are not context-fields
are known as attribute fields as they can be seen as in
someway describing the context fields. A table in the
database schema which contains only attribute fields
is known as aattribute-table.

For simplicity in query creation, all queries cre-
ated with QMAEP must contain a context field. When
a new query is created, the first field added to the
query becomes the new context field. Since by the
definition given, all other fields in the query are re-
lating to and in some manner describing the context-
field, a workable means of joining tables in the
database is attained. All tables are joined to the con-
text table in some manner. Because all context field
values should be displayed in the result independently
of whether there is a corresponding record in one or
more of the attribute tables, the join mechanism used
is INNER JOIN operation off the context table.

The following section will approach the task of
joining tables containing attribute fields in detail and
discuss the issues that must be overcome.

4 LINKING TABLES

An application database has a set of tables and a set of
relations connecting the tables in a manner defined by
the database schema. Any two tables from the schema
that have a set of links that connect them, either di-
rectly or indirectly through other tables, are said to be
related. Tables that do not have any set of direct or in-
direct links connecting them are said to beunrelated.
Because a set of unrelated tables have no meaning-
ful correspondence to one another, this section will
concentrate on how to bring data fields from two re-
lated tables. This approach can then be generalized to
bringing togethern tables where one of the tables is
defined to be thequery-contexttable.

(a) (b)

Figure 2: Table A and Z have a)Direct b)Indirect Relation-
ships.

Figure 3: Dynamically creating list boxes to represent non-
linking key fields.

Two tables, table A and table Z, have adirect re-
lationship between them if there is exists some set of
relations R in the database schema that directly con-
nects attributes from table A to attributes of table Z
without going through any intermediate table X (see
Figure 2).

Tables which are directly related can be joined by
reading the corresponding set of relations from the
database schema and adding an appropriate INNER
JOIN statement to the SQL query representation. For
tables that are not directly joined, a join path must
be constructed by recursively traversing all interme-
diate tables X in the database schema. Tables that are
connected indirectly can be joined by joining a single
attribute table to sub-queries containing the context
table and one or more other attribute tables. Thus, the
problem of linking indirectly joined tables retracts to
the problem of connecting those which are directly
joined. Finally, recursive maze tree traversal algo-
rithms are adopted for linking tables with respect to
relationship diagram of the database.

5 SQL CONSTRUCTION

The process of creating new SQL statements within
this system is limited to certain aspects of the SQL
tree structure. As QMAEP is a system designed
specifically for SELECT Queries for data retrieval,
the basic structure of the SELECT query will con-
tain only the query context field from the context ta-
ble, and the remaining components will be filled with
attribute fields. Qualifications can also be obtained
from the users to be used for each field in the query,
which would be entered in the Criteria box (orange)
at the bottom of the form shown in Figure 3.

As discussed in section 3.2, the query context field
is the first field added to any new query. This field or-
ganizes the display and retrieval of all information in
the query. As the user adds to a query it still only has
1 query context field but the number of attribute fields
grows. To demonstrate the use of the QMAEP Query
System, an example of retrieving information from a

SIMPLIFIED QUERY CONSTRUCTION - Queries Made as Easy as Possible

127



hospital database regarding Patients will be detailed
here.

Figure 4: Partial view of an existing database form in a hos-
pital database.

Let us begin with the user selects the patient#
field from the demographics form and then loads the
QMAEP editor. The form is linked in the background
to one or more database tables. The linking infor-
mation can be programmatically read off the form,
and thus the QMAEP system can dynamically inter-
act with any new or modified forms and/or a modified
database schema. In Figure 4 a new query definition
is about to be constructed and the user has chosen a
PatientID field as the context field. The demograph-
ics table, which is the table that contains the PatientID
field in the patient database schema, will thus become
the context table.

Figure 5: MS Access Object Relational View of tables. The
table circled is the Query Context Table.

Because the system object model contains the in-
formation as to what table the chosen field belongs to,
QMAEP now learns the Query Context Table and it
adds to the domain category from Figure 6. The user
having decided what will be the Query Context Table
can then press a hot key to move on to the next field
and add it to the query. The hot key will bring up
the QMAEP query construction window. Inside the
query construction window are details such as what
the Query Context Table is and what the Domain val-
ues are for the chosen field. There is also an area in
which users are able to define the Qualifications on

the data:

Figure 6: QMAEP Query GUI.

With the QMAEP query form filled out as in Fig-
ure 6, when the user clicks ’add field’ button, QMAEP
now crates the following Simple SQL statement con-
taining only the context field. It is obvious that
QMAEP is selecting the patient numbers because it
is the Query Context Field.

Figure 7: SQL statement created.

Figure 8: SQL statement created.

To add additional information to the resulting
query, the process is just as straightforward. User just
locates another field in the database forms. Once the
field is located, the hot key is toggled once again. If
one were to add the ’patients name’ field to the ta-
ble, the resulting SQL statement would be as shown
in Figure 8. Note that any filter criteria would then
be entered into the WHERE clause of the SQL state-
ment. To do this again and add other fields such as
Patient FHH#, the resulting SQL statement shown in
Figure 9 is created.

Because QMAEP completely abstracts the user
from the physical aspects of the database schema,
adding attribute fields to a query from a table other
than the context-table is just as simple, as far as the
user is concerned.

There are two main cases in joining the select
statements from two different tables. Lets assume that
we wish to combine our Query Context Table with Ta-
ble Y from the database.

ICEIS 2007 - International Conference on Enterprise Information Systems

128



Figure 9: SQL statement created.

As we have seen, the Query Context Field is de-
cided before any attribute field is added to the query
definition. The context field acts as a pseudo-key to
the query definition (strictly speaking, a query defini-
tion is not required to have a key). However, because
of the fact we are treating the context-field as a key
to the query result there is no need to worry about
the cardinality on the Query Context Table Side of
any relation/s linking it to the new attribute table. In
terms of the actual process that is done by QMAEP in
adding attribute fields, we can generalize to the two
basic cases discussed next in Sections 5.1 and 5.2.
The cases are organized by the cardinality on the at-
tribute table side of the joining relationships.

Figure 10: Schema diagram of Case A type relationships.

Figure 11: Example of Case A type relationship using rela-
tional Algebra tree diagrams.

5.1 Case A: (1 to 1), or (N to 1)
Relationship

Case A situation (see Figure 10 and Figure 11) would
occur when it is required to join an attribute table with
a cardinality of 1 with respect to the context-table.
Note that if the relationship between the context and
attribute tables is an indirect relationship, a cardinal-
ity of 1 must be themaximum(hence only) cardinality
on any joining relation in the join path.

One or more JOIN SQL operations will be defined
in the SQL query result once the path information
from one of the traversal algorithms is obtained. Al-
ternatively, a union of the tables is sometimes possible
for this type of relationship. Case A relationships are
the simplest type as only a single matching attribute
value from the attribute table side of the relation is

possible for each value in the context field. As men-
tioned in Section 4, if this is the only type of relation-
ship we are interested in when constructed queries,
a directed links approach is all that is necessary for
joining the tables.

Figure 12: Schema Diagram of Case B.

5.2 Case B: (1 to M) or (N to M)
Relationship

When working with this type of relationship (see Fig-
ure 12), QMAEP dynamically creates a list box for
any other key fields (non-linking key fields) from the
attribute table, as described in section 4. When the
user choose a value from the list box, a subquery is
created to extract a portion of the table such that the
data extracted has a one-to-one correspondence with
the context table. The subquery is named appropri-
ately to represent both the table it represents as well
its key value it was extracted with. The naming of the
subquery will eventually be used to name the fields
added from it, so as the user can easily identify them
in the query result.

Figure 13: User chooses a field from a table with plural
cardinality with respect to the context field.

Continuing with the example from Figure 8, sup-
posed the user next chooses a field from the NIH
Stroke scale (NIHSS), which has a plural cardinality
with respect to the demographics because it is com-
pleted a multiple time points for each patient. When
the QMAEP query window loads, it will show a list
box such as the one shown in Figure 13 to allow the
user to choose a period (which is the non-linking key
field in tblNIH Stroke Scale) to query the field at.

Figure 14: QMAEP’s dynamically created list box for the
non-linking key component of tblNIH Stroke Scale.

SIMPLIFIED QUERY CONSTRUCTION - Queries Made as Easy as Possible

129



When the user then clicks the ’Add field’ button a
subquery definition for table [tblNIH Stroke Scale] is
created as demonstrated in Figure 14.

Figure 15: Subquery definition for [tblNIH Stroke Scale].

Figure 16: SQL query for combined Queries.

This subquery is saved as a new query definition
which is called [xtbINIH Stroke ScaleBaseline].
Joining this subquery definition now reduces to the
problem stated in Case A (Section 5.1). The user’s
query definition now will be modified to link in the
subquery and pull appropriate fields (see Figure 15).
As discussed in Section 4, the join type for attribute
tables is always an INNER JOIN (or equivalently a
LEFT JOIN off the context table).

Figure 17: A possible qualification for a NIHSS value.

Lets assume also that the user had entered in a
qualification for the value of baseline NIHSS, such
that only patients with a NIHSS of less than 4 are to
appear in the query result (see Figure 15). The query
result from Figure 15 then would appear as the result
shown in Figure 17. The final SQL query is shown in
Figure 18.

6 CONCLUSION AND FUTURE
WORK

This paper has examined a new user-friendly query
system intended to assist in the process of creating
queries and is intended to benefit researchers and
other common database users. A case study into a
particular group of medical researchers revealed that
in many cases a simple to use system may be better
than one which is-fully functional in terms of all ex-
isting SQL operations.

Figure 18: SQL query for combined Queries.

The notions of a querycontext tableand query
contextfield were examined. A tree traversal algo-
rithm on database relations was viewed as a way to
dynamically generate necessary table linking infor-
mation by reading a database schema. A method of
dynamic list box creation was examined as one possi-
ble such solution.

We took a look at translation from user actions on
a database system into SQL construction to generate
executable queries. Relational algebra was used to
illustrate an example and a step by step study of the
SQL command construction was presented.
The QMAEP system is currently only integrated into
one commercial use database, The system should
therefore first be tested on other commercial database
systems with automated integration. A new system
should be provided such that data which is not in-
tended for general queries can be treated differently,
or blocked from the user. Aggregate functions, cross
tab queries, update, append delete and possibly even
table definition queries should be explored.

REFERENCES

Celko, J. (2004).Joe Celko’s SQL for Smarties: Trees and
Hierarchies. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA.

Doan, D. K., Paton, N. W., Kilgour, A. C., and al Qaimari,
G. (1995). Multi-paradigm query interface to an
object-oriented database.Interacting with Computers,
7(1):25–47.

Ezekiel, J. (2004).Ethical and Regulatory Aspects of Clini-
cal Research: Readings and Commentary. Johns Hop-
kins University Press.

Owei, V., Navathe, S. B., and Rhee, H.-S. (2002). An ab-
breviated concept-based query language and its ex-
ploratory evaluation.J. Syst. Softw., 63(1):45–67.

Preece, J., Rogers, Y., and Sharp, H. (2002).Interaction
Design. Wiley.

Show, G. Y., Kong, H., and Lin, W. K. (1993). Intelligent
user interface to sql-based database system. InEn-
gineering Applications of Artificial Intelligence, vol-
ume 6, pages 307–316.

Siau, K. (1998). A visual object-relationship query lan-
guage for user-database interaction.Telemat. Inf.,
15(1-2):103–119.

ICEIS 2007 - International Conference on Enterprise Information Systems

130


