
DYNAMIC INTERACTION OF INFORMATION SYSTEMS
Weaving Architectural Connectors on Component Petri Nets∗

Nasreddine Aoumeur, Gunter Saake
ITI, FIN, Otto-von-Guericke-Universität Magdeburg, Postfach 4120, D–39016 Magdeburg, Germany

Kamel Barkaoui
Laboratoire CEDRIC, CNAM, 292 Saint Martin, 75003 Paris - France

Keywords: High-Level Nets, rewriting logic, specification/validation, architectural techniques, dynamic evolution.

Abstract: Advances in networking over heterogenous infrastructures are boosting market globalization and thereby forc-
ing most software-intensive information systems to be fully distributed, cooperating and evolving to stay com-
petitive. The emerging composed behaviour in such interacting components evolve dynamically/rapidly and
unpredictably as market laws and users/application requirements change on-the-fly both at the coarse- type
and fine-grained instance levels.
Despite significant proposals for promoting interactions and adaptivity using mainly architectural techniques
(e.g. components and connectors), rigorously specifying / validating / verifying and dynamically adapting
complex communicating information systems both at type and instance levels still remains challenging. In
this contribution, we present a component-based Petri nets governed by a true-concurrent rewriting-logic based
semantics for specifying and validating interacting distributed information systems. For runtime adaptivity,
we enhance this proposal with (ECA-business) rules Petri nets-driven behavioral connectors, and demonstrate
how to dynamically weaving them on running components to reflect any emerging behavior.

1 INTRODUCTION

Advances in networking over heterogenous infras-
tructures are forcing most software-intensive systems
to be fully distributed, cooperating and evolving in
facing the fierce struggle to stay competitive. This
situation is more acute for contemporary informa-
tion systems where market globalization and volatil-
ity are pressing business laws, policies (makers) and
users requirements to adapt/evolve on-the-fly, unpre-
dictably and rapidly. These facts have been urging
organizations to shift from their traditional integrated
form with centralized control toloosely-couplednet-
worked applications owned and managed by diverse
business partners.

With the huge difficulties of directly and sat-
isfactory implementing such complex communicat-
ing systems even with the availability of advanced
networked infrastructures and standards (e.g. Web-
Services and Service-oriented computing), more re-

∗This research is partially supported by a DFG (German
Science Foundation) Project Under Contract SA 465/31-1.

search efforts are nowadays devoted to foundational
early phases of specification, validation and verifica-
tion. Additionally, the tedious challenges of adaptiv-
ity must be tackled at these requirement early phases;
otherwise any initial certified specification becomes
rapidly outdated and useless, where afterwards the
standing-alone programmers will be on charge of un-
controlled/unwished/untractable maintenance.

Architectural techniques over component-
orientation belong to the mostly investigated and
appropriate software-engineering conceptual means
to address the adaptivity through their first-class
explicit connectors (Cheng and Garlan, 2001;
Szyperski, 1998) and their reconfigurations. Never-
theless, due to the growing complexity and volatility
of such complex interacting software-intensive
systems, it seems we are still far from a satisfactory
architectural-based proposal. Indeed, existing pro-
posals either focus on the coarse-grained component
level (adding/removing/replacing components) while
ignoring the component instance level (e.g. internal
statefull functionalities) or vice-versa. As will be

152
Aoumeur N., Saake G. and Barkaoui K. (2007).
DYNAMIC INTERACTION OF INFORMATION SYSTEMS - Weaving Architectural Connectors on Component Petri Nets.
In Proceedings of the Ninth International Conference on Enterprise Information Systems - ISAS, pages 152-158
DOI: 10.5220/0002402501520158
Copyright c© SciTePress

demonstrated in this paper both levels are vital for
expressing dynamic change and evolution.

With respect to information systems, the authors
are not aware of any approach that handles dynamic
adaptivity by respecting cross-organizational business
rules (Wan-Kadir and Loucopoulos, 2003) at the ar-
chitectural level at both the type and instance levels.
Business rules are the main driving force for reshap-
ing inter-organizations goals, policies and function-
ing/regulations and are therefore rapidly evolving to
enhance the competitiveness.

This paper puts forwards a (business-) rule-based
architectural approach for specifying / validating and
dynamically adapting complex gross-organizational
information systems. Methodologically, given a
(UML-based) semi-formal description of the applica-
tions, we first propose a formal specification based
on a variant of component-based Petri nets, we in-
troduced in (Aoumeur and Saake, 2002). In this
so-called CO-NETS framework, IS components are
conceived as a hierarchy of modular classes we ex-
plicit observed interfaces. For validating such com-
ponents, a true-concurrent rewriting logic-based is
proposed for governing different transitions behav-
ior. We further enrich CO-NETS with the concept
of rule-driven architectural connector behavior. Such
architectural connectors reflect different ubiquitous
cross-organizational and thus inter-component do-
main business rules. As we separately and explic-
itly specify such connectors, we are able to dynam-
ically weaving the right rules when required to reflect
the enforcement of new/modified policies, laws and
other requirements. Crucial to point out is that the
proposed dynamic weaving is non-intrusive, that is,
we do not delve inside component functionalities or
change/adapt any existing component internal behav-
ior.

The rest of the paper is organized as follows.
In the second section we review the main CO-NETS

features and illustrate them with a simplified bank-
ing system. The third section introduce the concept
of (business) rule-based architectural connectors at a
semi-formal level. The fourth main section focuses on
the modeling of such connectors within CO-NETSand
how they are dynamically woven on interacting com-
ponents. This paper is closed by some remarks and
insights about future extensions. We should note that
the paper’s presentation is kept at an informal level
with some hints when required to the formal counter-
part.

2 CO-NETS COMPONENTS:
OVERVIEW WITH
ILLUSTRATIONS

2.1 CO-NETS Component Structure

The component structure defines the structure of ob-
ject states and operations to be accepted by such
states. The CO-NETS signature that we are propos-
ing can be informally described as follows:

• Object states are algebraic terms of the form:

〈Id|l1 : v1, ..lk : vk, f1(Id), .., fl (Id),s1 : v′1, ..,st : v′t〉

Where Id represents an observed object iden-
tity. l1, .., lk denotes local attributes with re-
spective current valuesv1, ..,vk. The attributes
f1(Id), .., fl (Id) are considered as hidden (defined
in a co-algebraic way). Observed attributes can be
also be defined such ass1, ...,st .

• To separate at any time local attributes from ob-
served ones and exhibit intra-concurrency, we in-
troduce a simple deduction rule we call ‘object-
state splitting / merging’ rule that permits to split
(resp. recombine) the object state as required.

• We also make an explicit distinction betweenin-
ternal messages andexternal as imported / ex-
ported messages.

With respect to this perception each template signa-
ture is henceforth endowed with an explicit interface
composed of observed attributes and messages, and
that we subsequently refer to as (basic)component
signature.

2.1.1 The Account and Customer Components

We assume having accounts and customers that we
naturally regarded as two separate yet interacting
components. For instance, for the account compo-
nent signature, each (current) account is composed
of: a balance (shortlybal) as observed, and a min-
imal limit (lmt), a boolean value (Red) valuated to
true when below limit.

obj account is
extending object-state .
protecting Account-data .
sorts Acnt .
subsort Id.Acnt < OId .
subsort DEB CRD TRS < Obs Msg.
subsort ChgL < Loc Msg.
subsort loc Acnt obs Acnt < Acnt < object .
(* attributes as functions*)

op Pin : Id.Acnt → string .
(* Local attributes *)

op 〈 | Bal : ,Lmt : ,Hs : 〉 : Id.Acnt

DYNAMIC INTERACTION OF INFORMATION SYSTEMS - Weaving Architectural Connectors on Component Petri
Nets

153

Money Money History → loc Acnt.
(* observed attributes *)

op 〈 | Hd : 〉 : Id.Acnt OId → obs Emp .
(* Local messages *)

op Chgl : Id.Acnt Money → ChgLm .
(* observed messages *)

op Deb : Id.Acnt Money Date → DEB.
op Crd : Id.Acnt Money Date → CRD.
op Trs : Id.Acnt Id.Acnt Money Date → TRS.

vars B, L, W, D : Money ; C : Id.Acnt .
endo.�

2.2 CO-NETS Component Behaviors

On the basis of a given component structure, we de-
fine the notion of component specification as a CO-
NET in the following straightforward way.

• CO-NETS places are precisely defined by associ-
ating with each message declaration or method
one (message) place, that is, such messages places
contain associated message instances sent or re-
ceived by objects but not yet performed. Also,
with each object sort a (object) place is associated.

• CO-NETStransitions reflect the effect of messages
on object states they are addressed to. Conditions
may be associated to them restricting their appli-
cation.

Application to the Account and Customer Com-
ponents. The associated CO-NETS account compo-
nent is depicted in the left-hand side of Figure 1. This
component is composed of current accounts as a su-
perclass and saving accounts as a subclass (where the
interest could be increased throughTinc and money
be moved from a saving account to a current account
usingTmvt). The right-side of this figure represents
the customer component. As described above, in this
net in addition to the object placeACNT that contains
all account instances three message places namely
ChgL, DEB andCRD have been conceived.

2.3 CO-NETS Component Interactions

By taking benefit of explicit component interfaces
(i.e. observed attributes and import / export mes-
sages), we present how interacting behaviorally dif-
ferent components, leading to cooperative informa-
tion systems composed of several truly distributed and
independent yetcooperatingCO-NETS components.
As depicted in Figure 2, the general schema of ’ex-
ternal’ transitions reflect this communication where
Just relevantexternalparts of component states enter
into contacts with observed messages and resulting
(under conditions) in: (1) the messagesmsi1, ..,msir
being consumed; (2) states of some external parts

of objects participating in the communication being
changed; and (3) new external messages (that may in-
volve deletion/creation ones) being sent to objects at
different components, namelymsh1, ..,mshr .

.
Condition

. .

. .

. .

t〈Idk|bsk1
: vk1

, ...〉 〈Idl|bsl1
: vl1

, ...〉

Bs(obj1)
Bs(objp)

Mesoi1
Mesoiq

Mesoh1

Mesohr

msi1
msiq

msh1 mshr

⊕
i
〈Id1i

|bss1i
〉

⊕
j
〈Idpj

|bsspj
〉

⊕
i
〈Id1i

| bss′
1i

〉 ⊕
j
〈Idpj

|bss′pj
〉

Figure 2: The Inter-component interaction pattern.

Application to the Running Example. In Figure 3
the interaction of the two components is described us-
ing exclusively their observed features. We note here
that besides those explicitly defined as observed fea-
tures, attributes as functions are also observed, but
their contents cannot be accessed either at local or at
this interaction level. This concerns in particular the
Pin attribute as function. Here are some comments
on this observed interaction behaviour. The transition
Twrd, for instance, captures the sending of a withdraw
order from the customer, namelyC-Deb(C,A,M), that
have to be received by the withdraw message in the
concerned account (i.e. the account of this customer
as account hold). This means that we have to select
from the observed account attribute through the read-
arc the inscription:〈A|Hd : C〉.

2.4 Animating and Validating CO-NETS

Specifications

One of the most advantage of the CO-NETS approach
is its operational semantics expressed in rewriting
logic; moreover, by introducing the state splitting /
recombining axiom there is a natural exhibition of
intra-object concurrency. More precisely, each tran-
sition is governed by a corresponding rewrite rule in-
terpreted in rewrite logic (Meseguer, 1992) (or more
precisely an instantiation of this logic we refer to as
CO-NETS rewrite theory. The main ideas consist in:
(1) associating with each markingmt its correspond-
ing placep as a pair(p,mt); (2) introducing a new
multiset generated by a union operator we denote by
⊗ for reflecting CO-NETSstates as multisets over dif-
ferent pairs(pi ,mti), , that is, a CO-NETS state is de-
scribed as(p1,mt1)⊗ (p1,mt2)⊗ ...; (3) allowing the
distributivity of ⊗ over⊕ for exhibiting a maximal
of concurrency, that is, ifmt1 andmt2 are two mark-
ing multisets then we always have:(p,mt1⊕mt2) =
(p,mt1)⊗ (p,mt2); (4) enabling object states’ split-

ICEIS 2007 - International Conference on Enterprise Information Systems

154

. . . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

Trs(a1,a2,M)

Inc(s,0.3)

ChgA(c2,..)

Mv(s,a,78)

Deb(a1,45)

Crd(a2,78)

C−Deb(c1,4)

C−Crd(c4,5)

.

Customer

.

Sav_acnt
Incr

ChgAC−Deb

C−Crd

The Account Component

The customer Component

Ttrs

 ACNT

 MVT

 Tdeb

 Tcrd

 D
E

B

 CRD

 Tinc Tmvt

〈a1|Bal : 45,Hs : [],Hd : Anna〉
〈a2|Bal : 15,Hs : [1.1.01,+48],Hd : Alex〉

D
e

b(
A
,W

)

〈A
|B

a
l:

B
〉

〈A
|B

a
l:

B
−

W
〉

True

C
rd

(A
,
D

)

〈A|Bal : B〉

〈A|Bal : B+D〉

Trs(A1,A2,M)

True

Dep(A2,M)

W
rd

(A
1,

M
)

True

〈S|Int : 0.2,Dinc : 1.1.03〉

Inc(S, Ir)

Ir > I

〈S|Int : I ,Dinc : D〉

〈S|Int : Ir,Dinc : Dc〉

M
v(

S,
A
,
M

)

True

S∼C 〈A
|H

d
:D
〉〈

S|
H

d
:D
〉

Trs(S,A,M)

Ch(C,Adr)

True

〈C|Adr : D〉

〈C|Adr : Dr〉

〈c1|Cust: elan,Adr : Bonn, ...〉

Figure 1: A Simplified Banking specification within CO-NETS.

ting and recombining at a need for exhibiting intra-
object concurrency.

Application to the Account Component. By ap-
plying the afore-described general form of rewrite
rules, it is not difficult to generate the transition rules
associated with the CO-NETS specification of the
banking example. The rewrite rule associated with
the debit transitionTdeb is:
Tdeb :(DEB,Deb(C,W)) ⊗ (ACNT,〈C|Bal : B〉)
⇒ (ACNT,〈C|Bal : B−W〉)

3 ECA-RULE BASED
ARCHITECTURAL
CONNECTORS

Architectural connectors must generally endowed
with: (1) roles expressing functional requirements
from candidate components to interact; and (2)glues
for expressing the behavior governing such inter-
component interaction. As we are targeting com-
plex information systems are main domain applica-
tion, instead of just exchanging and ordering mes-
sages at this interaction level we propose a more
knowledge-intensive behavioral interaction patterns
expressed in terms ofbusiness rules. For such cross-
organisations business rules, we propose the most

adopted form which the Event-Conditions-Actions
(ECA) paradigm. More precisely the general pattern,
we decide to follow for expressing inter-component
interactions is as follows:

ECA-behavioral glue <glue-Identity>
interface participants <list-of-participants>
invariant <possible interaction constraints to respect>

constants/attributes/operations
<extra-required elements for the interaction>

interaction rules: <Rule-Name>
at-trigger <(set-of-)events>
under <conditions>
reacting <set-of-actions>

This behavioral rule requires of course from dif-
ferent participating entities explicit interfaces includ-
ing different events, messages and other properties
(such as constants, variables ,etc). When needed, we
explicitly specify such interfaces before giving this
glue.

3.1 ECA Behavioral Glues: Illustration

To stay competitive banking systems are offering dif-
ferent incitive packages for their customers, rang-
ing from simple agreed-on contracts (e.g. different
formulas for withdrawing / transferring moneys) to
highly sophisticated complex offers (i.e. staged hous-

DYNAMIC INTERACTION OF INFORMATION SYSTEMS - Weaving Architectural Connectors on Component Petri
Nets

155

.
.

 .
 .

.
 .

 .
 .

C
us

to
m

er

Cwdri3

A
cc

ou
nt

T
R

S
C

R
D

T
w

dr
T

de
p

T
tr

fs

D
E

B

C
−

D
E

B

C
−

C
R

D
C

−
T

R
S

Observed Customer ComponentObserved Account Component

C−Deb(C,A,M)

〈A|Hd : C〉Deb(A,M)

Tr
ue

C−Crd(C,A,M)

〈C〉

〈A|Hd : C〉

Crd(A,M)

Tr
ue

〈a
1
|H

d
:A

n
n

a,
P

in
(a

1
)〉

〈c
i|

N
a

m
e:

A
le

x〉

C−Trs(C1,C2,A1,A2,M)

〈C1〉〈C2〉

〈A
1|

H
d

:C
1〉
〈A

2|
H

d
:C

2〉

Trs(A1,A2,M)

Tr
ue

Figure 3: The Customer account CO-NETS components interaction.

ing loans, mortgages, etc.) depending on their pro-
files, trust, experiences, etc.

Let us illustrate simple cases of customer-bank
agreements using our running example, through two
customer-tailored variants of withdrawals. The usual
case for any ordinary customer is to check what is
called standard withdrawal, where the customer has
to be the owner of a corresponding account and the
withdrawal amount should not go beyond the current
balance.

ECA-behavioral glue Std-Withdraw
participants Acnt: Account; Cust: Customer
invariants Cust.own(Acnt) = True

interaction rule : Standard
at-trigger Cust.withdraw(M)

under (Acnt.bal() ≥ M)
acting Acnt.Debit(M)

end Std-withdraw

A more flexible withdrawal for moderately pre-
vileged customers is to endow them with a credit
those amount depends on profile and trust. Customers
enjoying such agreements can now withdraw amounts
going beyond the current balance. The modelling of
such flexible agreed-on withdrawal takes the follow-
ing slightly modified behavioral glue.

ECA-behavioral glue VIP-Withdraw
participants Acnt: Account; Cust: Customer
attribute Cust.credit : Money
invariants Cust.own(Acnt) = True

interaction rule : VIP
at-trigger Cust.withdraw(M)

under (Acnt.bal() +Cust.credit ≥ M)
acting Acnt.Debit(M)

end VIP-withdraw

4 MODELLING ECA
BEHAVIORAL CONNECTORS
AS EXTENDED CO-NETS

With CO-NETS capabilities in capturing statefull
components behavior, we present in the following
how ECA-driven architectural connectors enhance
these potentials towards more dynamic adaptivity
and evolution. Following the same intuitive guide-
lines for constructing CO-NETS components from in-
formal component-based applications, the modelling
steps for integrating such architectural connectors
into already specified CO-NETS components could
sketched in the following. First, we have derive from
a given ECA-based architectural connector descrip-
tion, a more precise corresponding component signa-
ture specification by algebraically specifying different
properties (attributes, messages, events, etc.). Sec-
ondly, by gathering different connector attributes and
participants into states, we then associate such each
state type a corresponding place and with each mes-
sages and operations also a place. This results in the
skeleton of the Petri net for such architectural con-
nectors. Finally, we have to inject the rules into such
skeleton by assigning conditions to transition condi-
tions, events as input arc-inscriptions and actions as
output ones. In a more detail, these translating steps
could be explained as follows:

1. Define architectural connector structure alge-
braically using the CO-NETS component signa-
ture pattern. That is, first, gather all compo-
nent participants interface identities with possible
other attributes into a glue state type-as-tuple.

2. Specify all involved messages, events, constants

ICEIS 2007 - International Conference on Enterprise Information Systems

156

. . . .

VIP−Package

. . . .

.
 .

 .
 .

C_Wdr

C−Dep
C−Trs

Trd−Package

.
.

 .
 .

D
E

B

. . . .

C
R

D

. . . .

REG−Ctr

T
R

S

The observed part of the regulator component

O
bs

(C
us

to
m

er
)

O
bs

(A
cc

ou
nt

)

Obs(Regulator)

T
he

 o
bs

er
ve

d
pa

rt
 o

f t
he

 A
cc

ou
nt

 c
om

po
ne

nt

T
he

 o
bs

er
ve

d
pa

rt
 o

f t
he

 c
us

to
m

er
 c

om
po

ne
nt

The inter−component coordination contracts

REST

co
nt

r3
i4

Tvip

Ttrd

Tinhb

〈A|Bal(A),Hd : C〉

〈T|Acnt : A,Cust: C〉

C

C Wrd(C,A,M)
Bal(A)≥M

Deb(A,M)

〈a
1
|B

a
l(

a 1
),

P
in

(a
1
)〉

〈c
s 1
|C

s
N

:A
n

n
a〉

〈cti |Ac : ai ,Cs: c j 〉

〈A|Bal(A),Hd : C〉

〈T|Ac :,Cs: C,Crd : D〉
C Wdr(A,C,M)

C(Bal(A) > Cst V IP)∧ (Bal(A)+D > M)

Deb(A,M)

〈cti |Ac : ai ,Cs: c j ,Crd : dk〉

〈Ctl |Reg: ri ,Acnt : a j 〉

〈rgk|big : nil ,small : nil〉

Deb(A,M)

〈A|Bal(A)〉
〈Ct|Reg: R,Acnt : A〉

〈R|big : nil ,small : nil〉

big≥ small

big←− bal(A) small←−M
Deb(A,M)

〈R|big : bal(A),small : M〉

Figure 4: ECA-Architectural connectors woven on the CO-NETS banking system.

and invariants in a given architectural connector
using a precise algebraic setting.

3. Associate with each state type a given ”glue-state”
place, and with each local messages and events a
given place.

4. The transitions for architectural connectors have
to be constructed for reflecting the different ECA-
rules. The general pattern for such interacting
transitions is to be conceived following now the
new general pattern we depict in Figure 4. This
pattern expresses the idea of dynamically weaving
exogenous behavior of interacting components.
Thats is: (1) Involved component interfaces in a
given ECA architectural behavior are captured us-
ing observed state parts (places) from such CO-
NETS components and imported/exported mes-
sages (places); (2) These interface elements (e.g.
observed states and messages) enter into contact
to reflect the ECA-rule in question; (3) To al-
low renaming and refinement while weaving such
architectural behavior, we add in the interaction
transition new boxes for eventual term assign-
ments.

4.1 Illustration Using the Running
Example

We approach the two already conceived architectural
within the CO-NETS framework following the above
steps. That is, as shown below first their algebraic
signatures are derived—the ECA-rule themselves are
skipped and replaced by just informal text as they are
to be specified through the architectural Petri net af-
terwards.

obj Std-Withdrawal .
extending object-state .
using Id.Acnt Id.Cust .
subsort StdGlue < object .
(* StdGlue state *)

op 〈 | Acnt : ,Cust: 〉 : Id.StdGlue
Id.Acnt Id.Custm→ StdGlue.

vars Z : Money ; H : Id.Cust .
vars A : Id.Acnt, C: Id.Cust, Gl : Id.StdGlue .

endContract.�

obj VIP-Withdraw .
extending object-state .
using Id.Acnt Id.Cust .
subsort VIPglue < object .
(* VIPGlue state *)

op CST VIP : → Nat
op 〈 | Acnt : ,Cust: ,Crd() : 〉 : Id.VIPGlue
Id.Acnt Id.Custm Real → VIPGlue.

vars Z : Money ; H : Id.Custm .
vars A : Id.Acnt, C: Id.Cust, Ct : Id.VIPGlue .

DYNAMIC INTERACTION OF INFORMATION SYSTEMS - Weaving Architectural Connectors on Component Petri
Nets

157

eq CST VIP = Nat Value
endContract.�

5 CONCLUSIONS

For reliably developing complex concurrent and dy-
namically evolving information systems, we extended
component-based Petri nets with ECA-compliant be-
havioral architectural connectors. We shown how to
incrementally incorporate different state-full connec-
tors those behaviors being extracted from externalized
cross-organizational business rules. Both graphical
animations and concurrent symbolic computations us-
ing soundly enriched rewriting logic are possible for
validating the conceived evolving conceptual model.

This first step towards enhancing component-
based formalisms with dynamic inter-component ex-
plicit and state-full interactions in true-concurrent dis-
tributed environments has to be further worked out for
resulting in a complete methodology with adequate
software tools supporting it.

ACKNOWLEDGEMENTS

The authors are grateful to the insightful comments
and suggestions of the reviewers.

REFERENCES

Aoumeur, N. and Saake, G. (2002). A Component-Based
Petri Net Model for Specifying and Validating Coop-
erative Information Systems.Data and Knowledge
Engineering, 42(2):143–187.

Cheng, S. and Garlan, D. (2001). Mapping architectural
concepts to uml-rt. InProc. of the International Con-
ference on Parallel and Distributed Processing Tech-
niques and Applications (PDPTA’2001).

Meseguer, J. (1992). Conditional rewriting logic as a uni-
fied model for concurrency.Theoretical Computer
Science, 96:73–155.

Szyperski, C. (1998). Component Software : Beyond
Object-Oriented Programming. Addision-Wesley.

Wan-Kadir, W. and Loucopoulos, P. (2003). Relating
Evolving Business Rules to Software Design.Jour-
nal of Systems Architecture.

ICEIS 2007 - International Conference on Enterprise Information Systems

158

