
ONE-TO-MANY DATA TRANSFORMATIONS
As Relational Operations

Paulo Carreira
Faculty of Sciences, University of Lisbon, C6 - Piso 3, 1749-016 Lisboa, Portugal

Keywords: Data Warehousing, Data Cleaning, Data Integration, ETL, Query optimization.

Abstract: Transforming data is a fundamental operation in data management activities like data integration, legacy data
migration, data cleaning, and extract-transform-load processes for data warehousing. Since data often resides
on relational databases, data transformations are often implemented as relational queries that aim at leveraging
the optimization capabilities of most RDBMSs.
However, due to the limited expressive power of Relational Algebra, several important classes of data trans-
formations cannot be specified as SQL queries. In particular, SQL is unable to express data transformations
that require the dynamic creation of several tuples for each tuple of the source relation.
This paper proposes to address this class of data transformations, common in data management activities, by
extending Relational Algebra with a new relational operator named data mapper. A starting contribution of
this work consists of studying the formal aspects of the mapper operator focusing on its formal semantics and
expressiveness. A further contribution consists of supporting a cost-based optimization of data transformations
expressions combining mappers with standard relational operators. To that end, a set of algebraic rewriting
rules and different physical execution algorithms are being developed.

1 INTRODUCTION

Data transformation is a fundamental step of data
management activities such as integration, cleaning,
migration and warehousing of data. In these activi-
ties, data represented by a fixed source schema must
be transformed into a fixed target data schema.

A frequent problem in this context is the exis-
tence of data heterogeneities, i.e., the use of different
representations of the same data in source and target
schemas (Rahm and Do, 2000). For example: the use
of different units of measurement or the use of differ-
ent representations for compound data (e.g. multiple
attributes representing day, month and year informa-
tion vs a single date attribute) ocur frequently. An-
other important source of data heterogeneities is the
representation of data according to different aggrega-
tion levels (e.g. hourly vs daily). When the source
data represents an aggregation of the target data (e.g.,
yearly aggregated data in the source and monthly data
in the target), the data transformation that has to take

Relation LOANS Relation PAYMENTS
ACCT AM

12 20.00
3456 140.00
901 250.00

ACCTNO AMOUNT SEQNO
0012 20.00 1
3456 100.00 1
3456 40.00 2
0901 100.00 1
0901 100.00 2
0901 50.00 3

Figure 1: Illustration of an unbounded data-transformation.
(a). The source relation LOANS on the left, and (b) the target
relation PAYMENTS on the right.

place needs to generate several tuples for each source
tuple. Let us henceforth designate this class of trans-
formations as one-to-many data transformations.

Consider a relation LOANS [ACCT ,AM ] (represented
in Figure 1) that stores the details of loans requested
per account. Suppose LOANS data must be trans-
formed into PAYMENTS [ACCTNO ,AMOUNT ,SEQNO ], the
target relation, according to the following require-
ments:

503
Carreira P. (2007).
ONE-TO-MANY DATA TRANSFORMATIONS - As Relational Operations.
In Proceedings of the Ninth International Conference on Enterprise Information Systems - DISI, pages 503-507
DOI: 10.5220/0002405105030507
Copyright c© SciTePress



1. In the target relation, all the account numbers
are left padded with zeroes. Thus, the attribute
ACCTNO is obtained by (left) concatenating zeroes
to the value of attribute ACCT .

2. The target system does not support payment
amounts greater than 100. The attribute AMOUNT
is obtained by breaking down the value of at-
tribute AM into multiple installments with a max-
imum value of 100, in such a way that the sum
of amounts for the same ACCTNO is equal to the
source amount for the same account. Further-
more, the target field SEQNO is a sequence number
for the installment. This sequence number starts
at 1 for each sequence of installments of a given
account.

The implementation of data transformations simi-
lar to those requested for producing the target relation
PAYMENTS is challenging, since solutions to the prob-
lem involve the dynamic creation of tuples based on
the value of attribute AM .

The remainder of the paper is organized as fol-
lows: Next, we present the problem statement and
enumerate the main contributions of the paper. The
research field of data transformations is reviewed in
Section 2. Section 3 briefly presents the mapper oper-
ator, introducing the logical and physical optimization
issues. The current status of the paper work is detailed
in Section 4 and Section 5 concludes.

1.1 Problem Statement

To minimize development effort and maximize per-
formance, data transformations must be written in
a language that is declarative, optimizable, expres-
sive. Data transformations are often expressed as
Relational algebra (RA) expressions, which is a lan-
guage that meets the two former requirements. In
fact, many usefull data transformations can be natu-
rally expressed as RA queries. However, due to the
limitations in the expressive power of RA, relational
queries are insufficient for expressing many interest-
ing data transformations (Lakshmanan et al., 1996;
Miller, 1998). In particular, RA is not capable of de-
riving new items (Paredaens, 1978) and thus, cannot
represent the class of one-to-many data transforma-
tions.

Currently, to develop one-to-many data transfor-
mations, one has to resort, either to a general pur-
pose programming language, to some flavor of pro-
prietary scripting of an ETL tool, or to a stored proce-
dure written in the DBMS proprietary programming
language. In any case, besides the inadequacy of
these solutions to express one-to-many data transfor-
mations concisely, there is little possibility of lever-

aging the dynamic optimization capabilities of the
DBMS.

1.2 Contribution

This paper proposes a new operator named data map-
per which extends RA for expressing one-to-many
data transformations.

Since data transformations are often performed by
RDBMSs, or by tools and languages that are also to
based on RA to various extents, the new operator is
a general solution to express one-to-many data trans-
formations in these systems. In particular, by incorpo-
rating the mapper operator, RDBMSs will be capable
of efficiently handling a new class of data transforma-
tions, enabling their use in a greater variety of data
management activities that require data transforma-
tions.

An advantage of adressing the problem of one-to-
many data transformations through an operator is that
it can be embedded in expressions involving standard
relational operators and also be logically and phys-
ically optimized. To this end, we envision a cost-
based optimization of data transformations expressed
as a combination of standard relational operators and
mappers. We propose (i) to formalize the mapper op-
erator, (ii) to study the formal properties of the map-
per operator focusing on its expressiveness and alge-
braic properties, (iii) to develop alternative physical
execution algorithms, and (iv) to adapt current cost-
based query optimization techniques to handle map-
pers.

2 DATA TRANSFORMATIONS

Data transformation is an old problem and the idea of
using a declarative language to specify such transfor-
mations has been proposed back in the 1970’s with
two prototypes, Convert (Shu et al., 1975) and Ex-
press (Shu et al., 1977), both aiming at data conver-
sion.

To support the growing span of applications of
RDBMSs, several extensions to RA have been pro-
posed since its inception, mainly in the form of new
operators. Applications requiring data transforma-
tions bring a new requirement to RA as their focus is
no more limited to the initial idea of selecting infor-
mation, but also involves the production of new data
items (Paredaens, 1978).

In the context of data cleaning, Potter’s Wheel
fold (Raman and Hellerstein, 2001) operator and Ajax
(Galhardas et al., 2000) map operator were proposed
for expressing one-to-many data transformations. The

ICEIS 2007 - International Conference on Enterprise Information Systems

504



Data Fusion tool (Carreira and Galhardas, 2004) im-
plements one-to-many data transformations in the
context of legacy-data migrations. None of these,
however, proposes an extension of the relational al-
gebra or addresses logical and physical optimization
issues.

Data transformations are also required in ETL
processes. To the best of our knowledge, in most ETL
tools, to express one-to-many data-transformations,
the user has to resort to some form of ad-hoc script-
ing. Furthermore, the optimization of ETL data trans-
formations is a recent effort (Simitsis et al., 2005).

When performing data integration, data has to be
transformed from the data sources to the integrated
database or vice-versa. TSIMMIS MSL (Papakon-
stantinou et al., 1996) and Squirrel ISL (Zhou et al.,
1996) are data integration languages whose main goal
is to fusion data from several sources. These lan-
guages, like others for restructuring semi-structured
data, e.g, YAT (Cluet et al., 1998), and TransScm
(Milo and Zhoar, 1998), have their expressiveness re-
stricted to avoid potentially dangerous specifications
(that may result in diverging computations). As a
result, they cannot express the class of one-to-many
data transformations.

3 THE MAPPER OPERATOR

The mapper operator can be formalized as a unary op-
erator µF that takes a relation instance of the source
relation schema as input and produces a relation in-
stance of the target relation schema as output. The
operator is parameterized by a set F of special func-
tions, which we designate as mapper functions. The
intuition is that each mapper function fAi expresses a
part of the envisaged data transformation, focused on
a non-empty set Ai of attributes of the target schema.

Consider relation schemas X and Y. Furthermore,
let Y = A1 · ... ·Ak, where each Ai is a set of schema at-
tributes. Given a tuple u of a source relation s(X), the
expression µF({u}) denotes the tuples t in Dom(Y )
such that, for every set of attributes Ai, associate the
values given by fAi(s). Further details can be found
in (Carreira et al., 2005a). The mapper operator is
formally defined as follows: Given a set of mapper
functions F = { fA1 , ..., fAk}, the mapper of s with re-
spect to F , denoted by µF(s), is the relation instance
of the target relation schema defined by

µF(s) def= {t ∈ Dom(Y ) | ∃u ∈ s s.t. t[Ai] ∈ fAi(u),
∀1≤ i≤ k}

The data transformation of the introductory

example can be expressed by means of a map-
per µacct,amt , with two mapper functions. The
function acct is the ACCT -mapper function that
returns a singleton with the account number
ACCT properly left padded with zeroes. The
function amt is the [AMOUNT,SEQNO] -mapper func-
tion s.t., amt(am) is given by {(100, i) | 1 ≤ i ≤
(am/100)}∪{(am%100,(am/100)+1) | am%100 6= 0},
where % represents the modulus operation. For
instance, if v is the source tuple (901 ,250.00 ),
the result of evaluating amt(v) is the set
{(100 ,1),(100 ,2),(50 ,3)}. Given a source relation s
including v, the result of the expression µacct,amt(s)
is another relation that contains the set of tuples
{〈’0901’ ,100 ,1〉, 〈’0901’ ,100 ,2〉, 〈’0901’ ,50 ,3〉}.

3.1 Logical Optimization

Better plans for queries involving mappers can be
achieved through the systematic application of a new
set of algebraic rewriting rules. One such simple al-
gebraic rewriting rule is µF(ron s) = µF(r)on µF(s), if
none of the mapper functions in F produces duplicate
values.

An important property that influences the choice
of a particular plan for binary operators, is the ex-
pected number of tuples of each of its sub-plans.
Since mappers can generate several output tuples for
each input tuple, estimating the number of output tu-
ples of a mapper is an interesting problem. One way
to approach the problem consists of estimating the
mapper fan-out factor. If a mapper was never eval-
uated before, an interesting question is how to find a
good initial estimate for its fan-out. We believe that
in many situations the fan-out factors of mapper func-
tions can be combined to produce an initial answer.
Another interesting observation is that when mapper
functions return empty sets, no output tuples are pro-
duced. Thus, the mapper in some situations may act
as a filter, which turns selectivity into another relevant
factor. The already non-trivial problem of optimiz-
ing queries with mappers can be taken one step fur-
ther. Mapper functions can be expensive and due to
data skewness, its cost is subject to change at query-
execution time.

3.2 Physical Optimization

The formal semantics of the mapper equips it with a
simple iterator-based execution model as follows: For
each input tuple, perform the evaluation of each map-
per function and then compute the Cartesian prod-
uct of the results. The output relation is obtained by
unioning all the tuples so obtained.

ONE-TO-MANY DATA TRANSFORMATIONS - As Relational Operations

505



This simple model favors the integration of our
mapper operator in the query execution mechanisms
of an RDBMS. However, it turns out that in the pres-
ence of expensive functions, like, e.g., string match-
ing or check-digit computations, this naı̈ve execution
of the mapper operator can be very inefficient.

The total cost of evaluating a mapper can be min-
imized by avoiding superfluous function evaluations.
First, columns often have duplicate values. This sug-
gests the use of caching techniques. In the presence
of potentially many functions and tables with multi-
million tuples, the choice of the functions is an opti-
mization problem in itself. Second, some functions
return empty sets. When an empty set is found, no
output tuples are produced for a given input tuple.
Thus, there is no need to evaluate the remaining func-
tions. This observation suggests an interesting strat-
egy that consists of evaluating the functions that are
more selective first.

4 CURRENT STATUS

Defining a new operator is a significant research effort
as it requires both theoretical and practical insight. In
such effort, two issues need to be addressed forefront.
The usefulness of the operator needs to be validated
and the class of problems being solved has to be for-
mally defined.

To address the first issue, we pursued a commer-
cial venture that resulted in the inclusion of native
support for one-to-many data transformations in a
commercial tool (Carreira and Galhardas, 2004). The
tool is being used in several real-world legacy-data
migration projects that corroborate the need for sup-
porting one-to-many data transformations.

Up to this moment, we have been able to put for-
ward a formal semantics for the new operator that
enabled us to perform a formal study of the expres-
siveness of the operator. We developed the formal
demonstration that the mapper-extended RA (MRA)
is strictly more expressive than standard RA.

A formal definition of the class of one-to-many
data transformations is underway. We conjecture that
two sub-classes of one-to-many data transformations
exist: One comprising data transformations express-
ible through RA and another comprising those ex-
pressible only through MRA.

A set of algebraic rewriting rules for generat-
ing logical query plans involving mappers and some
standard relational operators have been developed to-
gether with their formal proofs of correctness (Car-
reira et al., 2005a). A first set of rewriting rules
for expressions involving mappers and joins has also

emerged. Currently, a set of experiments is being con-
ducted to determine the factors that influence the ef-
fectiveness of the proposed rewritings (Carreira et al.,
2005b). Prototypical implementations for physical
mapper operator algorithms are being developed in
Java using the XXL framework (van den Bercken
et al., 2000). These algorithms adapt ideas of mem-
oization and hybrid hashing proposed by (Hellerstein
and Naughton, 1996) to multiple functions.

5 CONCLUSIONS

In this work, we address the problem of specify-
ing one-to-many data transformations that are fre-
quently required in data integration, data cleaning,
legacy-data migration, and ETL scenarios. Since
one-to-many data transformations are not expressible
through standard RA queries, we proposed the map-
per operator. The new operator allows to naturally
express one-to-many data transformations, while ex-
tending the expressive power of RA at the same time.

Up to now some operators have been proposed
for addressing the problem of expressing one to many
data-transformations (Cunningham et al., 2004; Gal-
hardas et al., 2001; Raman and Hellerstein, 2001;
Amer-Yahia and Cluet, 2004). Although these opera-
tors show similarities with mappers, most of them are
only capable of expressing a subset of one-to-many
transformations.

As data often resides in RDBMSs, data transfor-
mations specified as relational expressions can take
direct advantage of their optimization capabilities. In
this trend, several RDBMSs, like e.g., Microsoft SQL
Server, already include additional software packages
specific for ETL tasks. However, as far as we know,
none of these extensions is supported by the corre-
sponding theoretical background in terms of existing
database theory. Therefore, the capabilities of rela-
tional engines, in terms of optimization opportuni-
ties are not fully exploited in activities involving data
transformations, like ETL or data-cleaning.

REFERENCES

Amer-Yahia, S. and Cluet, S. (2004). A declarative ap-
proach to optimize bulk loading into databases. ACM
Transactions of Database Systems, 29(2):233–281.

Carreira, P. and Galhardas, H. (2004). Efficient develop-
ment of data migration transformations. In ACM SIG-
MOD Int’l Conf. on the Managt. of Data.

Carreira, P., Galhardas, H., Lopes, A., and Pereira, J.
(2005a). Extending relational algebra to express one-

ICEIS 2007 - International Conference on Enterprise Information Systems

506



to-many data transformations. In 20th Brasillian Sym-
posium on Databases SBBD’05.

Carreira, P., Galhardas, H., Pereira, J., and Lopes, A.
(2005b). Data mapper: An operator for expres-
siong one-to-many data transformations. In 7th Int’l
Conf. on Data Warehousing and Knowledge Discov-
ery, DaWaK ’05, volume 3589 of LNCS. Springer-
Verlag.

Cluet, S., Delobel, C., Siméon, J., and Smaga, K. (1998).
Your mediators need data conversion! In ACM SIG-
MOD Int’l Conf. on the Managt. of Data.

Cunningham, C., Graefe, G., and Galindo-Legaria, C. A.
(2004). PIVOT and UNPIVOT: Optimization and Ex-
ecution Strategies in an RDBMS. In Proceedings
of the International Conference on Very Large Data
Bases (VLDB’04), pages 998–1009. Morgan Kauf-
mann.

Galhardas, H., Florescu, D., Shasha, D., and Simon, E.
(2000). Ajax: An extensible data cleaning tool. ACM
SIGMOD Int’l Conf. on Managt. of Data, 2(29).

Galhardas, H., Florescu, D., Shasha, D., Simon, E., and
Saita, C. A. (2001). Declarative data cleaning: Lan-
guage, model, and algorithms. In Proc. of the Int’l
Conf. on Very Large Data Bases (VLDB’01).

Hellerstein, J. M. and Naughton, J. F. (1996). Query execu-
tion techniques for caching expensive methods. ACM
SIGMOD Int’l Conf. on Managt. of Data.

Lakshmanan, L. V. S., Sadri, F., and Subramanian, I. N.
(1996). SchemaSQL - A Language for Querying and
Restructuring Database Systems. In Proc. Int’l Conf.
on Very Large Databases (VLDB’96), pages 239–250.

Miller, R. J. (1998). Using schematically heterogeneous
structures. Proc. of ACM SIGMOD Int’l Conf. on the
Managt. of Data, 2(22):189–200.

Milo, T. and Zhoar, S. (1998). Using schema matching to
simplify heterogeneous data translation. In Proc. of
the Int’l Conf. on Very Large Data Bases (VLDB’98).

Papakonstantinou, Y., Garcia-Molina, H., and Ullman, J.
(1996). MedMaker: A Mediator System Based on
Declarative Specifications. In Proc. Int’l. Conf. on
Data Engineering.

Paredaens, J. (1978). On the expressive power of the
relational algebra. Information Processing Letters,
7(2):107–111.

Rahm, E. and Do, H.-H. (2000). Data Cleaning: Problems
and current approaches. IEEE Bulletin of the Techni-
cal Comittee on Data Engineering, 24(4).

Raman, V. and Hellerstein, J. M. (2001). Potter’s Wheel:
An Interactive Data Cleaning System. In Proc. of the
Int’l Conf. on Very Large Data Bases (VLDB’01).

Shu, N. C., Housel, B. C., and Lum, V. Y. (1975). CON-
VERT: A High Level Translation Definition Lan-
guage for Data Conversion. Communic. of the ACM,
18(10):557–567.

Shu, N. C., Housel, B. C., Taylor, R. W., Ghosh, S. P., and
Lum, V. Y. (1977). EXPRESS: A Data EXtraction,
Processing and REStructuring System. ACM Trans-
actions on Database Systems, 2(2):134–174.

Simitsis, A., Vassiliadis, P., and Sellis, T. K. (2005). Opti-
mizing etl processes in data warehouses. In Proc. of
the 21st Int’l Conf. on Data Engineering, ICDE 2005.

van den Bercken, J., Dittrich, J. P., and Seeger, B. (2000).
XXL: A prototype for a library of query processing
algorithms. In Proc. of the ACM SIGMOD Int’l Conf.
on Managt. of Data. ACM Press.

Zhou, G., Hull, R., and King, R. (1996). Generating Data
Integration Mediators That Use Materialization. Jour-
nal of Intelligent Information Systems, 6(2/3):199–
221.

ONE-TO-MANY DATA TRANSFORMATIONS - As Relational Operations

507


