
SUPPORTING ASYNCHRONOUS COLLABORATIVE EDITING IN
MOBILE COMPUTING ENVIRONMENTS∗

Marcos Bento and Nuno Preguia
CITI/DI, FCT, Universidade Nova de Lisboa, Portugal

Keywords: Asynchronous collaborative editing systems, optimistic replication, reconciliation, operational transformation.

Abstract: Mobile computing environments have changed in recent years, with the increasing use of different types of
mobile devices and wireless communication technologies. To allow users to store and share their data in this
new environment, we are building the Files EveryWhere (FEW) system, that explores the multiple available
storage and communication devices to provide good availability and performance. This system is based on
optimistic replication and it can be used as a tool for supporting asynchronous collaborative edition, as it al-
lows users to cooperate by accessing and modifying shared documents. Our approach is implemented using
the file system interface, thus allowing users to continue using their favorite application. In this paper, we
focus mainly on the FEW reconciliation mechanism. Our approach is basedon operational transformation
and it includes several new techniques. First, we propose a new technique for handling operations in oper-
ational transformation algorithms that supports efficient epidemic dissemination. Second, we propose a new
set of transformation functions that explicitly handle line versions in text files. Finally, we propose a set of
transformation functions that explicitly handle file versions for opaque files.

1 INTRODUCTION

Mobile computing environments have changed in re-
cent years with the increasing use of different types
of portable devices, ranging from mobile phones to
laptops, and from MP3 players and digital cameras
to portable storage devices, such as flash-disks. Al-
though most of these devices are not general-purpose
computing devices, they can be used to transport
users’ data, as they often have gigabytes of storage.
These devices can act as sophisticated, large-capacity
storage devices either attached to a computer or di-
rectly connected to a network. These new devices
lead to an environment with characteristics that differ
from the assumptions taken in older mobile data man-
agement systems (Satyanarayanan, 2002; Terry et al.,
1995).

In this new mobile computing environment, users
can transport most of their data with them all the time,
thus allowing users to access and modify it at any

∗This work was partially supported by FCT/MCTES
with FEDER co-funding – project #POSC/59064/2004.

time. Additionally, users may explore peer-to-peer
ad-hoc wireless connectivity to share and synchronize
data with nearby users, thus improving the potential
for collaboration with other users.

To address the characteristics of the new mobile
computing environment, we are developing the Files
EveryWhere (FEW) system. The FEW system is a
distributed file system that intends to explore the mul-
tiple available storage devices to allow users to safely
store and share their data.

In FEW, users can group related files in contain-
ers and share their containers with other users. Users
can create copies of containers in multiple storage
devices. Additionally, temporary copies of recently
used files are automatically created in portable stor-
age devices. This approach, combined with an opti-
mistic read any, write any model of data access, pro-
vides high data availability for data sharing. The sys-
tem explores the existence of multiple replicas to im-
prove performance and reduce energy consumption,
by selecting which replica to access at each moment.

The optimistic replication approach, although im-

343

Bento M. and Preguia N. (2007).
SUPPORTING ASYNCHRONOUS COLLABORATIVE EDITING IN MOBILE COMPUTING ENVIRONMENTS.
In Proceedings of the Ninth International Conference on Enterprise Information Systems, pages 343-350
Copyright c© SciTePress



portant to always allow users to produce their contri-
butions, may lead to conflicting updates. Unlike re-
cent file systems with support for mobile computing
(Tolia et al., 2004; Sobti et al., 2004), our synchro-
nization process is based on update propagation and
includes a generic reconciliation mechanism based
on operational transformation (Ellis and Gibbs, 1989;
Sun and Ellis, 1998). This generic approach must be
customized for each file type.

For adapting operational transformation algo-
rithms to mobile computing environments, we pro-
pose a set of new techniques. First, for supporting the
typical epidemic dissemination of updates efficiently,
we propose a technique that manipulates operations’
dependency information at each site, thus allowing a
site that receives an operation to capitalize the trans-
formations performed in intermediate sites and requir-
ing a single version of each operation to be stored at
each site. Second, we propose a new set of transfor-
mation functions that explicitly handle line versions
in text files, thus addressing the shortcomings in rec-
onciliation solutions typically used in asynchronous
settings. Finally, we propose a set of transforma-
tion functions that explicitly handle file versions for
opaque files.

The remainder of this document is organized as
follows. The next section briefly presents the FEW
file management system. Section 3 presents the
generic reconciliation and type-specific solution used
in FEW. Section 4 compares our work with relevant
related work and section 5 concludes the with some
final remarks and future work.

2 FEW FILE SYSTEM

The FEW system is composed of several machines,
each one containing internal storage units and hosting
a variable set of portable storage devices. Portable
storage devices with no computing or network com-
munication capabilities are only available to the sys-
tem when they are connected and under the control of
a single computer. Portable devices with limited com-
puting and network communication capabilities (e.g.
mobile phones) may act as a machine in the system or
may be connected and controlled by a host computer
as a passive storage device.

FEW manages groups of files, called containers.
A container typically stores the data of some (cooper-
ative) project. Containers can be replicated at multi-
ple storage devices and be shared by multiple users.
Users can explicitly create a new replica of a con-
tainer. The system also automatically creates tem-
porary replicas for recently accessed containers in its

Peer-to-peer 
Epidemic 

Synchronization

Pro-active 
Operation 

Dissemincation

Figure 1: FEW architecture.

controlled storage devices if space, performance and
energy constraints allow. Each container replica may
contain only a subset of the files in the container.

The system adopts an optimistic replication ap-
proach, allowing users to modify any replica at any
time. Updates to files are propagated to all replicas us-
ing two mechanisms (similar to (Birman et al., 1999)).
First, to accelerate the convergence process, new up-
dates are asynchronously propagated to all replicas
using a best-effort event-dissemination system that
takes into consideration portable devices’ constrains,
such as network conditions, energetic levels, volun-
tary disconnection of devices or voluntary isolation
of devices (e.g. when editing a set of files contain-
ing program code, users may decide to work in isola-
tion until they have a stable version of their changes,
so that unfinished code from one user will not lead
to compile and execution errors to other users). Sec-
ond, to guarantee eventual convergence, replicas are
synchronized in periodic pairwise epidemic propaga-
tion sessions (Demers et al., 1987). In these sessions,
a pair of replicas exchanges the updates unknown to
the other. This approach guarantees that each replica
will receive all updates produced in all other replicas,
even if it never communicates directly with some of
the replicas. In Figure 1, we depict a sample FEW
system, consisting of several computing devices with
connected portable storage devices.

An important goal of FEW is to allow users to
continue to use their preferred applications to access
and modify data. To this end, we have decided to
make the data stored in the FEW system accessible
through the traditional file system interface, thus al-
lowing users to use any application that stores data on
files. The FEW system is built on top of FUSE sys-
tem (FUSE, 2007) and in each node, the system inter-
cepts all file system calls in the kernel and redirects
them to the FEW daemon, as depicted in Figure 2.

ICEIS 2007 - International Conference on Enterprise Information Systems

344



Native File System 

Fuse

Application
FEW

DaemonU
s
e

r
S

y
s
te

m

Linux FS Interface

Linux FS Interface

Figure 2: FEW Daemon Architecture.

The FEW daemon is responsible to process each file
system call, deciding which replica to access on read
operations and processing writes as explained in the
next section.

Besides immediately propagating recently exe-
cuted updates using an event-dissemination system,
as explained before, the FEW daemon also publishes
information about relevant events at each node, such
as access to files, user status (based on its activity),
etc. In collaborative editing activities, this informa-
tion can be used to provide awareness information
about other users activity. For example, a user may
list, for each user, the files he has recently accessed or
modified. It is also possible to notify a user when he
accesses some file that some other user has recently
opened in other replica.

All this functionality can be provided by an
awareness-provider application that listens to the
events published by the FEW daemon and runs in-
dependently of the applications users are using to
modify the shared files. For example, for notifying
users of possible concurrent accesses to the same files,
when the awareness-provider application receives an
event about a localopenfile system call, it can check
the recently received events from other replicas to ver-
ify if some other user has recently accessed the file. If
this is the case, it can present a pop-up windows noti-
fying the user about this fact, thus providing aware-
ness information without modifying the application
the user is running. Thus, it is possible to provide
typical collaborative features while allowing users to
continue using their (non-collaborative aware) appli-
cations. It is also possible to further improve sup-
port for collaborative teams by combining this simple
awareness strategy with other tools (e.g. (Fitzpatrick
et al., 2006)).

3 SYNCHRONIZATION PROCESS

The synchronization process, which enables all repli-
cas in the system to achieve the same final state, is di-
vided into three different steps, as shown in Figure 3.

The first step is to infer the set of operations exe-

cuted in a file. FEW infers operations comparing two
versions of a file. To this end, when a user executes a
“open-read/write-close” session, the system automat-
ically stores the original and new version of the file.
This is executed transparently by the FEW daemon.
After the file is closed, a type-specific program is ex-
ecuted to infer semantic-rich operations by comparing
the original and the new version of the file.

In the second step, operations are propagated
among replicas. As explained before, an operation
may be directly or indirectly propagated to all other
replicas using an event-dissemination system or in
peer-to-peer epidemic propagation sessions.

Finally, when an operation is received in a given
replica, it is stored and integrated in the replica state
using an operational transformation approach. This
approach guarantees eventual convergence even when
operations are received by different orders in different
replicas.

3.1 Reconciliation

For reconciliation, the integration process uses the
GOTO operational transformation algorithm pro-
posed in (Sun and Ellis, 1998), but we could use
any other operational transformation algorithm that
requires TP1 and TP2 (e.g. (Shen and Sun, 2002; Li
and Li, 2005; Sun and Sun, 2006)). This algorithm (as
all most OT algorithms) transforms the received oper-
ation against concurrent operations so that the effect
of executing the transformed operations in the cur-
rent replica state is identical to the effect of executing
the operation in the original data state. The algorithm
also maintains a log of executed operations for each
replica.

This algorithm was originally designed for syn-
chronous environments, where each replica propa-
gates its updates to all other replicas. Thus, this algo-
rithm assumes that each replica receives the original
version of the operation.

In our setting, where updates are propagated us-
ing an epidemic model, one replica may propagate
to another replica an operation received from a third
replica. However, as an operation is transformed upon
reception and the original algorithm expects to receive
the original operation, propagation of third-party op-
erations must be considered carefully. A possible so-
lution would be to store, at each replica, the origi-
nal and the transformed version for each operation.
However, this approach requires additional storage
for storing both versions of the operation.

We propose an alternative solution, where a
replica propagates the transformed version of the op-
eration. To guarantee the correctness of the algorithm,

SUPPORTING ASYNCHRONOUS COLLABORATIVE EDITING IN MOBILE COMPUTING ENVIRONMENTS

345



old

new

write

new

write diff op

log

on close

diff op

log

diff op

log

on close

Transformation

Engine
eop

Transformation

Function

Transformation

Engine
eop

Transformation

Function

opop

loglog

Figure 3: Synchronization process.

upon reception of the operation in the other replica,
the transformation process must take into considera-
tion the transformations already executed. Achieving
this is rather simple, as we explain next.

In our solution (as in most OT based solutions),
we use version vectors (Parker et al., 1983) to trace
causal dependencies for each operation. Additionally,
each operation is uniquely identified by the replica
identifier and the number of the operation in that
replica (this information can be partially included in
the version vector, but for simplicity we omit this op-
timization).

When the OT algorithm transforms the operation
A to include the effects of concurrent operation B, the
resulting operation A’ can be executed after executing
B – thus, it is as if the A’ had been originally executed
after B. Thus, we modify the value of the version vec-
tor for A’ to include B. When A’ is propagated to a
third replica, upon reception, it is not considered con-
current with B (due to the new value of the version
vector). Thus, as expected, the transformation pro-
cess will not transform A’ to include the effects of B
again. It is simple to show that this solution main-
tains the correctness of the OT algorithm, as propa-
gating a modified version of an operation and modi-
fying the version vector is equivalent to perform part
of the transformation process in the original site. We
detail our solution in (Bento, 2007).

The proposed technique is not specific to the OT
algorithm we are using and can be used to allow
epidemic operation dissemination in other OT algo-
rithms. Moreover, this technique minimizes the pro-
cessing required when receiving an operation, as part
of the needed transformation process has already been
executed.

3.2 Text File Reconciliation

Our reconciliation solution for text files allows to
maintain multiple versions for each line – when two
users concurrently modify the same line, two versions
of the line are created (as in CVS (Cederqvist et al.,

2005)). This approach, besides being widely used
in version management systems, seems suitable for
asynchronous edition, where update granularity tends
to be large and merging two updates performed con-
currently to the same line would probably lead to a
semantic inconsistency.

Unlike previous reconciliation solutions for text
files (including CVS and an OT-based solution for
asynchronous edition similar to CVS/RCS (Molli
et al., 2003)), our solution considers line versions
first-class citizens of the solution. Thus, it allows
users to postpone merging multiple versions and con-
tinue to modify files with versions (including lines
with versions). Additionally, it also allows new up-
dates to be integrated according to users’ intentions
(unlike previous solutions).

Consider the example in figure 4, where a user at
site X modifies line 2 of the file fromB to B1 and later
to B3, and a user at site Y modifies line 2 fromB to B2.
In a CVS-like solution adapted for peer-to-peer syn-
chronization (and in solution proposed in (Molli et al.,
2003)), in reconciliation step 1, when site Y receives
the first update from X, it leads to two versions of line
2 ([B1 and B2]). In reconciliation step 2, when Y
receives the second update from site X, a new con-
flict is detected and the previous two versions of line
2 are marked in conflict with the new version of line
2 (leading to an hierarchy with three version of line
2 - [B3 and [B1 and B2]]). This shows that those
solutions do not correctly consider users’ intentions
as it seems clear that versionB1 is only a temporary
state and it should not be included in the final recon-
ciliation solution - our solution reaches the expected
resulted, including only line versionsB2 andB3 in the
final reconciliation result. This would have been the
reconciliation result in those systems only if reconcil-
iation step 1 had not been executed.

In our solution, we model the replicated file as an
object containing a sequence of line. Each logical line
of text can have several versions. The following ex-
ample shows a text file where the second line has two
versions. Although logically the file has only 4 lines

ICEIS 2007 - International Conference on Enterprise Information Systems

346



A
B1
C

A
B2
C

A
<<

B1
--

B2
>>

C

A
B3
CA

B
C A

<<

B3
--

<<

B1
--

B2
>>
>>

C

A
<<

B3
--

B2
>>

C

1 2

Replica X

Replica Y

Figure 4: CVS conflict resolution.

(as shown by the line number in front of each line), the
actual number of lines in the file is larger due to the
multiple version at line 2 and to the additional lines
for marking multiple versions. Each version is identi-
fied by a unique identifier stored in the file, as shown
in the example.

To be, or not to be: that is the question 1

<<< version 1

Whether ’tis nobler in the mind to suffer 2

--- version 2

Whether ’tis nobler in the mind to joy 2

>>>

The slings and arrows of outrageous fortune, 3

Or to take arms against a sea of troubles, 4

In our solution, we have defined the following op-
erations:

• insert(t, p) - inserts a new text linet at positionp;

• delete(p) - deletes the text line at positionp;

• update(t, p) - updates the content of linep with the
text t;

• createversion(vnew, t, p, vcon) - creates a line
version at positionp with contentt – the new ver-
sion vnewis originated by an operation with the
same identifier, concurrency executed with an op-
eration identified byvcon;

• insert version(vnew, t, p, vdel) - inserts a line ver-
sion at positionp with contentt – the new version
vnewis originated by an operation with the same
identifier, concurrently executed with a delete op-
eration identified byvdel;

• updateversion(vnew, t, p, vold) - updates a line
version at positionp with contentt – the version
to update is identified byvold, and the execution
of this operation generates versionvnew;

• deleteversion(vdel, p) - deletes a line version at
positionp – the version to delete is identified by
vdel.

Besides the usual operations for manipulating
lines, we have added operations for explicitly manip-
ulating line versions. Users can manipulate text files
as usual (inserting, removing or updating text lines).
If a line containing a version is modified, an operation
that manipulates versions is inferred. Usually, line
version creation is originated by conflict resolution,
but users can explicitly create versions by explicitly
adding lines for marking line versions.

For using the OT algorithm, we had to define
transformation functions for each pair of possible op-
erations. The full set of transformations is a modified
version of the functions presented in (Bento, 2007).
In this modified set of functions we have adopted the
solution proposed in (Oster et al., 2006) for managing
line numbers. To this end, for each line in a file we
keep the information about themodifiedline number
when considering the deleted lines. This information
is kept in a auxiliary file that is hidden from common
users (by the FEW daemon). The information is this
file is updated each time the file is modified, either
by a local user or due to the integration of a remote
operation.

In this paper we just exemplify our solution by
showing how the system resolves anupdate/update
and anupdate/deleteconflict – see figure 5.

In update/updateconflicts, the system generates
multiple versions of the same line of text by trans-
forming an update operation into a createversion op-
eration. This guarantees that both changes will be pre-
sented in each replica as two different version for the
given line.

The resolution ofupdate/deleteconflicts is exe-
cuted by transforming theupdateoperation into ain-
sert versionoperation, or thedeleteoperation into a
createversionoperation. Both operations create two
versions for some line, but thecreateversionrestores
the logical deleted line.

3.3 Opaque Content File Reconciliation

We have also defined two solutions that can be
used with files for which the contents are considered
opaque. The idea of the first solution is, when the
file is concurrently modified, to coherently select a
version and keep that version in all replicas. This ap-
proach has been adopted in several system, such as the
original Lotus Notes, and it is appropriate for some
files – e.g. executable files.

To implement this approach, for each file we keep
an identifier of the current file version (based on a
logical clock). When a file is updated, the core-
spondent (logical) operation isupdate(newvrs,state).
The transformation function will transform anup-

SUPPORTING ASYNCHRONOUS COLLABORATIVE EDITING IN MOBILE COMPUTING ENVIRONMENTS

347



Create

Version(v1, 2, “B1”, v2)

A

B

C

A

B1

C

A

<< v1

B1

-- v2

B2

>>>

C

A

B

C

A

B2

C

Update(2, “B1”)

Create

Version(v2, 2, “B2”, v1)

Update(2, “B2”)

A

<< v1

B1

-- v2

B2

>>>

C

A

B

C

A

B1

C

A

<< v1

B1

-- v2

>>>

C

A

B

C

A

C

Update(2, “B1”)

Create

Version(v2, 2, “”, v1)
Insert

Version(v1, 2, “B1”, v2)

Delete(2)

A

<< v1

B1

-- v2

>>>

C

Update/Update Conflict Update/Delete Conflict

Figure 5: Example of conflict resolution.

date(v1,s1)against an already executedupdate(v0,s0)
into update(v1,s1)if v0 < v1 (according to the total
order defined combining the logical clock and site
identifier (Lamport, 1978)) andid() otherwise. This
approach guarantees that the last executedupdateop-
eration in every site is the same.

The idea of the second solution is to maintain mul-
tiple versions of the entire files. This solution will
keep all versions originated by concurrent updates, so
that no information is lost due to concurrent updates
and that the user can access all concurrent versions
when merging them. To implement this approach,
for each file, the system internally maintains multiple
file version with associated version identifiers. When
a file is updated, the corespondent operation isup-
date(oldvrs,newvrs,state), whereold vrs is the iden-
tifier of the modified version andnewvrs is a new
unique identifier for the new version. When this op-
eration is executed, a new file version with identifier
newvrs is created and if the file version with identi-
fier old vrs exists, it is deleted.

The way this operation is implemented makes it
possible to achieve convergence by executing untrans-
formed operations by causal order. Thus, the trans-
formation function just returns the original operation.
It is easy to understand why this approach is correct.
The update(oldvrs,newvrs,state)will always create
a new file version and, asnewvrs is a unique identi-
fier it is not possible for two user to create a file ver-
sion with the same identifier. Thus, the same set of file
versions are created, independently of the execution
order. To guarantee that, after executing the same set
of operations, the same set of file versions exist, we
must guarantee that the same file versions are deleted.

As anupdateoperation deletes a file version if it ex-
ists, if, in the set of executed operations, there is an
updateoperations that deletes a given version, that file
version must have been deleted. The only ordering of
operations that would lead to a different result would
be to execute anupdateto a versionv before execut-
ing theupdatethat creates that versionv. However,
as operations are executed by causal order, this is not
possible.

4 RELATED WORK

In recent years, several systems have been devel-
oped for mobile computing environments. In (Tolia
et al., 2004), the authors modify the Coda (Satya-
narayanan, 2002) file system to improve availabil-
ity and performance using portable storage devices
as lookaside caches. The Blue Filesystem (Nightin-
gale and Flinn, 2004) explores the existence of mul-
tiple storage devices to improve energy consump-
tion in a client/server architecture similar to Coda.
FEW explores the use of portable storage devices with
the same objectives and advantages. However, FEW
uses a peer-to-peer architecture that requires no sin-
gle server and allows replicas to synchronize when
ad-hoc networks are established.

Personal Raid (Sobti et al., 2002) and Foot-
loose (Paluska et al., 2003) manage files from a sin-
gle user. Although they address the problem of data
stored in multiple devices, they were not designed to
support data sharing among multiple users.

Segank (Sobti et al., 2004) also addresses the
problem of managing file replicas stored in multiple

ICEIS 2007 - International Conference on Enterprise Information Systems

348



portable devices. This system support sharing among
users, but unlike FEW do not present any solution
for conflict resolution – that is delegated to applica-
tions. Moreover, unlike FEW the system assumes
that all portable devices are always connected, what
does not seems reasonable considering the existence
of portable storage devices and limited batteries.

Several generic operational transformation algo-
rithms and specific solutions for real-time text editors
have been proposed in the past (Ellis and Gibbs, 1989;
Sun and Ellis, 1998; Ressel et al., 1996; Sun et al.,
1998; Suleiman et al., 1998; Shen and Sun, 2002;
Molli et al., 2003; Li and Li, 2005). Our solution dif-
fers from all these solutions by proposing a technique
that allows operation to be propagated efficiently us-
ing an epidemic propagation model.

Our reconciliation solution for opaque
content files is similar to the one used in
Coda(Satyanarayanan, 2002) (although the im-
plementation is different) with the difference that
we allow users to continue changing versions. Our
solution for text files differs from typical solutions in
version management system like CVS (Cederqvist
et al., 2005) as it allows users to postpone merging
of multiple versions and allows the evolution of line
versions created during conflict resolution. Being
more suited for systems that allow background
peer-to-peer synchronization, our approach always
allows the integration of new updates received from
all users without creating bogus new line version. In
this case, our implementation is also very different.
An OT based solution similar with CVS has also
been proposed (Molli et al., 2003) in the context of
a generic file synchronizer. This solution has the
same limitations of CVS, thus not guaranteeing the
preservation of users’ intentions when versions are
created.

5 FINAL REMARKS

In this paper we have presented FEW, a file man-
agement system for mobile computing environments
with portable storage devices. FEW allows files to be
shared among users and to be replicated in multiple
storage devices, including portable storage devices.
The system explores the multiple available replicas to
improve freshness, performance and to reduce power
consumption.

This system can be used to support collabora-
tive asynchronous edition, as it allows users to asyn-
chronously modify shared data and it includes a rec-
onciliation mechanism for handling concurrent up-
dates. The reconciliation mechanism implemented in

the FEW system is based on operational transforma-
tion, and it proposes a new set of techniques suited
for mobile computing environments, where updates
are propagated among replicas using epidemic propa-
gation. It also propose a new solution for handling
concurrent updates to text files in an asynchronous
setting, that allows multiple line versions to be main-
tained.

The FEW system is implemented using the tra-
ditional file system interface, thus allowing users to
continue using their favorite applications. Addition-
ally, as the system propagates relevant file system
events, it is possible to provide awareness information
while still allowing users to use legacy applications.

In the future, we intend to expand the solution pro-
posed on this paper in several directions. First, we
want to create additional type-specific solutions, in
particular, for XML files. Second, we need to prove
that our transformation functions for text files are cor-
rect and we want to look into alternative approach for
dealing with thefalse tieproblem in systems based
on operational transformation. Third, we intend to ex-
tend our single line-based solution to a multi-line one,
thus supporting the existence of versions of multiple
lines.

REFERENCES

Bento, M. A. (2007). Contributions for the design and
implementation of a file system for portable devices.
Master’s thesis, Dep. Informtiica, FCT, Universidade
Nova de Lisboa.

Birman, K. P., Hayden, M., Ozkasap, O., Xiao, Z., Budiu,
M., and Minsky, Y. (1999). Bimodal multicast.ACM
Trans. Comput. Syst., 17(2):41–88.

Cederqvist, P., Pesch, R., et al. (2005). Version management
with CVS.

Demers, A., Greene, D., Hauser, C., Irish, W., and Larson,
J. (1987). Epidemic algorithms for replicated database
maintenance. InProc. of the 6th annual ACM PODC,
pages 1–12. ACM Press.

Ellis, C. and Gibbs, S. (1989). Concurrency control in
groupware systems. InProc. of the 1989 ACM SIG-
MOD’89, pages 399–407, NY, USA. ACM Press.

Fitzpatrick, G., Marshall, P., and Phillips, A. (2006). Cvs in-
tegration with notification and chat: lightweight soft-
ware team collaboration. InCSCW ’06: Proceedings
of the 2006 20th anniversary conference on Computer
supported cooperative work, pages 49–58, New York,
NY, USA. ACM Press.

FUSE (2007). http://fuse.sourceforge.net/.

Lamport, L. (1978). Time, clocks, and the ordering of
events in a distributed system.Communications of the
ACM, 21(7):558–565.

SUPPORTING ASYNCHRONOUS COLLABORATIVE EDITING IN MOBILE COMPUTING ENVIRONMENTS

349



Li, R. and Li, D. (2005). A landmark-based transformation
approach to concurrency control in group editors. In
Pendergast, M., Schmidt, K., Mark, G., and Acker-
man, M., editors,GROUP, pages 284–293. ACM.

Molli, P., Oster, G., Skaf-Molli, H., and Imine, A. (2003).
Using the transformational approach to build a safe
and generic data synchronizer. InProc. of the ACM
SIGGROUP GROUP’03, pages 212–220, NY, USA.
ACM Press.

Nightingale, E. B. and Flinn, J. (2004). Energy-efficiency
and storage flexibility in the blue file system. InPro-
ceedings of the 6th USENIX Symposium on Operating
Systems Design and Implementation (OSDI ’04), San
Francisco, CA.

Oster, G., Urso, P., Molli, P., and Imine, A. (2006). Tomb-
stone transformation functions for ensuring consis-
tency in collaborative editing systems. InProc. of Sec-
ond International Conference on Collaborative Com-
puting: Networking, Applications and Worksharing
(CollaborateCom 2006).

Paluska, J. M., Saff, D., Yeh, T., and Chen, K. (2003). Foot-
loose: A case for physical eventual consistency and
selective conflict resolution. InProceedings of the 5th
IEEE Workshop on Mobile Computing Systems and
Applications. IEEE Computer Society.

Parker, D. S., Popek, G., Rudisin, G., Stoughton, A.,
Walker, B., Walton, E., Chow, J., Edwards, D., Kiser,
S., and Kline, C. (1983). Detection of mutual incon-
sistency in distributed systems.IEEE Transactions on
Software Engineering, SE-9(3):240–247.

Ressel, M., Nitsche-Ruhland, D., and Gunzenhuser, R.
(1996). An integrating, transformation-oriented ap-
proach to concurrency control and undo in group edi-
tors. InProc. of CSCW’96, pages 288–297, NY, USA.
ACM Press.

Satyanarayanan, M. (2002). The evolution of coda.
ACM Transactions on Computer Systems (TOCS),
20(2):85–124.

Shen, H. and Sun, C. (2002). Flexible notification for col-
laborative systems. InProceedings of the 2002 ACM
conference on Computer supported cooperative work,
pages 77–86. ACM Press.

Sobti, S., Garg, N., Zhang, C., Yu, X., Krishnamurthy, A.,
and Wang, R. Y. (2002). PersonalRAID: Mobile stor-
age for distributed and disconnected computers. In
Proceedings of the Conference on File and Storage
Technologies (FAST’02), pages 159–174. USENIX
Association.

Sobti, S., Garg, N., Zheng, F., Lai, J., Shao, Y., Zhang,
C., Ziskind, E., Krishnamurthy, A., and Wang, R. Y.
(2004). Segank: A distributed mobile storage system.
In Proc. of FAST’04, San Francisco, CA.

Suleiman, M., Cart, M., and Ferri, J. (1998). Concurrent op-
erations in a distributed and mobile collaborative en-
vironment. InProc. of ICDE ’98, pages 36–45, Wash-
ington, DC, USA. IEEE Computer Society.

Sun, C. and Ellis, C. (1998). Operational transformation
in real-time group editors: issues, algorithms, and
achievements. InProc. of CSCW ’98, pages 59–68,
NY, USA. ACM Press.

Sun, C., Jia, X., Zhang, Y., Yang, Y., and Chen, D. (1998).
Achieving convergence, causality preservation, and
intention preservation in real-time cooperative edit-
ing systems. ACM Trans. Comput.-Hum. Interact.,
5(1):63–108.

Sun, D. and Sun, C. (2006). Operation context and context-
based operational transformation. InCSCW ’06: Pro-
ceedings of the 2006 20th anniversary conference on
Computer supported cooperative work, pages 279–
288, New York, NY, USA. ACM Press.

Terry, D., Theimer, M., Petersen, K., Demers, A., Spreitzer,
M., and Hauser, C. (1995). Managing update conflicts
in bayou, a weakly connected replicated storage sys-
tem. InProc. of the ACM SOSP’95, pages 172–182,
NY, USA. ACM Press.

Tolia, N., Harkes, J., Kozuch, M., and Satyanarayanan, M.
(2004). Integrating portable and distributed storage.
In Proc. of FAST’04, San Francisco, CA.

ICEIS 2007 - International Conference on Enterprise Information Systems

350


