
A VOIP PLATFORM AS A VIRTUAL PBX SERVICE

Walter Balzano, Maria Rosaria Del Sorbo and Mario Epifania
Department of Physical Sciences, University of Naples “Federico II”, Via Cinthia, 4, 80126 Naples, Italy

Keywords: VoIP, IP-PBX, systems vitualization, Asterisk, Isolation, easy system restore.

Abstract: Voice over IP telephony, allowed by large band and low cost communication through Internet, is the base of
a project of a communication platform for IP-PBX. The new idea is to use open source software to
implement an IP phone switch system by a business LAN, where a virtual PBX can provide services and
reliable communication. The challenge is to virtualize many systems in one physical system using Linux
vservers resources. This approach yields many advantages: easy restore from crash events, security and
simple resource management. The drawback is a heavier hardware load, solvable using more powerful CPU
and memory architectures.

1 INTRODUCTION

Latest communication achievements, such as large-
band transmission technologies and audio-video
more efficient compression algorithms, have
allowed recent speed growth in the Web data flows.
These innovations have generated protocols with
faster multimedia content transmissions and shorter
response times (Mauro, 2005). The VoIP, Voice over
Internet Protocol (Davidson, 2006), is a part of these
new technologies: it aims to phone communicating
by the World Wide network (Wallingford, 2005).

One of the advantages of VoIP communicating
systems is a real reduction of phone services costs,
due to a good trade-off between geographic
distances and bandwidth employment allowed by
package commutation (Clark, 2001). Moreover,
VoIP makes possible new services creation, based
on the integration of audio, video and other
information data on the same multi-service network
(Chatterjee, 2005). The integration of traditional
phone services with data exchange on a IP business
network in one communication infrastructure, is
called IP-PBX. In fact, IP-PBX is a software running
on a server to control all connection and
composition procedures of internal and external
Local Area Network communications. IP-PBX
doesn’t need any special hardware (Ohrtman, 2003):
traditional PBX (Private Branch eXchange)
functions are managed associating phone numbers to
terminal IP addresses, properly coordinating the
connection requests (Sulkin, 2002).

IP-PBX systems connect many communication
media, providing new services such as digital
receptionist, IVR tree, voicemail, business databases
access by the Caller ID and so on.

This project presents a Small Medium Business
(SMB) VoIP solution: an Open Communication
Platform to allow IP phone switch system
implementation. Costs optimization has been gained
using open source software and a specific VoIP,
Session Initiation Protocol (SIP).

2 THE COMMUNICATION
PLATFORM

2.1 Virtual IP-PBX

Currently, IP-PBX is based on three standards:

 IP-enabled PBX (TDM is the main
technology but IP cards can enable VoIP on
some emplacements).

 Hybrid IP-PBX (integration of packet and
circuit commutations with advantages from
both approaches but with the double wiring
drawback).

 Full IP-PBX (based on devices satisfying
QoS constraints (Kist, 2003), with efficient
security functions).

303
Balzano W., Rosaria Del Sorbo M. and Epifania M. (2007).
A VOIP PLATFORM AS A VIRTUAL PBX SERVICE.
In Proceedings of the Ninth International Conference on Enterprise Information Systems - SAIC, pages 303-308
DOI: 10.5220/0002409903030308
Copyright c© SciTePress

A Virtual (or Hosted) IP-PBX system
implements its own functions as a service without
physical PBX devices, reducing the costs; all the IP-
PBX services are provided by a centralized
infrastructure. Open source software allows further
economy, even if it needs upgrades and bugs
monitoring. Asterisk, an open source Digium’s PBX
platform, provides PBX services. It is designed for
maximum flexibility by Application Programming
Interfaces (API), defined around a central PBX core
system. This advanced core handles PBX internal
interconnection, plain abstracted from specific
protocols, codecs, and hardware interfaces from the
telephony applications. This feature makes Asterisk
independent by specific hardware.

2.2 The Architecture

Our research is focused on the definition of an Open
Communication Platform correctly and efficiently
managing calls routing.

A software modular architecture supports this
implementation and is based on SIP Entities. SIP is
remarkable for its “lightness” and compatibility with
other IP protocol and open source software (Abbasi,
2005). SIP entities follow the client/server model
and interact by messages exchanges and error code
feedbacks as shown in Figure 1.

Media Proxy

Virtual PBX 1

Virtual PBX 2

Virtual PBX 3

OpenSER

PSTN GW

ASTERISK

Media &
Registar Server

MySQL DB

Figure 1: Platform Architecture scheme.

Main architectural components are:
(A) PSTN Gateway (PSTN GW), representing

a bridge between IP network and the traditional
telephony, using a LCR (Least Cost Routing) policy,
which exploits cheaper outbound providers (Yuan
Zhang, 2002). This module has been implemented by
an Asterisk instance on a server, sending outbound

calls on PSTN by trunks, connection channels
configured by the dialplan (Van Meggelen, 2005).

(B) Proxy and Registrar Server, routing call
flows and registering IP-PBX user accounts. This
device works like a server for the call originating
machine and like a client for the destination
terminal. So, the call management is delegable,
limiting resources requirements on user terminals.

The proxy and registrar functions are
implemented by OpenSER (Open SIP Express
Router), an open source SIP server. It is written in
pure Unix/Linux system C language, with specific
architecture optimizations to offer high performance
and works as net speed balancer.

This module independently performs user
account registrations on a Mysql database,
supporting Asterisk PBXs and limiting their work to
PBX functions: this can result in more scalable
architectures.

Proxy server operation is tied to the Media proxy
features and activity (Stojsic, 2001).

(C) Media proxy, a solution to the Network
Address Translation (NAT) Traversal problem,
affecting SIP protocols (Tam, 2002). These
protocols suffer NAT environments, because during
call signalling phase, the caller send to the called the
address to re-contact it on the net; but the called
regards its LAN address as its absolute address and,
when the called tries to contact it on the net, it can’t
route the packets.

The Media Proxy acts as a mediator in this
troublesome routing.

Figure 2: Media Proxy at work.

Figure 2 shows the Media proxy operation: a correct
procedure is guaranteed by a Proxy Server, which
establishes the SIP between two user agents.

The main Media proxy features are:
 to ensure SIP client transparent operation

behind NAT nets,
 to manage all multimedia session flows,

ICEIS 2007 - International Conference on Enterprise Information Systems

304

 to distribute RTP traffic load on multiple
proxy servers, running on multiple hosts,

 to specify Proxy Server use by the
caller/called SIP domain.

(D) IP-PBX SWITCH, representing the
platform core. IP-PBX SWITCH consists of all
Virtual Subnet IP-PBX, managed by the service
supply company. Every Virtual IP-PBX instance is
implemented by Asterisk.

Investigating on this main module we conceived
an innovative and efficient virtual architecture,
shown in next paragraphs.

Finally, the entire platform is administrated by
multi-layer interfaces, which monitors every module
and provide IP-PBX services.

2.3 Virtual Asterisk PBX

Every service supply subnet needs its own PBX,
even if virtualized and remote accessible. Then, a
double problem rises:

 A hardware cost problem, to buy a
dedicated Asterisk server for each subnet.

 A space problem, because servers need
room and many servers can crowd the
business server farm.

This situation isn’t acceptable for SMB reality,
because hardware cost and space problems depress
profit strategies and limit business increase.

The virtualization strategy involves an accurate
study of all steps from the basic concept of virtual
machines to the most important virtualization
techniques:

 emulation: a full system simulation, or "full
virtualization with dynamic recompilation"
where the virtual machine simulates the
complete hardware, allowing an
unmodified OS to run in a really different
environment.

 paravirtualization: the virtual machine does
not simulate hardware but offers a special
API that requires OS modifications.

 native virtualization and "full
virtualization": virtual machine only
partially simulates hardware, allowing an
unmodified OS to be run alone, but the
guest OS must be designed for the same
type of CPU. "Native virtualization" also
stands for hardware assistance through
Virtualization Technology.

Next step provides an IP-PBX switch system
model. Asterisk machines, in fact, can be virtual
machines and they can remarkably limit the space
occupation of real Private Client Services (PCS).

However this solution might be insufficient to
reduce high hardware cost: a) managing several
virtual machines on one real machine requires a
powerful computer; b) virtual machines are a kind of
heavy virtualization that steps down to the physical
layer and needs a partition to be replicated on every
virtual machine.

A virtual server is shared by more users; each of
them can administrate his space and his resources as
a single dedicated server.

To understand how they work and what kind of
different virtual machine they support, it’s necessary
an accurate comparative analysis of hypervisors, or
Virtual machine monitors, such as vmware
workstations, Qemu, Xen and Virtuozzo.

The open source Linux-Vserver project is used
to implement our virtual server system.

Vservers, as Xen hypervisor, are a different
approach to Virtual Machine Monitor: Xen uses only
one kernel for each virtual server, it has minimum
overhead and allows many UNIX tasks.

This solution is based on user environment space
division in different Virtual Private Servers (VPS)
entities: each VPS appears as a real server to locally
running processes.

Different Linux distributions use patched kernel
to supply special support to unusual hardware or to
extra features: Linux Vservers allow different Linux
distributions to run simultaneously on a single
patched shared kernel, without direct access to
hardware and sharing resources in an efficient way.

The kernel main purpose is to build a true and
own abstraction layer on the hardware to allow
processes (tasks) to work and operate on resources
(data) without knowing underlying hardware details.

Ideally this processes would be completely
hardware unaware, written in an interpreted
language and also don’t require any hardware
specific knowledge.

More processes can run simultaneously, so the
kernel has to assign a time-machine slice and
hardware access to each task (multitasking). Each
virtual server has got its own packets, services, users
and it’s limited to use only some IP address and only
some file system zones.

We can think a virtual server as a new system
using chroot system call concept with specific root
user and its own configurable resources manager,
different hostname and IP address.

Our idea was to use an Asterisk vserver for each
IP subnet requiring PBX services, to exploit the
simple management of its features, as voicemail, to
integrate them with the software functions.

A VOIP PLATFORM AS A VIRTUAL PBX SERVICE

305

Asterisk Vservers represent a virtual PBX
instance and more vservers can run on a single
physical machine (Des Ligneris, 2005). Each virtual
system created by Linux vserver has its own root
access and every owner (subnet using the service)
can load and execute Asterisk PBX features: this is
an example of a so called Virtual Private Asterisk
(VPA).

Therefore, the vservers hosting device holds in a
relatively small box an efficient phone exchange
switch and the patched kernel is shared between
VPS with proper strategies. This technology
introduces many profits: first, every VPS can work
at the maximum performance allowed by the system.
In fact, processes within virtual server run as regular
processes on the host system. Then, it is possible to
develop an action more memory-efficient and I/O-
efficient than the whole-system emulation, which
cannot return unused memory or share a disk cache
with the host. Furthermore, VPS overhead is
pointless, because there is a shared kernel for all
VPS and no hardware emulation.

Regarding security concerns, every VPS is
contained into its relative security context: a VPS
can’t directly access the host system kernel without
licence and there are several security layers. For
example, other VPS users and owners cannot load
our modules or alter kernel directly if they aren’t
root. Above discussion points out the opportunity of
huge cost reductions for SMB that want to invest in
the new VoIP PBX market.

2.4 Isolation Model

Isolation between Vservers simultaneously running
on the host is guaranteed by kernel modifications:

 Context Separation
 Network Separation
 The Chroot Barrier
 Upper Bound for Caps
 File system XID Tagging

Context separation consists in hiding to a given
process all the processes out of it and in forbidding
every interaction between processes belonging to
different contexts. It needs some data structures
extensions to make processes context sensitive and
to allow differentiation of identical User ID (UID)
exploited in different contexts.

There is a default context, oriented to guarantee
the host boot and a special context, called Spectator,
that ensures a global host processes sight. Network
separation limits processes into an IP address space
available for the host.

Some isolation problems can rise: a process
might perform binding operation on a special
address, IPADDR_ANY for example, and this can
be done without modifying any process running in
the vserver. To reduce total system overhead we
don’t use virtual network devices, acting on kernel
socket binding system for packet transmission.

For our project we configure the Vservers subnet
as a C class subnet (192.168.100.xxx). Host machine
containing vservers has the fixed address
192.168.100.253; other IP addresses about Asterisk
instances vservers have progressive numbers starting
from 1 (for instance VPBX1 has IP 192.168.100.1,
VPBX2 has IP 192.168.100.2 and so on). Figure 3
shows the network address scheme:

VIRTUAL SERVER 1

VIRTUAL SERVER
Virtual Machine
GENTOO (Emulation)

HYPERVISOR

Super Processor
SO GENTOO

VIRTUAL SERVER 2

n

Figure 3: Complete virtual subnet.

An example of a code segment follows (shell
command lines for the virtual subnet creation):

>> host# vserver-new pstn-gateway --hostname
PSTN-GW --context 1249 –interface
eth0:192.168.100.249/24 template ./gentoo-
template-x86-20060317.tar.bz2 x86

>> host# vserver-new H323-asterisk --
hostname H.323 --context 1250 --interface
eth0:192.168.100.250/24 template ./gentoo-
template-x86-20060318.tar.bz2 x86

>> host# vserver-new MySQL --hostname MySQL
--context 1252 --interface
eth0:192.168.100.252/24 template ./gentoo-
template-x86-20060319.tar.bz2 x86

>> host# vserver-new VPbx01 --hostname
VPbx01 --context 1001 --interface
eth0:192.168.100.1/24 template ./gentoo-
template-x86-20060320.tar.bz2 x86

When chroot(), open() or fchdir() system calls
are executed, in the next call there will be an

ICEIS 2007 - International Conference on Enterprise Information Systems

306

information loss; Linux Vserver manages this event
by a simple and efficient method: a mark, called
Chroot Barrier, placed in vserver father directory
which disallows going out of boundaries.

Linux doesn’t implement the file system POSIX
features that would make safer the setuid and setgid
executables: it’s safer to set an upper bound for all
context processes adding a supplementary capability
mask which limits all processes to belong to the
mask context.

File system eXchange station ID (XID) tagging
increases context isolation and enable Context Disk
Limit and Per Context Quota Support on a shared
partition between more Vservers. It’s difficult to
manage the context ID entity for every file, because
it needs file system representation disk
modifications or the extraction of some bits from
existing data structures. It’s possible the storage of
XID, for instance, implementing a not invasive
solution, that is to use the most significant bit of
UID and GID. Now we evaluate the security profits
presented by vservers.

A corrupted vserver can’t affect and damage the
host server. The host can be used to study in a safe
manner the crashed vserver with the purpose to
repair it: this is a very innovative feature that can be
performed by no other Linux installation. Vservers
mobility is another good characteristic of our IP-
PBX system: after mainframe system crashes it’s
very easy to move vservers from a machine to
another (high disaster recovery). Vservers, IP-PBX
system instances, are just simple directories in the
host machine and then full portable: we can quickly
restart the services stopped in the crashed machine.

So, our IP phone exchange switch system
contains all Asterisk PBX instances (representing
every business virtual PBX) on a single company
Mainframe running a Gentoo-distro: Linux Gentoo
offers a compiling system better than the traditional
pre-compiled binaries and permits flexibility and
performance optimization. Users, through Gentoo
Portage Settings, can easily customize every system
packet, compile the Kernel, as the system requires,
and produce executables fit to their own platform.

3 CASE STUDY

Virtualization is a part of the entire project, starting
from the PBX system architecture and arriving to its
implementation. The physic box is the mainframe
placed into business company which contains the
Asterisk vservers instances; it must have high CPU

performances and large memory space to provide an
optimal quality of VoIP services.

The model using a single machine for many
Asterisk vservers can be helpful but, at the same
time, hazardous for system reliability: host machine
hardware crash events can corrupt the whole service
and require long times to repair, wasting
performance indicators. The introduction of machine
virtualization concepts can help us in solving this
problem, replicating the host Gentoo machine by a
virtual machine.

H.323 Server
(192.168.100.250)

Virtual PBX 1
(192.168.100.1)

MainFrame Host
(192.168.100.253)

Virtual PBX 2
(192.168.100.2)

Virtual PBX
(192.168.100.)

i
i

PSTN GW
(192.168.100.249)

MySQL
(192.168.100.252)

Subnet
(192.168.100.xxx)

Figure 4: Virtual machine emulation.

This solution has remarkably increased the
degree of reliability of the system, because the
system crashes can be easily resolved: in case of
breakdowns it’s possible to restore the system in a
short time using a backup copy of the virtual
machine. Moreover, it’s easy to move the virtual
machine for system platform upgrading, without
constraints in hardware reconfiguration in another
host. The framework of a virtual machine is saved as
single row and so it’s easy to backup, to copy and to
move it. The double encapsulation model is related
to a double layer isolation: the virtual telephones
exchanges (the Vservers) are conceived to be
executed on a virtual machine, contained in a
physical machine. Then, there is a really
“protecting” shell that closes the physical machine
and looks after it from problems and errors.

Thus the machine stays lastingly undamaged and
could be hardly corrupted. Therefore, even if the
virtual machine is corrupted and damaged, the
physical machine isn’t ever involved and then the
virtual machine can be quickly resumed using its
backup copy. There is a drawback behind the
advantages to have this double virtual layer with
high fault tolerance and system scalability: a heavier
load for the mainframe, forced to support the
elaboration of a light emulation (vservers) in one
heavy emulation (virtual machine). Nevertheless it
can be regarded as a slight detail if we consider the

A VOIP PLATFORM AS A VIRTUAL PBX SERVICE

307

advantages introduced by virtualization, because the
provider subnet mainframe must have such
computing characteristics that it can guarantee a fast
process of all requests from an IP-PBX, and this
indicator influences VoIP QoS through the
maximum efficiency provided (Hardy, 2003).

4 CONCLUSIONS

This project is a new VoIP technologies application
which implements services management methods of
VoIP PBX systems by virtualization techniques.

Platform architecture has been built step by step
tracing a safe and scalable model, and this
technology can be considered as a starting point for
future researchers, who want to follow a
development of the virtual machine potential
applications to obtain several profits in data
processing.

With the aim of monitoring our virtual switch
system we have used Cacti, a “complete network
graphing solution designed to harness the power of
RRDTool's (Round Robin Database Tool) data
storage and graphing functionality. It provides a fast
poller, advanced graph templating, multiple data
acquisition methods, and user management features
out of the box. All of this is wrapped in an intuitive,
easy to use interface that makes sense for LAN-sized
installations up to complex networks with hundreds
of devices”.

However, virtual servers opens new horizons in
systems management.

With few efforts we can realize on a single
physical system, with the required hardware
features, many absolutely independent and
cooperating systems.

So, from the central system we can administrate
and monitor all these virtual systems, simplifying
the management operations and the eventual recover
or backup actions.

The security field is the most important future
development of virtual server: by intrusion detection
tools, we can easily realize a safe host isolated by
the system, for specific use, fully manageble from
host system. Then in practise we can “inbox” our
firewall and fight hackers that often try to access our
systems.

Finally, the testing environment can consider
virtual servers as separate systems, where it’s
possible to execute various tests and experiments
which won’t affect the main host system.

REFERENCES

Abbasi, T.et al., 2005, A comparative study of the SIP and
IAX VoIP protocols, Canadian Conference on
Electrical and Computer Engineering, pp. 179-183.

Chatterjee, S. et al., 2005, SIP-based enterprise converged
networks for voice/video-over-IP: implementation and
evaluation of components, IEEE Journal on Selected
Areas in Communications, Vol. 23, Issue 10, pp.1921
– 1933.

Clark D. D. et al., 2001, Internet Telephony , MIT Press,
Boston MA.

Davidson, J. et al., 2006, Voice over IP Fundamentals,
Cisco Press, Indianapolis, IN.

Des Ligneris, B., 2005, Virtualization of Linux based
computers: the Linux-VServer project, HPCS 2005,
19th International Symposium on High Performance
Computing Systems and Applications, pp.340-346.

Hardy, W. C., 2003, VoIP service Quality, McGraw-Hill
Professional, New York, NY.

Kist, A.A.; Harris, R.J., 2003, Using virtual SIP links to
enable QoS for signaling, ICON2003, The 11th IEEE
International Conference on Networks, pp. 301 – 306.

Mauro D.R., Schmidt K.J., 2005, Essential SNMP,
O’Reilly, Sebastopol, CA.

Ohrtman, F., 2003, Softswitch Architecture for VoIP,
McGraw-Hill Professional, New York, NY.

Stojsic, G.et al., 2001, Formal definition of SIP proxy
behavior, EUROCON'2001, International Conference
on Trends in Communications, Vol. 2, pp. 289-292.

Sulkin A., 2002, PBX Systems for IP Telephony, McGraw-
Hill Professional, New York, NY.

Tam, K.K.; Goh, H.L., 2002, Session Initiation Protocol,
IEEE ICIT '02, IEEE International Conference on
Industrial Technology, Vol. 2, pp.1310 – 1314.

Van Meggelen J. et al., 2005, Asterisk: The Future of
Telephony, O’Reilly, Sebastopol, CA.

Wallingford T., 2005, Switching to VoIP, O’Reilly,
Sebastopol, CA.

Yuan Zhang, 2002, SIP-based VoIP network and its
interworking with the PSTN, Electronics &
Communication Engineering Journal, Vol. 14, Issue
6, pp.273 – 282.

ICEIS 2007 - International Conference on Enterprise Information Systems

308

