
A Fair Non-repudiation Service in a Web Services
Peer-to-Peer Environment

Berthold Agreiter, Michael Hafner and Ruth Breu

University of Innsbruck
Institute of Computer Science

A-6020 Innsbruck

Abstract. “Non-repudiation”, a well known concept in security engineering,
provides measures to ensure that participants in a communication process
cannot later on deny of having participated in it. Such a concept is even more
important in service oriented architectures (e.g. electronic billing). However,
there is no sophisticated standard implementing fair Non-repudiation in such an
environment.
In this paper, we will introduce a framework providing fair Non-repudiation for
Web service messages. It executes a previously specified protocol using Web
services technology itself, but completely hides the protocol execution from the
target Web services. To allow the integration of such security requirements
already in an early phase of development, a model-driven configuration
approach is used. Furthermore, the procedure is not tied to Non-repudiation
protocols only, which means that a broad range of protocols can be integrated in
a similar way. The framework presented in this paper leverages existing
standards and protocols for an efficient adoption in service oriented
architectures.

1 Introduction

Service Oriented Architectures have matured to a widely accepted architectural
paradigm for the realization of B2B cooperation. One of the key characteristics of
these systems is the peer-to-peer style communication with no central control.
Security aspects in B2B communication are heavily regulated by law, which implies
that it is also a potential subject to change. Although sophisticated solutions and
standards already exist for the enforcement of the basic security requirements – like
confidentiality or integrity – this is not the case for more advanced security
requirements like Non-repudiation.

So far, there is actually no standard for a protocol enforcing fair Non-repudiation
in these environments. Available solutions only consider some kind of voluntary, so-
called naïve Non-repudiation, which cannot guarantee that one communicating party
is not gaining any advantage over the other. This means that cooperating parties have
to trust each other to behave in a legal way. Nevertheless, the enforcement of protocol
based security requirements is crucial in many B2B scenarios, e.g. electronic
tendering, electronic auctions, electronic procurement, etc.

Agreiter B., Hafner M. and Breu R. (2007).
A Fair Non-repudiation Service in a Web Services Peer-to-Peer Environment.
In Proceedings of the 5th International Workshop on Security in Information Systems, pages 63-72
DOI: 10.5220/0002415500630072
Copyright c© SciTePress

In this paper we present an approach which supports the enforcement of a fair Non-
repudiation protocol between two parties without even touching the endpoint-services
themselves. The communicating parties are forced to behave correctly, otherwise the
misuse is detected and no one of the parties gains advantage over the other. We
directly apply the methods described herein to the SECTET-framework – a tool-suite
for the correct realization of decentralized, security-critical workflows – and deploy it
with an example protocol using a trusted third party. The solution presented in this
paper is flexible enough to instantiate other protocol-based security requirements as
well, e.g., transactional security.

The paper is structured as follows: Section 2 sketches some background to our
previous work and related approaches. A motivating example is given in section 3
followed by our solution and partly its theoretical background. We close the paper
with a conclusion and a brief outlook in the last section.

2 Background

2.1 The Sectet Framework

The SECTET-framework supports business partners during the realization and
distributed management of a common Global Workflow – a decentralized, security-
critical collaboration across domain boundaries. SECTET realizes a domain
architecture aiming at the correct technical implementation of domain-level security
patterns. Security requirements are integrated into the specification of a Global
Workflow as UML 2.0 model artifacts. The models form the input for a chain of
integrated tools that transform the models into artefacts configuring security
components of a Web services-based target architecture. The framework consists of
three core components.

The Modeling Component supports the collaborative definition of a Global
Workflow and related security requirements at the abstract level in a platform
independent context. It implements an intuitive domain specific language (DSL),
which is rendered in a visual language and is currently implemented as a UML 2.0
profile for MAGICDRAW [1].

The Reference Architecture represents a Web services-based target runtime
environment for the Local Workflows and back-end services at the partner node. The
workflow and security components implement a set of workflow and security
technologies based on XML and Web services technologies and standards.

The Transformation Component translates the models into executable
configuration artifacts for the Reference Architecture. Source and target models can
easily be defined or adapted by importing the respective metamodels. This supports
domain experts in rapidly developing and adapting a domain specific language in an
agile way and visualizes the transformation process.

For an in-depth account on the conceptual foundations of the SECTET framework,
please refer to [1-3].

64

2.2 Non-repudiation

The security requirement Non-repudiation is needed in a communication process
where two participants want to assure that the other communication partner cannot
deny having participated. There are two kinds of Non-repudiation: Non-repudiation of
origin, where the sender cannot deny he is the originator of a message, and Non-
repudiation of receipt, where the receiver is not able to deny having received a
message. Throughout this paper we always want to achieve both kinds of Non-
repudiation at once.

There exist a number of Non-repudiation protocols for different purposes and with
different properties (e.g. fair, reliable channel, etc.). Some of them, including the one
discussed in this paper, use a trusted third party to guarantee Non-repudiation.

2.3 Related Work

The integration of Non-repudiation services for Web services was also studied before.
The simplest way – the implementation of a naïve protocol – which was also partly
integrated in the SECTET-framework until now, uses digital signatures [4] within the
messages exchanged through SOAP [5]. Such an approach is also discussed in [6].
Here, digital signatures on the document are used to ensure that the documents creator
really is who he claims to be. For authentication and to prevent replay attacks
SSL/TLS [7] is used. Without the addition of SSL the creator and the originator of a
message could be different, which would open the door to replay attacks. However,
the significant shortcoming with this approach is that Non-repudiation is only
voluntary. This means that the recipient is not forced to return a confirmation of
receipt. In such cases, the sender is in a weaker position, because he could not present
evidence to the judge in case of dispute.

Another approach, but very similar to the one just described, is WSS: Non-
Repudiation [8]. It is also using digital signatures defines a schema SOAP header
elements to transport the Non-repudiation requests and signatures. The different types
of receipt requests range from timestamp-only to digital signatures of specific
elements. Although this approach supports Non-repudiation of receipt, this form of
Non-repudiation is only voluntary. It does not define any mechanism to prove receipt
of a message by a non-conformant implementation.

3 Fair Non-Repudiation in a P2P Environment

3.1 A Security Incident

As a motivating example, we present an electronic procurement scenario. A company
purchases goods from a supplier. The buyer sends the purchase order to the supplier,
which then returns the invoice. The buyer does not receive the ordered goods until he
transfers the money stated on the invoice (cf. Fig. 1).

Considering this example, a number of security incidents could happen, each of
them leading to a conflict almost impossible to resolve:

65

• The supplier sends an invoice to a buyer without an actual purchase order.
• The supplier does not acknowledge the payment.
• The supplier claims he did not receive a purchase order/money transfer.
• The buyer claims he did not send a purchase order.
• The buyer claims he paid the goods without doing so.

One can see that both participants are able to cheat and cannot present valid
evidence to a judge in case of dispute. Annoyingly enough, the respective other
participant cannot do anything about it until the business partner changes his mind
and complies with his duties.

Fig. 1. B2B purchasing process.

3.2 Voluntary Non-Repudiation

The security incident of the example discussed above happens because a naïve
protocol was used. Non-repudiation happens to be enforced on a voluntary basis,
which means that the recipient is not forced to return a confirmation of receipt.

Figure 2 shows the simplest naïve protocol possible:
- A sends a signed message to B.
- B returns a signed acknowledgement to A.

The messages are signed with the respective private key of the originator. After B
received the message M from A, he can decide by itself whether to send an
acknowledgement or not. B already has a confirmation that the originator of the
message is A. This means it is voluntary to B to return an acknowledgement to A.

Figure 2: A naive Non-repudiation protocol

3.3 Fair Non-Repudiation

The shortcomings of voluntary Non-repudiation can be counteracted by using
different protocols which are aware of this situation. This kind of Non-repudiation
protocols is called fair. Fair protocols provide the originator and the recipient with
valid and irrefutable evidence after completion of the protocol, without giving a party

66

an advantage over the other at any stage of the protocol run [9]. That is, none of the
participants is able to cheat.

One such fair Non-repudiation protocol is presented in [9] (cf. Fig. 3). This
protocol uses a trusted third party (TTP). However, there also exist fair Non-
repudiation protocols without the need for TTPs (e.g. [10]). Moreover, different
protocols make use of the TTP in different ways (cf. [11]).

TTP

A B1. fNRO, B, L, C, NRO

2. fNRR, A, L, NRR

3. fSUB, B, L, K, sub_K

4. fCON, A, B, L, K, con_K 5. fCON, A, B, L, K, con_K

Fig. 3. The Zhou and Gollmann Non-repudiation protocol (ZG1).

The ZG1 protocol works as follows (cf. Fig. 3):
- A sends a message to B with the Non-repudiation of origin flag (fNRO) set
and containing a commitment C.
- B returns a Non-repudiation of receipt message to A, but is still unable to
read C, because it is encrypted with key K.
- A submits the key needed to decrypt C to the TTP.
- After this operation, A and B are able to retrieve K and the confirmation of
K issued by TTP (con_K) from TTP.

Every message exchanged in this protocol contains a protocol run identifier L to
correlate sets of messages, and every message is always signed with the private key of
the sender. Otherwise it would not be valid evidence. These signatures are denoted by
NRO, NRR, con_K and sub_K.

In every step of this protocol, the following is valid: if one of the participants tries
to cheat, he cannot get any valid evidence supporting its potential fraudulent claims.
The evidence needed in case of dispute is either NRO and con_K or NRR and con_K.

In this paper we use the ZG1 protocol to demonstrate the functionality of our
architecture.

3.4 Modeling of Non-repudiation in the Global Workflow Model

When modeling the inter-organizational workflow of two partners, one has to
configure which part of the communication process should be Non-repudiatable. We
do this in the Global Workflow Model (cf. Fig. 4). Out of this security configuration,
the necessary entries in the XACML policy (see section Protocol Execution) are
generated. This has two consequences:

• The triggering of the protocol-execution when sending a message.

67

• The enforcement of a check whether a protocol has been executed when
receiving a message.

There is even a possibility to configure the kind of protocol to be executed on the
Global Workflow Model.

Fig. 4. Configuration of Non Repudiation in Global Workflow Model.

3.5 Protocol Specification

First of all, the protocol itself is described in a machine-readable way. XML offers
great possibilities for doing this, not least due to its interoperability and ease of use.
An XML-based definition is also necessary for the messages which are part of the
protocol. There are a number of primitives which have to be replaced by the
respective sender of a message (e.g. Receiver, Label, Message, etc.). The
protocol gives a description about which elements are used at which place in a
protocol run. All this information configures the Target Architecture by storing it in
the Protocol Storage.

The potential of this approach lies in the fact that this protocol configuration could
also be specified in a model-driven way. This would result in an even more intuitive
way for the specification of various protocol-based security requirements (e.g. fair
Non-repudiation without TTP, transactional security, etc.) while preserving high
flexibility. For the time being, we assume a specific protocol for Non-repudiation –
namely the ZG1 – graphically modeled for a specific transaction in a Global
Workflow and automatically translated for the protocol engines of the target
architectures.

68

Fig. 5. Sample protocol and schema definition.

3.6 Protocol Execution

The execution of the protocol happens in a transparent way, which means that the
Web service client and server are not actively taking part in it. Instead, the protocol is
executed by the Non-Repudiation Engine, which is part of a Security Gateway
wrapping the services. This engine executes the protocol (cf. Fig. 5) stored in the
Protocol Storage. In short, the protocol is logically executed on a lower layer than the
Web services calls. The messages exchanged by the Non-Repudiation Engine are not
part of the Web service call from an application point of view. They build a signaling
channel which is again realized through Web services technology (cf. Figure 6).

As documents are transferred, the Non-Repudiation Engine somehow has to know
two important things:

1. Whether to execute the protocol or not.
2. At which stage of protocol execution it is.

The first issue is implemented through the use of policies. As documents are sent,
the Security Gateway always checks for the security requirements and enforces them.
In case of Non-repudiation, this triggers the execution of the protocol. The entry in
the policy has the nice implication that the receiving endpoint can also check whether
a Non-repudiation protocol was executed. Thus, starting to execute the protocol and
observe its enforcement is solved via XACML policies.

The solution to the second issue, the identification of the protocol execution step,
does not seem trivial in the first place. The point is that Web services should be
stateless to retain the independency of different clients. This can be solved by
avoiding to store the service-state in the service themselves, and to outsource this
storage to the execution engine. We then only need a link to the pertaining state every
time a message arrives. A protocol run identifier (i.e. the label L in ZG1) would fit
perfectly for this purpose. This means by submitting a unique identifier along with
each message in a protocol run, every endpoint is able to determine and modify its
current state in this run. A comparable standard tackling these kind of problems is
described in [12].

69

Fig. 6. Layer architecture.

Depending on the protocol the TTP, if any, takes part differently in the process. In
the case of ZG1, it stores the proof of submission and lets clients fetch the
confirmation of the key K.

3.7 Dispute Resolution

One case which has to be considered by any Non-repudiation protocol is the case of
dispute. If one of the communication partners denies having participated in a
communication, a kind of independent party – a “judge” - will evaluate the evidence
held by the participants and determine whether recipient or origin are as claimed.
Therefore, one thing we further integrated in our architecture is the Evidence Store.
The Non-Repudiation Engine has the knowledge of how protocols have to be
executed (through the usage of the protocol storage) and simply forwards evidences to
this store. So in case of dispute the participants can present them to a judge.

3.8 Target Architecture Integration

The affected components in the target architecture are the Protocol Engine, Evidence
Store and Non-Repudiation Engine which acts as a handler inside the Security
Gateway (cf. Fig. 7).

The Non-Repudiation Engine is the interface to the Protocol Engine. Every
message passes this lightweight handler, which triggers certain protocol steps when
necessary. The Protocol Engine themselves contains the protocol definitions (Protocol
Storage) and different execution states. This component is executing the protocols and
also has an interface to the Evidence Store. One can see that the definition of a
protocol is in fact the configuration of the Protocol Engine.

70

3.9 Benefits

Our framework implements a comprehensive approach for the model-driven
realization of security requirements in a Web service environment. The use of the
SECTET-framework comes with a number of benefits:

1. High and flexible configurability through the use of a model-driven
approach.

2. Evidence is bound to Web service messages. This would not be
achievable that easy for a realization on the transport layer.

3. The Web services itself remain untouched. The whole protocol is
executed before the endpoint receives the message. This uncoupled
execution renders the Protocol Engine and Configuration exchangeable.

Fig. 7. SECTET Target Architecture.

4 Conclusions and Outlook

Fair Non-repudiation is a security requirement imposed by the business logic.
However, the simple application of crypto-functions like digital signature and
encryption is not sufficient. A protocol, which has a set of non-trivial implications, is
needed.

In this paper, we presented how such a fair Non-repudiation protocol can be
applied to the world of Web services without ever touching the Web services itself.
The whole protocol-related traffic runs over a signaling channel which ends at each
participant’s Security Gateway. On the other side, we remain technically on the Web
services layer since the messages we exchange in the protocol are still SOAP
messages. This also makes sense with respect to the evidence collection.

In the future we will have a deeper look into the modeling of protocols. The
Protocol Engine should follow the same principles as the rest of the SECTET-

71

framework, i.e. the configuration takes place in a model-driven way from which
executable artifacts are produced. This leaves the engine open to any kind of
protocols, not only Non-repudiation protocols.

A first step into this direction could be to integrate a Non-repudiation protocol
without TTP. Different kinds of protocols need different kinds of primitives. A kind
of plug-in mechanism would render the architecture more flexible.

Another case not discussed in this paper is the dispute resolution. Here, a judge has
to collect evidence from the participants and probably from the TTP.

Overall, we can say that the model-driven configuration of security requirements
and protocols in this case offers many possibilities in rendering a system more
flexible and considering security aspects in an early phase of development. The
evaluation of the profitability of for such a Protocol Engine with its configurability of
a lower layer is an interesting open problem for future research.

References

1. Hafner, M., M.M. Alam, and R. Breu. Towards a MOF/QVT-based Domain Architecture
for Model Driven Security. in Models 2006. 2006. Genova, Italy.

2. Hafner, M., et al. Realizing Advanced Security Requirements for Inter-organizational
Workflows. in eChallenges 2006. 2006. Bacelona, Spain.

3. Hafner, M., et al. Sectet - An Extensible Framework for the Realization of Secure Inter-
Organizational Workflows. in WOSIS 2006. 2006. Paphos, Cyprus: INSTICC Press.

4. Bartel, M., et al. XML-Signature Syntax and Processing. 2002 [cited 2007 19.01.];
Available from: http://www.w3.org/TR/xmldsig-core/.

5. SOAP Version 1.2 Part 1: Messaging Framework. 2003 [cited 2007 19.01.]; Available
from: http://www.w3.org/TR/soap/.

6. Hada, S. SOAP security extensions: digital signature. 2001 [cited 2007 18.01.]; Available
from: http://www-128.ibm.com/developerworks/library/ws-soapsec/.

7. Freier, A., P. Karlton, and P. Kocher, The SSL Protocol Version 3.0. 1996.
8. Gravengaard, E., Web Services Security: Non-Repudiation. 2003.
9. Zhou, J. and D. Gollmann, A Fair Non-repudiation Protocol. 1995: University of London,

Royal Holloway, Department of Computer Science.
10. Markowitch, O. and Y. Roggeman, Probabilistic non-repudiation without trusted third

party. Second Conference on Security in Communication Networks, 1999. 99.
11. Kremer, S., O. Markowitch, and J. Zhou, An intensive survey of fair non-repudiation

protocols. Computer Communications, 2002. 25(17): p. 1606-1621.
12. Graham, S., et al. Web Services Resource 1.2. 2006 [cited 2007 19.01.]; Available from:

http://docs.oasis-open.org/wsrf/wsrf-ws_resource-1.2-spec-os.pdf.

72

