
A General Approach to Securely Querying XML

Ernesto Damiani1, Majirus Fansi2, Alban Gabillon2 and Stefania Marrara1

1 Universit̀a degli Studi di Milano
Dipartimento di Tecnologie dell’Informazione

via Bramante 65 26013 Crema (CR), Italy

2 Universit́e de Pau et des Pays de l’Adour
IUT des Pays de l’Adour

40 000 Mont-de-Marsan, France

Abstract. Access control models for XML data can be classified in two major
categories: node filtering and query rewriting systems. The first category includes
approaches that use access policies to compute secure user view on XML data
sets. User queries are then evaluated on those views. In the second category of
approaches, authorization rules are used to transform user queries to be evaluated
against the original XML dataset. The aim of this paper is to describe a general
query rewriting technique to securely querying XML. The model specification
is given using a Finite State Automata, ensuring generality and easiness of stan-
dardization w.r.t. specific implementation techniques

1 Introduction and Related Work

In the last few years, theeXtensible Markup Language(XML)[2] has become the format
of choice for data interchange. XML-based systems are now widely deployed in a num-
ber of application fields. This success has triggered a growing interest in XML security,
and several schemes for XML access control have been proposed. They can be clas-
sified in two major categories:node filteringandquery rewritingtechniques. The first
category includes a number of approaches (e.g., [6, 7, 14, 13, 17, 24, 5, 12]; for a com-
plete survey, see [14]) that use access policies to computesecure viewson XML data
sets. User queries are then evaluated on those views. Although views can be prepared
off-line, in general, view-based enforcement schemes suffer from high maintenance and
storage costs, especially for a large XML repository.

XML access control viaquery rewriting([21, 19, 20, 10, 18, 9, 3]) has been proposed
as a way to remedy these shortcomings. According to this approach, access control
rules are not directly applied to the XML dataset to be protected; rather, they are used
to translate potentiallyunsafeuser queries intosafeones, to be evaluated against the
original XML dataset. Most current proposals translate the policy’s access control rules
(ACR) to nondeterministic finite automata (NFSA) to rewrite user queries. However,
for policies that include many ACRs, NFSA backtrackings may cause unacceptable
overhead. More importantly, NFSA-based models are not entirely suitable for system

Damiani E., Fansi M., Gabillon A. and Marrara S. (2007).
A General Approach to Securely Querying XML.
In Proceedings of the 5th International Workshop on Security in Information Systems, pages 115-122
DOI: 10.5220/0002417301150122
Copyright c© SciTePress

specification and standardization. Another serious concern is that few of these models
provide users with a safe schema representing the information that they are allowed to
access. Disclosing the original schema may cause unwanted information leaks.

In this paper, we describe our Deterministic Finite Automaton (DFA) based query
rewriting approach (Section 2) that overcomes the drawbacks of the NFA-based Sys-
tems. The main contributions of this work include:

– A security model based on authorization attributes for XML (Section 2.1) in which
the security designer inserts the attributes in the XML Schema of the document
collection via a GUI. We then obtain a policy-dependent viewof the schema (or
annotated schema).

– A formalization based on deterministic automata with a highlevel of generality
(an automaton can be implemented in different ways) and suitable for standardiza-
tion of the enforcement technique. From this formalizationwe straightforwardly
derive algorithms for computing the user view of the schema (Section 2.2) and the
rewriting DFA (Section 2.3) from the annotated schema.

– A way to exploit the standard operatorsEXCEPT andUNION of XPath [4] to pro-
duce a sound and complete rewriting procedure (Section 2.4)of the user query.

– The complexity analysis (Section 2.5) shows that the entireprocedure is efficient
as it is linear with the size (i.e the number of element definitions) and the depth of
the repository schema.

A proof that our approach is sound and complete by means of a formal proof of cor-
rectness has been presented in [8]. Finally, section 3 concludes this paper and discusses
future work.

2 DFA-based Query Rewriting

In this section we present a novel approach for rewriting potentially unsafe user queries
into safe ones. Our technique is based onDeterministic Finite Automata(DFA). We
exploit the tree nature of the XML Schema to derive the DFA, which is the core of
the rewriting procedure. We show that our technique is correct by devising its proof of
correctness.

2.1 Writing the Security Policy

The security administrator (SA) uses a Graphical User Interface (GUI) to specify for
each user class (role), the part of information that the users are granted or denied access
to. Indeed, in order to obtain a policy-dependent view of theschema, the SA annotates
the schema usingsecurity attributes. This technique was first used in SMOQE [11].

We define the following security attributes:access, condition anddirty.
Attribute access specifies the rights of the user on the node. The value of this at-
tribute is eitherallow or deny. Attributecondition contains a list of predicates
that have to evaluate to true for access to be granted. Attributedirty indicates that
some descendants of the current node could be unauthorized.More precisely, a node
has a dirty attribute if it has at least one descendant node with eitheraccess=deny

116

<schema xmlns="http://www.w3.org//2001/XMLSchema">�
 <element name="showroom">
 <element name="vehicles" maxOccurs="unbounded" minOccurs="1" >
 <element name="available" maxOccurs="unbounded" >
 <element name="model" type="string"/>
 <element name="color" type="string"/>
 <element name="price" type="string"/>
 <element name="accessory" maxOccurs="unbounded">
 <element name="description" type="string"/>
 <element name="price" type="string"/>
 </element>
 </element>
 <element name="sold" maxOccurs="unbounded" >
 <element name="model" type="string"/>
 ... �
 </element>
 <attribute name="city" type="string" use="required"/>
 </element> �
</schema>

<schema xmlns="http://www.w3.org//2001/XMLSchema">�
 <element name="showroom" access="allow" dirty="true">
 <element name="vehicles" maxOccurs="unbounded" minOccurs="1"�
 access="allow" dirty="true" >
 <element name="available" maxOccurs="unbounded" �
 access="allow" dirty="true" condition="C">
 <element name="model" type="string" access="allow"/>
 <element name="color" type="string" access="allow"/>
 <element name="price" type="string" access="allow"/>
 <element name="accessory" maxOccurs="unbounded"�
 access="allow" condition="C1">
 <element name="description" type="string" access="allow"/>
 <element name="price" type="string" access="allow"/>
 </element>
 </element>
 <element name="sold" maxOccurs="unbounded" access="deny">
 <element name="model" type="string"/>
 ... �
 </element>
 <attribute name="city" type="string" use="required"/>
 </element> �
</schema>

(a)

(b)

Fig. 1. The Showroom Schema (a) and the corresponding annotated Schema (b).

or a non emptycondition attribute attached to it. Annotating the original schema
means appending these attributes to element definitions in the schema. The annotated
schema is no longer valid regarding W3C XML Schema recommendation. It is only an
internal representation of the security policy that is never disclosed to the user.

Throughout the rest of this paper, we will consider a repository of XML documents
valid w.r.t. the schema depicted in Fig.1(a) as a working example. In this example, we
also consider user Alice and a policy that allows her access to elementshowroom,
conditionally grants her access to elementsavailable andaccessory and denies
access tosold. Alice is granted access to all other elements (except the descendants
of sold of course). The annotated schema is depicted in Fig.1 (b), where security
attributes are written in bold.

The remainder of the rewriting procedure, presented in the remaining subsections,
consists of three steps:

Step 1: The annotated XML schema is transformed according to the policy that
applies to each role. According to her role, the user is provided with the view of the
schema (in shortSv) she is entitled to see. Then, she can write her query using infor-
mation available onSv. Henceforth, unless stated otherwise, the term view will refer to
the view of the schema and not to the view of a source document.

Step 2: The annotated schema is translated into an automaton whichrepresents the
structure ofSv. Each state withinSv contains some security attributes that will further
serve us while rewriting the user request.

Step 3: The user query is rewritten using the finite state automaton.

117

<?xml version="1.0"?>�
<schema xmlns="http://www.w3.org//2001/XMLSchema">�
 <element name="showroom">
 <complexType>
 <sequence>
 <element name="vehicles" maxOccurs="unbounded" minOccurs="1">
 <complexType>
 <sequence>
 <element name="available" maxOccurs="unbounded" minOccurs="0">
 <complexType>
 <sequence>
 <element name="model" type="string"/>
 <element name="color" type="string"/>
 <element name="price" type="string"/>
 <element name="accessory" maxOccurs="unbounded" minOccurs="0">
 <complexType>
 <sequence>
 <element name="description" type="string" delete=" "/>
 <element name="price" type="string" />
 </sequence>
 ...
 </sequence>
 <attribute name="city" type="string" use="required"/>
 </complexType>
 </element>
</schema>

(a) (b)

S0
access="allow"

S1

dirty

S2

access="allow"

dirty

vehiclesshowroom

S4

S3

access="denied"

access="allow"

dirty

sold

available

S5

S6

S7

S8

access="allow"

access="allow"

access="allow"

access="allow"

condition="C1"

modal

color

price

accessory

condition="C"

Fig. 2.The User Schema View (a) and the Rewriting FSA (b).

2.2 Deriving the User View of the Schema (Step 1)

Deriving the user view from the annotated schema is straightforward. We start at the root
of the annotated schema tree, and at each element definition,we proceed as follows:

– If the attribute access isallow without any condition then we keep the node as is
in the user view.

– If access isallow and there is an attributecondition set then we redefine the
node as optional by adding the attributeminOccurs=0. In this way if a query gets
to fail because thecondition is not satisfied, then the querist would not infer the
hiding of data.

– If access isdeny then we discard the sub-tree rooted at the actual node from the
user view.

The view for user Alice is depicted in Fig.2(a).

2.3 Constructing the Automaton (Step 2)

Constructing the rewriting automaton from the annotated schema is also straightfor-
ward. The automatonM derived from the annotated schema consists of an alphabetΣ,
a set of statesS, a transition functionT : S × Σ → S, a start states0 ∈ S, and a set of
accepting statesA ⊂ S. The automaton is constructed as follows:

The alphabetΣ consists of the values of the attributesname of each element defi-
nition on the annotated schema.

118

Creating the states: We start at the root of the annotated schema. The state cor-
responding to the root (elementschema) is s0. We create one state for each element
definition which has adirty parent. Indeed, all other nodes (those notdirty) and
their subtrees are kept unchanged in the secured view. Hencethey do not require to be
processed by the automaton. When we encounter a denied node, we create a state for
that element and skip the entire sub-tree rooted at that node. Each states ∈ S (s 6= s0)
has attributes which represent the security attributes stated at the corresponding element
definition. We give to the state attributes the name and the value of their corresponding
security attributes. Each states ∈ S (s 6= s0) is a final state (i.e.A = S \ {s0}).

Defining transitions: There exists a transition from a statesi to a statesj if the
element definition corresponding tosi is the parent of the element definition corre-
sponding tosj . The transition is labeled by the attributename of the element definition
corresponding tosj .

The automaton derived from the annotated schema of Fig.1(b)is represented in
Fig.2(b).

2.4 Rewriting the Request (Step 3)

We assume that the user writes her request using the subsetXPath-- 3 of XPath ex-
pressions informally defined as follows:
XPath--:= ε|l| ∗ |p1/p2| //p1|p[q] wherep1 andp2 areXPath-- expressions;ε, l, ∗
denote the empty path, a label and a wildcard, respectively;/ and// stand for child-axis
and descendant-or-self-axis; and finally,q is called a qualifier. We rewrite the request in
the subsetζ:={ε|l|p1/p2|p[q]} of XPath-- using the functionsunionandexcept. ζ is
XPath-- without descendant-or-self axis (//) and wildcards (∗). Hereby, we alleviate
the rewriting process overhead since there is no need to backtrack in the automaton. We
therefore rewrite the query in two phases. First, we refine the submitted expression and
second, we rewrite the refined expression through the automaton.

Phase 1: refining the expressionThis step consists in refining the request on the
basis of the view the user is permitted to see. We first transform the user query (over
the repository) to an equivalent one (over the view). Second, we execute the latter on
the user view (Sv) and from the target node we go back up to the root node, adding
the encountered nodes on the path to form therefined expression. The goal of this pro-
cedure is to eliminate every// and* within the expression. As an example, if Alice
request is//vehicles/available then the equivalent expression over the view is
//element[@name="vehicles"]/complexType/sequence/
element[@name="available"] and the refined expression is
/showroom/vehicles/available.

Phase 2: Rewriting the request via the automatonThe automaton represents the
view the user is permitted to see. Rewriting the user requestconsists of,

3 In [15] Gottlob, Koch and Pichler show that the loss of expressive power of a fragment like
XPath-- w.r.t. XPath is minimal.

119

– processing the first token4 of the refined expression
– moving to the next state of the automaton until either the last token is received,

or a clean state (i.e., a state that has no attribute dirty) ismet or a denied state is
encountered.

When processing a token, we consider the two following cases:

– Queries without predicates. After reading the current token, the automaton uses the
attributes of the current state and behaves as follows:
– Access is deny. It rejects the request.
– Access is allow. There are two possibilities:
– – (1) If there is no attributedirty then the user has the right to consult the entire
sub-tree rooted at that node. The token is kept as such, the value of the attribute
condition (if any) is attached to the token and the remainder of the source query
is appended to the rewritten query. Note that the attributedirty is for optimizing
the rewriting procedure. Indeed, if the access is allow and if there is no attribute
dirty then we do not need to analyze the remaining tokens one by one.We can
directly append the remainder of the source query to the rewritten query.
– – (2) If there is the attributedirty then the token is kept as such and if there
is an attributecondition, its content is attached to the token. Then, the analyzer
asks for the next token (if any).
If the last token has been fed into the automaton then we use the operatorexcept
to eliminate each unauthorized node under the target nodes.If q denotes the rewrit-
ten expression after the last token has been fed into the automaton then the final
rewritten expression isq′ = q except (e1 ∪ e2 ∪ ... ∪ en), where eachej with
1 ≤ j ≤ n is computed as follows:
The automaton consults one after another the states corresponding to the children
of the node represented by the current state. At each states corresponding to the
tokenl, we have the following:
If the attributeaccess = deny thenl is appended toq. The resultq/l becomes
one of theej .
If the attributeaccess=allow and there is an attributecondition then the
negation of the contentC of the attributecondition is appended tol. The result
l[not(C)] is appended toq. q/l[not(C)] becomes one of theej . If there is also an
attributedirty then the procedure goes deeper into the automaton (i.e. examines
the children of the current tokenl) and starts computing anotherej with q now
being equal toq/l[C].

– Queries with predicates. The idea here is to stop processingthe automaton when a
token with predicate(s) is received. We save the current state and check whether the
user has the right to consult the nodes that occur within the predicate(s). If she has
the right to, we return to the saved state and continue with the next token. Otherwise
the request is rejected.

Examples which illustrate the rewriting procedure are provided in [8]. Due to space
limitation, we cannot include them in this paper.

4 We call token a step in the path expression, for exampleshowroom is the first token in
/showroom/vehicles/available, while vehicles is the second./ stands for a
lookahead.

120

2.5 Complexity Analysis

The complexity of our approach is determined by that of steps1, 2 and 3 of the rewriting
procedure. Let us assume that the repository schema contains n definitions of element
nodes. Deriving the user view of the schema (Section 2.2) takes at mostO(n) time.
Constructing the automaton (Section 2.3) also requires at mostO(n) time as well. Ifm
is the depth of the schema, then refining the expression (Section 2.4) takesO(m) time.
Since we rewrite the refined expressions by simply traversing the deterministic automa-
ton, this phase takesO(n) time. Hence, the overall time complexity of this proposal is
O(n + m).

3 Conclusion

In this paper, we describe a Deterministic Finite Automata (DFA) based approach to
rewrite unsafe queries into safe ones, thus avoiding the many backtrackings inherent
to NFAs. We highlighted how our approach improves w.r.t. previous works in the area
(see [8]). Also, we show that our technique is linear with thesize and the depth of the
repository schema. Although our rewriting procedure is theoretically efficient and sug-
gests good performances, experiments remain work to be done. Moreover, our proposal
leaves space for further work. Other inspiring approaches [16], [1] enforce client-based
access control to XML. Indeed, in [16] and [1], the document is encrypted at the server
side and decrypted at the client side. The input of their system is then XML data and
the output is also XML data, while in our approach both the input and output is an
XML query. We are investigating the possibility to diminishthe workload at the server
side by transferring the rewriting procedure to the client side. Finally, Current stan-
dards for access control languages that can be used for protecting XML information
([23, 22, 25]) lack a standard technique for enforcing policies via secure query rewrit-
ing. We are investigating interfacing our technique with standard policy languages like
XACML[23]. Our DFA-based approach is general enough to specify the enforcement
of most XACML policies when applied to protect XML data. We plan to develop this
topic in a future paper.

Acknowledgements

This work was supported in part by the Italian Basic ResearchFund (FIRB) within the
KIWI and MAPS projects, by the European Union within the PRIMEProject in the
FP6/IST Programme under contract IST-2002-507591 and by funding from the French
ministry for research under ”ACI Śecurit́e Informatique 2003 - 2006. projet CASC”.
Majirus Fansi holds a Ph.D scholarship granted by the ”Conseil Géńeral des Landes”.
The authors wish to thank Sabrina De Capitani di Vimercati, Pierangela Samarati and
Stefano Paraboschi for common work and valuable suggestions.

References

1. Bouganim L., Ngoc F. D., Pucheral P.: Client-Based Access Control Management for XML
documents. In Proc. of the 30th VLDB Conference, 2004.

121

2. Bray T., Paoli J., Sperberg-McQueen C. M.: eXtensible Markup Language (XML) 1.0 (2nd
Ed). W3C Recommendation, 2000

3. Byun C. W., Park S.: An Efficient Yet Secure XML Access ControlEnforcement by Safe
and Correct Query Modification. In Proc. of the 17th International Conference on Database
and Expert Systems Applications (DEXA), 2006.

4. Clark J., DeRose S.: XML Path Language (XPath). W3C Recommendation, 1999.
http://www.w3.org/TR/xpath.

5. Cuppens F., Cuppens-Boulahia N., Sans T.: Protection of relationships in xml documents
with the xml-bb model. In Proc. of ICISS2005.

6. Damiani E., De Capitani di Vimercati S., Paraboschi S. Samarati P.: Securing XML Doc-
uments. In Proc. of the 2000 International Conference on Extending Database Technology
(EDBT2000).

7. Damiani E., De Capitani di Vimercati S., Paraboschi S., SamaratiP.: A fine-grained access
control system for XML documents. In ACM Trans. Inf. Syst. Secur., Vol. 5(2). ACM Press,
New York (2002) 169–202.

8. Damiani E., Fansi M., Gabillon A., Marrara S.: A General Approach to Securely Query-
ing XML. In Note del Polo - Ricerca - Università degli Studi di Milano, Dipartimento di
Tecnologie dell’Informazione Polo Didattico e di Ricerca di Crema, No. 102, 2007.

9. De Capitani di Vimercati S. and Marrara S. and Samarati P.: An access control for querying
xml data. In Proc. of SWS05 workshop.

10. Fan W. and Chan C. and Garofalakis M.: Secure XML Querying with security views. In Proc.
of SIGMOD 2004 Conference.

11. Fan W., Geerts F., Jia X. Kementsietsidis A.: SMOQE: A System for Providing Secure Ac-
cess to XML. In Proc. of the 32nd VLDB Conference, 2006.

12. Finance B., Medjdoub S., Pucheral P.: The Case for access control on xml relationships. In
Proc. of CIKM 2005.

13. Gabillon A., Bruno E.: Regulating Access to XML documents. In Proc. of the 15th Annual
IFIP WG 11.3 Working Conference on Database Security, 2001.

14. Gabillon A.: A formal access control model for XMl databases. In Proc. of the 2005 VLDB
Workshop on Secure Data Management (SDM).

15. Gottlob G., Koch C., Pichler R.: The Complexity of XPath Query Evaluation. In Proc. of
the 22nd ACM SIGACT SIGMOD SIGART Symposium on Principles of Database Systems
(PODS-02). ACM Press, San Diego (2003)179–190.

16. Kodali N., Wijesekera D.: Regulating access to SMIL formatted pay-per-view movies. In
Proc. of the 2002 ACM workshop on XML security.

17. Kudo M., Hada S.: XML document security based on provisional authorization. In Proc. of
ACM CCS 2000.

18. Kuper G., Massaci F., Rassadko N.: Generalized xml security views. In Proc. of the 10th
SACMAT, 2005.

19. Luo B., Lee D., Lee W., Liu P.: QFilter: Fine-Grained run-time XML Access Control via
NFA-based Query Rewriting. In Proc. of CIKM 2004.

20. Mohan S., Sengupta A., Wu Y., Klinginsmith J.: Access Control forXML - a dynamic query
rewriting approach. In Pro c. of VLDB 2005 Conference.

21. Murata M., Tozawa A., Kudo M.: XML Access Control using Static Analysis. In Proc. of
CCS 2003.

22. NIST, The Extensible Configuration Checklist Description Format (XCCDF),
http://nvd.nist.gov/scap/xccdf/xccdf.cfm

23. OASIS, eXtensible Access Control Markup Language (XACML), http://www.oasis-
open.org/committees/xacml/

24. Stoica A., Farkas C.: Secure XML Views. In Proc. of the 16th IFIPWG11.3 Working Con-
ference on Database and Application Security, 2002.

25. W3C, Web Services Policy 1.2 - Framework (WS-Policy),
http://www.w3.org/Submission/WS-Policy/

122

