Proactive Contract Management through RSF
Specifications

Rossella Aiello and Giancarlo Nota

Department of Mathematics and Computer Science
University of Salerno
84084 - Fisciano (SA) ltaly

Abstract. The modelling and automation of e-contracts is an active research area
that aims at providing a valid support to organizations for the definition and man-
agement of contractual relations. The approach adopted in this paper allows the
modelling and monitoring of contracts specified in terms of RSF (Requirement
Specification Formalism) rules. Starting from the planning of events relied to
contract clauses established during the negotiation phase, we define a set of RSF
rules that can be used as patterns for the monitoring of both: contract fulfillments
and contract violations with respect to obligations, permissions and prohibitions.
We also extend the semantics of the RSF language in order to allow the treatment
of planned events, together with occurred and not occurred events, in a single
transition rule. This enriched semantics supports the proactive behaviour of a
contract management system enabling the immediate notification of fulfillments
and non-compliances as well as the detection of imminent contract violations.

1 Introduction

The need to manage end-to-end processes in a efficient and effective way urges pri-
vate and public companies to adopt ICT solutions based on e-services and SOA ar-
chitectures. This trend can be in particular observed in the field of automated contract
management where the collaboration is usually regulated by negotiated agreements sub-
scribed between the involved parties.

An important aspect of contract management systems concerns the capability to mon-
itor contract clauses, especially when end-to-end processes are managed using system
intensive workflows that handle millions of transactions per day without human inter-
vention.

In the last years, the research activity has been directed towards the definition of contract
languages whose capabilities can provide support to obtain benefits such as: ambiguity
avoidance, reduced disputes and increased performance of processes arising from con-
tract agreements.

Some formal approaches use courteous logic [1] or Petri nets [2, 3]. In [4] a specification
for deontic constraints focusing the attention on temporal constraints is defined together
with a methodology for the verification of consistency. A formalization of deadline con-
cept based on an extension of CTL can be found in [5, 6].

Aiello R. and Nota G. (2007).

Proactive Contract Management through RSF Specifications.

In Proceedings of the 4th International Workshop on Computer Supported Activity Coordination, pages 76-86
DOI: 10.5220/0002418600760086

Copyright © SciTePress

77

Many works based on Deontic Logic [7—10] handle the problér@antrary-to-duty
obligations and paradoxes. In [11, 12], the contract frotunmsh language is first anal-
ysed and represented in a logical form using Deontic andd3éfke Logic. Then, the
logical form is translated into a machine readable ruletimiabased on RuleML, and
implemented as executable semantics. This formalisatiamséd as a source of the
mapping to the key policy concepts of a contract specifioddoguage called Business
Contract Language (BCL) [13, 14].

The notion of commitment is the main concept used in [15, &&pecify multi-party
contracts. Commitment violations and a proactive detaafomminent contract viola-
tions are handled by means of an algorithm working on a datatste called commit-
ment graph. In [17] a three layers architecture for e-canaforcement is discussed. A
metamodel for contract comprises several types of clauseglkhas contract templates.
In the second level, event-condition-action (ECA) ruleswsed to define business rules
for the enforcement activities while the third level proegda web services implemen-
tation for the e-contract enforcement.

This work addresses the formal specification and the mangaof contract clauses
by means of RSF transition rules. We first propose a charaatem of the standard
deontic concepts of obligations, permissions and prdbitstoriented to the real time
monitoring of contracts. Next, we introduce a set of RSFgulgable as patterns for the
monitoring of clause fulfilments and violations. Finallye extend the semantics of
the RSF language in order to support the proactive behaefamicontract management
system; such extension enables the management of immeditifieations of fulfill-
ments and non-compliances as well as the detection of imricentract violations.
The contribution of the paper is twofold: from one side wepgwse a set of rules that
can be used as specification patterns for the monitoringrtfaats. On the other side,
we address the problem of the unified treatment of fulfillregwiblations and proactive
management that has received little coverage in the litexaf his unifying approach
becomes possible on the basis of the enriched version of R&Rluced in the paper.

2 The Requirement Specification Formalism

RSF is a specification language created with the aim of d@ngrireactive discrete-
event systems [18,19]. In RSF, a system can be describeihgvatset oftransition
rules that allow the system to evolve through a sequence of statesstate of the
system is composed of a set of events in a particular timarnst

An eventcan be represented by a triptep, v, ¢ > in which p is a positionp a datum
andt a timestamp meaning that the datwnis produced at the timein the position
q. A positionis a place where data can be found in the system whilmestamps a
numeric value for time interval measured starting from agierigin in a given time
unit. An RSF state assumes the following form:

s =< {< p1,v1,t1 >, .0y < Dy Uy b >}, St >

where{< p1,v1,t1 >,...,< Pm,vm,tm >} IS the set of events in the state astdrep-
resents thestate proper timethat is the instant of time at which the state refers. Note
that timestamps of events can be less or greater than tleepstader time. The intuitive

78

meaning of timestamps less than or equal to the state prioperis that the events have
already occurred in the past; while events with timestarmeatgr than the state proper
time are events scheduled to occur in the future.

An event set descriptofevent Des) can be defined as a set of events that satisfy the
specified conditions, ..., cx.

’ i ’ ’ ’)
eventDes =< p1,v1,t1 >, ...y < Dpy Uy by > With ¢,y ..., ck.

These conditions can state both properties of the data, v, and time constraints
aboutt,, ..., t,. We say that amventDes is satisfied by a state when s containsn
events such that:

— then events match py, vy, t; > ... < o, Uy ty >
— the match yields an istantiation of variables which allow thgical conditions
ci,..cp to hold.

We also define a state descriptor in the following way:
stateDes = eventDes1 not-occur eventDess.

A state descriptor is satisfied by a staterhen a subset of events satisfyig:nt Des;
is present irs, while there is no subset of events satisfyingnt Des,.

The presence of specific data with suitable properties insitipp at a given time in-
stant may trigger an RSF transition rule that allows a syste transition. An RSF
transition rule has the following form:

from stateDes
conseventDess
produce eventDesy

When astate Des of a rule R is satisfied ins, then the time instant of rule application
is called application time.

The from part qualifies a state description and describes the piepdttat a state

s must have in order to apply the transition rule. Tdans part specifies the events
which are consumed by the rule application; therefore, warervent is consumed, it

is dropped from the state. Throduce part lists the events created in the state as an
effect of the rule application. Suppose thatntDes, has the form:

eventDesy =< p1,v1,d1 >, ..., < Pk, Vk,dr > With c1, ..., ¢

where datan, ..., v, are produced respectively in the positigas..., p, with a produc-
tion delay ofd,, ..., dx with respect to the rule application time. The event seestttat
the conditioncy, ...c; are used to assign values to the variables preseatin v, d, >

. < Pr,vk, de >. A null delay means that the datum is produced with a nedégib
delay.

A particular behavior of the system as it evolves over timedscribed by a sequence
of statessy, s1, ...s,, calledhistory. The transition rules determine which histories are
effectively possible for the systermiéble historie$. Examples of transition rules are
shown in sections 3 and 4.

79

In the following, we will use the Prolog notation for varialland constants: any word
starting with an uppercase letter is assumed to be a vanetile all constants start
with a lowercase letter.

3 Deontic and Monitoring Constructs in RSF

3.1 Coding Deontic Constructs as RSF Events

Starting from the definitions above, it is possible to defireedeontic concepts of obli-
gation, permission and proibition, usually employed in ¢batract management liter-
ature [20, 21], in terms of RSF events. However, as the fo¢uki® work is on the
monitoring of contractual clauses, we consider severaltpaif view, such as the plan-
ning of events regarding deontic concepts, the executiactdfities and the monitoring
of fulfillments and violations. The generic monitoring ctrmst assumes the form:

<Role, [DeonticConcept, Action, Workproduct, Perspective, TimeRefelefice

where Action represents an action that Role must (can oratgpperform according to
the defined DeonticConcept, eventually producing a Wordpct The variables Per-
spective and TimeReference are instantiated in agreeménthve value of Deontic-
Concept, as shown in table 1.

We distinguish betweescheduledbligation that are stated during the contract nego-

Table 1. Instantiation of variables in the monitoring construct.

DeonticConceptPerspectivg TimeReference
schedule |begin/end
Obligation execution |begin/end
fulfillment |-
violation |-
grant begin/end
Permission assertion |begin/end
violation |_
Prohibition stated begin/end
violation |_

tiation, executedbligation observed during the contract enactment phaddufiiled
obligation when an executed obligation meets the expecmbf all involved roles.
When a permission is granted, the power to make somethingpedfi time interval
is assigned to a specific role while, a prohibition statenestblishes that a role is
forbidden to perform a particular action. As an example afhfition, suppose that,
after the contract agreement, the supplier is forbiddenvialge every confidential in-
formation necessary for the contract accomplishment. Ating to the generic deontic
construct presented above, the corresponding RSF evamhasshe form:

80
<supplier,[prohibition, divulgeConfidentialinformation, stated, begip 5>

Another example concerns the permission given to the seppfirequiring information
about a given softwareProject within the time interval 8],

<supplier,[permission, requirelnformation, softwareProject, grant, Beg>
<supplier,[permission, requirelnformation, softwareProject, grant] e3@>

3.2 Monitoring of Contractual Clauses

The contract specification expressed as a set of RSF rutes &t@awv the Contract Man-
agement System reacts to external stimuli provided by th@a@mment in which the
system operates. The set of stimuli from the environmeptesented by means of RSF
events{ey, ...e, }, are for the Contract Management System as the input datedon-
ventional program. When a transition rule is triggered the&tesy evolves, and one or
more events chosen from a gef, ..., } suitably defined may be produced toward the
environment. The high level interaction between the Canfvéanagement System and
its environment is shown in fig. 1. The first rule to take into@mt is charged to receive

Enviromment System
Contractors ::el’ -y : .| REF niles for
Contract
Contract Management Office . d Specification
(el o Z
Other emabled dakeholders fy— a Monitoring

Fig. 1. Interaction between the Environment and the System.

from the environment the events required to start the conéseecution. The result of
the rule application is a new state where permissions, atiigs and prohibitions to-
gether with other scheduled events are planned as futurgseor exampleR1 is a
simple rule that, starting from the signature of the contrschedules an obligation that
constraints the supplier to make the project in a specifieidge

R1) Plans contract activities
from <signedContract,client;T><signedContract,supplierT>
conssignedContract
produce <signatories, [client,supplier];9
<supplier,[obligation, doProject, softwareSystem, schedule, Begin
<supplier,[obligation, doProject, softwareSystem, schedule],&f8D>

At application time, ruleR1 produces an eventsignatoriedglient, supplief, 0> stat-
ing that client and supplier are considered signatories sdter both of them signed

81

the contract. The events signedContract are consumed; twol other events are pro-
duced: the first defines that the supplier has to start theegrj time units after the
signature of the contract, while the second constraintstipplier to finish it within
180 time units, delivering a softwareSystem as a workprobduwiable history is the
following:

so =< {},0> initial state

s1 =< {<signedContract,supplier;6 from the environment
<signedContract,client;6}, 6 >

s2 =< {<signatorieg¢lient,supplie}, 6>, from the application of R1

<supplier,[obligation, doProject, softwareSystem, schedule, Begib-
<supplier,[obligation, doProject, softwareSystem, schedule],et86>},6 >

At time 0, the initial statesg is empty. At time 6, both client and supplier sign the con-
tract; therefore, two events deriving from environmentiaserted in the state . In s;
the state descriptor of R1 is satisfied, and the rule triggerducing a new state with
three new events: the first records the information abousiteatories and the others
state the schedule of the activity “doProject”.

Most papers proposing formal approaches to contract mamagteare focused on the
violations of obligations in contracts [12, 5,17, 21, 22éed, it is often useful to mon-
itor clause violation as well as clause fulfillment [15].

As discussed in [23] the description of contractual excesj penalties and rewards
is an important part of a contract. On the basis of given maité.e. quality, advance
delivering) a reward might be assigned.

The RSF specification that a contractual obligation has beeectly fulfilled requires
the satisfaction of two conditions (fig. 2.a)):

1. A deadline (event-patterRole, [obligation, A, Wp, schedule, ehdl'>) exists in the
state of the system;

2. the correspondingrecution event happens before the scheduled deadline and the
delivered workproduct is compliant with the expected cbemastics.

execution N corpliance de adling
a 1 l
executiory /— cormpliance eXeCion,, M— commpliance execution, M compliance deadline

S B | }

Fig. 2. Two possible scenarios of fulfilled obligations.

The state descriptor of rulg2 formally expresses these two conditions; when the rule
can be appliedR2 consumes the event and produces an event that records filie ful

82
ment of the obligation.

R2) Ex-post checking for fulfilled obligation
from <Role,[obligation, A, Wp., execution, end T, >
<Role, [obligation, A;, Wp1, schedule, erldT, >
with T; < To, compliant(Wp, Wp2)
cons<Role,[obligation, A, Wp:, schedule, efdT, >
produce <Role, [obligation, A, Wpy, fulfilment, _], 0>

Note that the check for fulfilled obligation is done at timgwith a delay of T.-T; with
respect to the delivery time of the workproduct WA change of strategy, aiming at an
immediate check of compliance between V¢pWp, requires a change in the semantics
of RSF. This enhanced version of RSF is presented in section 4

An obligation cannot be considered fulfilled if the obligatiexecution has not been
accomplished before a defined deadline (fig. 3). Recooperates with rulé2 to
check violations.

deadline
a_ l
deadline exec tion fil fill ment
. N 72 A
execution M compliance deadlire

: l l

Fig. 3. Scenarios of violated obligation.

R3) Checking for violated obligation

from <Role,[obligation, A, Wp:, schedule, endT; >
not-occur <Role [obligation,A,Wpy, fulfillment,], T>

produce <alert,[Role;, Messagg 0>

In this case, the rule application produces an alert, sgndiiViessage to a receiver
Role,, that signals the violation of the obligation.

When an obligation is violated, some other obligations maytweluced. This kind
of obligation, known as Contrary-to-Duty, represents afoement that is activated
when normative violations occur and are meant to “repaiolations of primary obli-
gations [22]. The generic RSF rule for the Contrary-to-Daggumes this form:

83

R4) Contrary-to-Duty
from <Role,[obligation, A, Wp, schedule, efdr; >
not-occur <Role [obligation,A;,Wp, fulfillment], T>
produce <Role]obligation, enforcementAction, Wp, schedule, bégin >
<Role]obligation, enforcementAction, Wp, schedule, g >

As an example of contrary-to-duty application, the ruleolehandles the case when
the client does not respect the scheduled payment dategfepftwareSystem released,
and must pay an addictional interest within 10 days:

from <suppliet [obligation, delivery, softwareSystem, fulfillmen},T: >
<client, [obligation, payment, softwareSystem, schedule],@ad>
not-occur <client, [obligation, payment, softwareSystem, fulfillmerjtT>
consclient
produce <clientobligation, payWithInterest, softwareSystem, schedulel, &t

4 Proactive Monitoring

The approach specified by rufe2 for the ex-post checking of a fulfillment (done at the
occurrence of a deadline) works fine for contracts that peitbresee reward criteria
for early delivery nor pursue the optimization of procesmgsing from contract agree-
ments. On the other side, when contracts are automaticalhytored, the likelihood of
violation decreases, as signatories can be alerted in ee\adra real violation, and the
failing partner can be forced to commit its obligations aheftime ([15]).

In order to provide proactive monitoring capabilities, wéemd the RSF transition rule
in which the state descriptor assumes the form:

stateDes,, = planned eventDes; occur eventDess not-occur event Dess

A state descriptor of a rul®& is now satisfied by a statewhen: 1) a subset of events
scheduled for the future, with respect to the state prope tif s, satisfyingevent Des,

is present ins; 2) past events satysfingent Des, are also present igy 3) there is no
subset of events satisfyirgent Dess.

R5) Early obligation fulfillment
from planned <Role, [obligation, A, Wp:, schedule, endT; >
occur <Role, [obligation, A, Wp., execution, end T >
with T, < Ty, compliant(Wp, Wp.)
cons<Role [obligation, A, Wp;, schedule, efdT; >
produce <Role, [obligation, A, Wpy, fulfilment,], 0>
<notice,[Role;, Messagg 0>

Rule R6 considers an obligation execution that happens beforeaslthe but still ex-
ists a gap between the provided and the expected workpr¢fductb e 3.c)

84

R6) Early monitoring of nhon-compliance
from planned <Role, [obligation, A, Wp1, schedule, erjdl; >
occur <Role, [obligation, A, Wpz, execution, endT» >
with T2 < T4, not(compliant(Wp, Wpz))
cons<Role, [obligation, A, Wp,, execution, engT, >
produce <alert,[Role,, Messagg 0>

Sometimes the execution of proactive actions before imntideadlines can be very
useful to prevent the occurence of violations. Rule R7 chebk absence of a fulfill-
ment before the deadline expires. In such a case, the firsiakent when the system
clock (represented by the keyword At) reaches the valueTT(a time interval before
the deadline) to solicit the obligation execution. The itdeates itself until the time list
is empty or the obligation has been accomplished. For exanifph state scontains
the eventplannedAlert[Role, obliged, A, Wpy, [30, 7, 1], T>, the rule may send one or
more alert messages with increasing priority.

R7) Imminent contract violation
from planned <Role, [obligation, A, Wp1, schedule, erjdl; >
occur <plannedAlert]Role, obliged, A, Wpy, [T|Tlist]], T2 > with At=T1—T
not-occur <Role, [obligation, A, Wpo, fulfillment, _], Ts >,
consplannedAlert
produce <alert,[Role, Message, Priority0>
<plannedAlert[Role, obligation, A, Wp, Tlist], 0> with Priority=1/T

5 Conclusions

Contract specification languages are receiving increasiegtion in the last years due
to their capability to obtain several benefits such as: anityigvoidance, reduced dis-
putes and increased performance of processes arising fsatract agreements. The
paper proposes a characterization of the standard deaméepts of obligations, per-
missions and prohibitions oriented to the real time andgie@amonitoring of contract
clauses together with a set of RSF rules usable as pattartieefmonitoring of clause
fulfillments and violations. Among the papers recently msgd in the literature our
work has certain similarities with the approaches desdribeFCL [22], in [17] and
in [15]. However, FCL does not explicitely provide a langaagpnstruct handling the
concept of non-occurrence of events that is a standardréeaflRSF rules. ECA rules
allow a limited treatment of planned events. This featureely useful to define con-
tract management systems capable of proactive behavibeipposed representation
of deontic concepts in terms of RSF events allow the treatwfehe notion of commit-
ments discussed in [15]; furthermore, the monitoring R3&sruan handle fulfillments,
violations and the proactive behaviour of a contract mamesye system.

85

References

[ee]

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

. Grosof, B.N., Labrou, Y., Chan, H.Y.: A declarative appto&zbusiness rules in contracts:

courteous logic programs in xml. In: EC '99: Proceedings of the 1d#lA®nference on
Electronic commerce, New York, NY, USA, ACM Press (1999) 68—77

. Raskin, J., Tan, Y., van der Torre, L.: How to model normatieeavior in petri nets (1996)
. Lee, R.M.: Automated generation of electronic procedures: groeeconstraint grammars.

Decis. Support Sys83(2002) 291-308

. Marjanovic, O., Milosevic, Z.: Towards formal modeling of e-cacts. In: EDOC '01: Pro-

ceedings of the 5th IEEE International Conference on Enterprise RigtdiObject Com-
puting, Washington, DC, USA, IEEE Computer Society (2001) 59

. Dignum, F., Broersen, J., Dignum, V., Meyer, J.J.C.: Meetirgdbadline: Why, when and

how. In Hinchey, M.G., Rash, J.L., Truszkowski, W., Rouff, €&ls.: FAABS. Volume 3228
of Lecture Notes in Computer Science., Springer (2004) 30-40

. Broersen, J., Dignum, F., Dignum, V., Meyer, J.J.C.: Deswgrirdeontic logic of dead-

lines. In Lomuscio, A., Nute, D., eds.: DEON. Volume 3065 of LectNmges in Computer
Science., Springer (2004) 43-56

. Prakken, H., Sergot, M.: Contrary-to-duty obligations. Studia La§i#(1996) 91-115
. Carmo, J., Jones, A.. Deontic logic and contrary-to-duties (2001)
. Governatori, G., Rotolo, A.: Logic of violations: A gentzen system riegsoning with

contrary-to-duty obligations. The Australasian Journal of L@gi2006) 193-215

Wyner, A.Z.: Sequences, obligations, and the contrary-to-cirgdox. In Goble, L., Meyer,
J.J.C., eds.: DEON. Volume 4048 of Lecture Notes in Computer SeieBpringer (2006)
255-271

Governatori, G.: Representing business contragtdéml. Int. J. Cooperative Inf. Syst4
(2005) 181-216

Governatori, G., Milosevic, Z.: Dealing with contract violations: fatism and domain spe-
cific language. In: EDOC '05: Proceedings of the Ninth IEEE Internali&DOC Enterprise
Computing Conference (EDOC’05), Washington, DC, USA, IEEE Cat@pSociety (2005)
46-57

Neal, S., Cole, J., Linington, P.F., Milosevic, Z., Gibson, S., Eulk S.: Identifying re-
quirements for business contract language: a monitoring perspeetive00 (2003) 50
Milosevic, Z., Gibson, S., Linington, P.F., Cole, J., Kulkarni, Sn design and implemen-
tation of a contract monitoring facility. In Benatallah, B., Godart, C., SWrC., eds.:
Proceedings of WEC, First IEEE International Workshop on ElectrdBEE Computer
Society (2004) 62—-70

Xu, L., Jeusfeld, M.A.: Pro-active monitoring of electronic cants. In Eder, J., Missikoff,
M., eds.: CAISE. Volume 2681 of Lecture Notes in Computer Scienqain§er (2003)
584-600

Xu, L., Jeusfeld, M.A., Grefen, P.W.P.J.: Detection tests fentiflying violators of multi-
party contracts. SIGecom Exch(2005) 19-28

Chiu, D.K.W.,, Cheung, S.C., Till, S.: A three-layer architectureef-contract enforcement
in an e-service environment. In: HICSS '03: Proceedings of the 36tiuAl Hawaii Interna-
tional Conference on System Sciences (HICSS'03) - Track 3, WaslninDC, USA, IEEE
Computer Society (2003) 74.1

Degl'Innocenti, M., Ferrari, G.L., Pacini, G., Turini, F.: Rsf:férmalism for executable
requirement specifications. IEEE Trans. Softw. Et§)(1990) 1235-1246

Abate, A.F., D’'apolito, C., Nota, G., Pacini, G.: Writing and analgagstem specifications
by integrated linguistic tools. International Journal of Software Engingeind Knowledge
Engineering7 (1997) 69—99

86

20.

21.

22.

23.

Linington, P., Milosevic, Z., Raymond, K.: Policies in communitiestexling the odp
enterprise viewpoint (1998)

Steen, M., Derrick, J.: Formalising ODP Enterprise Policies. thir®ernational Enterprise
Distributed Object Computing Conference (EDOC '99), University ofidiaeim, Germany,
IEEE Publishing (1999)

Governatori, G., Milosevic, Z.: A formal analysis of a businestreet language. Interna-
tional Journal of Cooperative Information Systet®g2006) 659-685

Maurer, W., Mathaus, R., Frey, N.: A guide to successful slaldpment and management.
http://www.fldcu.org/irmcoord/STOTRANS-SLA%20References. 2900)

