
Proactive Contract Management through RSF
Specifications

Rossella Aiello and Giancarlo Nota

Department of Mathematics and Computer Science
University of Salerno

84084 - Fisciano (SA) Italy

Abstract. The modelling and automation of e-contracts is an active research area
that aims at providing a valid support to organizations for the definition and man-
agement of contractual relations. The approach adopted in this paper allows the
modelling and monitoring of contracts specified in terms of RSF (Requirement
Specification Formalism) rules. Starting from the planning of events relied to
contract clauses established during the negotiation phase, we define a set of RSF
rules that can be used as patterns for the monitoring of both: contract fulfillments
and contract violations with respect to obligations, permissions and prohibitions.
We also extend the semantics of the RSF language in order to allow the treatment
of planned events, together with occurred and not occurred events, in a single
transition rule. This enriched semantics supports the proactive behaviour of a
contract management system enabling the immediate notification of fulfillments
and non-compliances as well as the detection of imminent contract violations.

1 Introduction

The need to manage end-to-end processes in a efficient and effective way urges pri-
vate and public companies to adopt ICT solutions based on e-services and SOA ar-
chitectures. This trend can be in particular observed in the field of automated contract
management where the collaboration is usually regulated by negotiated agreements sub-
scribed between the involved parties.
An important aspect of contract management systems concerns the capability to mon-
itor contract clauses, especially when end-to-end processes are managed using system
intensive workflows that handle millions of transactions per day without human inter-
vention.
In the last years, the research activity has been directed towards the definition of contract
languages whose capabilities can provide support to obtain benefits such as: ambiguity
avoidance, reduced disputes and increased performance of processes arising from con-
tract agreements.
Some formal approaches use courteous logic [1] or Petri nets [2, 3]. In [4] a specification
for deontic constraints focusing the attention on temporal constraints is defined together
with a methodology for the verification of consistency. A formalization of deadline con-
cept based on an extension of CTL can be found in [5, 6].

Aiello R. and Nota G. (2007).
Proactive Contract Management through RSF Specifications.
In Proceedings of the 4th International Workshop on Computer Supported Activity Coordination, pages 76-86
DOI: 10.5220/0002418600760086
Copyright c© SciTePress



Many works based on Deontic Logic [7–10] handle the problem of Contrary-to-duty
obligations and paradoxes. In [11, 12], the contract from natural language is first anal-
ysed and represented in a logical form using Deontic and Defeasible Logic. Then, the
logical form is translated into a machine readable rule notation, based on RuleML, and
implemented as executable semantics. This formalisation is used as a source of the
mapping to the key policy concepts of a contract specification language called Business
Contract Language (BCL) [13, 14].
The notion of commitment is the main concept used in [15, 16] to specify multi-party
contracts. Commitment violations and a proactive detection of imminent contract viola-
tions are handled by means of an algorithm working on a data structure called commit-
ment graph. In [17] a three layers architecture for e-contract enforcement is discussed. A
metamodel for contract comprises several types of clauses as well as contract templates.
In the second level, event-condition-action (ECA) rules are used to define business rules
for the enforcement activities while the third level provides a web services implemen-
tation for the e-contract enforcement.
This work addresses the formal specification and the monitoring of contract clauses
by means of RSF transition rules. We first propose a characterization of the standard
deontic concepts of obligations, permissions and prohibitions oriented to the real time
monitoring of contracts. Next, we introduce a set of RSF rules usable as patterns for the
monitoring of clause fulfillments and violations. Finally,we extend the semantics of
the RSF language in order to support the proactive behaviourof a contract management
system; such extension enables the management of immediatenotifications of fulfill-
ments and non-compliances as well as the detection of imminent contract violations.
The contribution of the paper is twofold: from one side we propose a set of rules that
can be used as specification patterns for the monitoring of contracts. On the other side,
we address the problem of the unified treatment of fulfillments, violations and proactive
management that has received little coverage in the literature. This unifying approach
becomes possible on the basis of the enriched version of RSF introduced in the paper.

2 The Requirement Specification Formalism

RSF is a specification language created with the aim of describing reactive discrete-
event systems [18, 19]. In RSF, a system can be described writing a set oftransition
rules that allow the system to evolve through a sequence of states.The state of the
system is composed of a set of events in a particular time instant.
An eventcan be represented by a triple< p, v, t > in which p is a position,v a datum
andt a timestamp meaning that the datumv is produced at the timet in the position
q. A position is a place where data can be found in the system while atimestampis a
numeric value for time interval measured starting from a given origin in a given time
unit. An RSF state assumes the following form:

s =< {< p1, v1, t1 >, ..., < pm, vm, tm >}, st >

where{< p1, v1, t1 >, ..., < pm, vm, tm >} is the set of events in the state andst rep-
resents thestate proper time, that is the instant of time at which the state refers. Note
that timestamps of events can be less or greater than the state proper time. The intuitive

77



meaning of timestamps less than or equal to the state proper time, is that the events have
already occurred in the past; while events with timestamps greater than the state proper
time are events scheduled to occur in the future.
An event set descriptor(eventDes) can be defined as a set of events that satisfy the
specified conditionsc1, ..., ck.

eventDes =< p
′

1, v
′

1, t
′

1 >, ..., < p
′

n, v
′

n, t
′

n > with c1, ..., ck.

These conditions can state both properties of the datav
′

l , ..., v
′

n and time constraints
aboutt

′

l , ..., t
′

n. We say that aneventDes is satisfied by a states whens containsn
events such that:

– then events match< p
′

1, v
′

1, t
′

1 > ... < p
′

n, v
′

n, t
′

n >;
– the match yields an istantiation of variables which allow the logical conditions

c1, ..ck to hold.

We also define a state descriptor in the following way:

stateDes = eventDes1 not-occur eventDes2.

A state descriptor is satisfied by a states, when a subset of events satisfyingeventDes1

is present ins, while there is no subset of events satisfyingeventDes2.
The presence of specific data with suitable properties in a position at a given time in-
stant may trigger an RSF transition rule that allows a systemstate transition. An RSF
transition rule has the following form:

from stateDes

conseventDes3

produceeventDes4

When astateDes of a ruleR is satisfied ins, then the time instant of rule application
is called application time.
The from part qualifies a state description and describes the properties that a state
s must have in order to apply the transition rule. Thecons part specifies the events
which are consumed by the rule application; therefore, whenan event is consumed, it
is dropped from the state. Theproduce part lists the events created in the state as an
effect of the rule application. Suppose thateventDes4 has the form:

eventDes4 =< p1, v1, d1 >, ..., < pk, vk, dk > with c1, ..., cl

where datav1, ..., vk are produced respectively in the positionsp1, ..., pk with a produc-
tion delay ofd1, ..., dk with respect to the rule application time. The event set states that
the conditionc1, ...cl are used to assign values to the variables present in< p1, v1, d1 >

, ..., < pk, vk, dk >. A null delay means that the datum is produced with a negligible
delay.
A particular behavior of the system as it evolves over time isdescribed by a sequence
of statess0, s1, ...sn calledhistory. The transition rules determine which histories are
effectively possible for the system (viable histories). Examples of transition rules are
shown in sections 3 and 4.

78



In the following, we will use the Prolog notation for variables and constants: any word
starting with an uppercase letter is assumed to be a variablewhile all constants start
with a lowercase letter.

3 Deontic and Monitoring Constructs in RSF

3.1 Coding Deontic Constructs as RSF Events

Starting from the definitions above, it is possible to define the deontic concepts of obli-
gation, permission and proibition, usually employed in thecontract management liter-
ature [20, 21], in terms of RSF events. However, as the focus of this work is on the
monitoring of contractual clauses, we consider several points of view, such as the plan-
ning of events regarding deontic concepts, the execution ofactivities and the monitoring
of fulfillments and violations. The generic monitoring construct assumes the form:

<Role,[DeonticConcept, Action, Workproduct, Perspective, TimeReference], T>

where Action represents an action that Role must (can or cannot) perform according to
the defined DeonticConcept, eventually producing a Workproduct. The variables Per-
spective and TimeReference are instantiated in agreement with the value of Deontic-
Concept, as shown in table 1.
We distinguish betweenscheduledobligation that are stated during the contract nego-

Table 1. Instantiation of variables in the monitoring construct.

DeonticConceptPerspectiveTimeReference

schedule begin/end

Obligation execution begin/end

fulfillment

violation

grant begin/end

Permission assertion begin/end

violation

Prohibition stated begin/end

violation

tiation, executedobligation observed during the contract enactment phase and fulfilled
obligation when an executed obligation meets the expectations of all involved roles.
When a permission is granted, the power to make something in a specific time interval
is assigned to a specific role while, a prohibition statementestablishes that a role is
forbidden to perform a particular action. As an example of prohibition, suppose that,
after the contract agreement, the supplier is forbidden to divulge every confidential in-
formation necessary for the contract accomplishment. According to the generic deontic
construct presented above, the corresponding RSF event assumes the form:

79



<supplier,[prohibition, divulgeConfidentialInformation,, stated, begin], 5>

Another example concerns the permission given to the supplier of requiring information
about a given softwareProject within the time interval [10,30].

<supplier,[permission, requireInformation, softwareProject, grant, begin], 10>
<supplier,[permission, requireInformation, softwareProject, grant, end], 30>

3.2 Monitoring of Contractual Clauses

The contract specification expressed as a set of RSF rules states how the Contract Man-
agement System reacts to external stimuli provided by the environment in which the
system operates. The set of stimuli from the environment, represented by means of RSF
events{e1, ...en}, are for the Contract Management System as the input data fora con-
ventional program. When a transition rule is triggered the system evolves, and one or
more events chosen from a set{e

′

1
, ...e

′

m
} suitably defined may be produced toward the

environment. The high level interaction between the Contract Management System and
its environment is shown in fig. 1. The first rule to take into account is charged to receive

Fig. 1. Interaction between the Environment and the System.

from the environment the events required to start the contract execution. The result of
the rule application is a new state where permissions, obligations and prohibitions to-
gether with other scheduled events are planned as future events. For example,R1 is a
simple rule that, starting from the signature of the contract, schedules an obligation that
constraints the supplier to make the project in a specified period:

R1) Plans contract activities
from <signedContract,client,T1 ><signedContract,supplier,T2 >

conssignedContract
produce<signatories, [client,supplier],0>

<supplier,[obligation, doProject, softwareSystem, schedule, begin], 5>
<supplier,[obligation, doProject, softwareSystem, schedule, end], 180>

At application time, ruleR1 produces an event<signatories,[client, supplier], 0> stat-
ing that client and supplier are considered signatories soon after both of them signed

80



the contract. The events signedContract are consumed, while two other events are pro-
duced: the first defines that the supplier has to start the project 5 time units after the
signature of the contract, while the second constraints thesupplier to finish it within
180 time units, delivering a softwareSystem as a workproduct. A viable history is the
following:

s0 =< {}, 0 > initial state
s1 =< {<signedContract,supplier,6> from the environment

<signedContract,client,6>}, 6 >

s2 =< {<signatories,[client,supplier], 6>, from the application of R1
<supplier,[obligation, doProject, softwareSystem, schedule, begin], 11>
<supplier,[obligation, doProject, softwareSystem, schedule, end], 186>}, 6 >

At time 0, the initial states0 is empty. At time 6, both client and supplier sign the con-
tract; therefore, two events deriving from environment areinserted in the states1. In s1

the state descriptor of R1 is satisfied, and the rule triggersproducing a new states2 with
three new events: the first records the information about thesignatories and the others
state the schedule of the activity “doProject”.
Most papers proposing formal approaches to contract management are focused on the
violations of obligations in contracts [12, 5, 17, 21, 22]. Indeed, it is often useful to mon-
itor clause violation as well as clause fulfillment [15].
As discussed in [23] the description of contractual exceptions, penalties and rewards
is an important part of a contract. On the basis of given criteria (i.e. quality, advance
delivering) a reward might be assigned.
The RSF specification that a contractual obligation has beencorrectly fulfilled requires
the satisfaction of two conditions (fig. 2.a)):

1. A deadline (event-pattern:<Role,[obligation, A, Wp, schedule, end], T>) exists in the
state of the system;

2. the correspondingexecution event happens before the scheduled deadline and the
delivered workproduct is compliant with the expected characteristics.

Fig. 2.Two possible scenarios of fulfilled obligations.

The state descriptor of ruleR2 formally expresses these two conditions; when the rule
can be applied,R2 consumes the event and produces an event that records the fulfill-

81



ment of the obligation.

R2) Ex-post checking for fulfilled obligation
from <Role,[obligation, Ai, Wp2, execution, end], T1 >

<Role,[obligation, Ai, Wp1, schedule, end], T2 >

with T1 ≤ T2, compliant(Wp1, Wp2)
cons<Role,[obligation, Ai, Wp1, schedule, end], T2 >

produce<Role, [obligation, Ai, Wp1, fulfillment, ], 0>

Note that the check for fulfilled obligation is done at time T2 with a delay of T2-T1 with
respect to the delivery time of the workproduct Wp1. A change of strategy, aiming at an
immediate check of compliance between Wp1 e Wp2 requires a change in the semantics
of RSF. This enhanced version of RSF is presented in section 4.
An obligation cannot be considered fulfilled if the obligation execution has not been
accomplished before a defined deadline (fig. 3). RuleR3 cooperates with ruleR2 to
check violations.

Fig. 3.Scenarios of violated obligation.

R3) Checking for violated obligation
from <Role,[obligation, Ai, Wp1, schedule, end], T1 >

not-occur <Role, [obligation,Ai,Wp1, fulfillment, ],T>

produce<alert,[Role2, Message], 0>

In this case, the rule application produces an alert, sending a Message to a receiver
Role2, that signals the violation of the obligation.
When an obligation is violated, some other obligations may beproduced. This kind
of obligation, known as Contrary-to-Duty, represents an enforcement that is activated
when normative violations occur and are meant to “repair” violations of primary obli-
gations [22]. The generic RSF rule for the Contrary-to-Dutyassumes this form:

82



R4) Contrary-to-Duty
from <Role,[obligation, Ai, Wp, schedule, end],T1 >

not-occur <Role, [obligation,Ai,Wp, fulfillment],T>

produce<Role,[obligation, enforcementAction, Wp, schedule, begin], T2 >

<Role,[obligation, enforcementAction, Wp, schedule, end], T3 >

As an example of contrary-to-duty application, the rule below handles the case when
the client does not respect the scheduled payment date for the softwareSystem released,
and must pay an addictional interest within 10 days:

from <supplier, [obligation, delivery, softwareSystem, fulfillment,],T1 >

<client, [obligation, payment, softwareSystem, schedule, end],T2 >

not-occur <client, [obligation, payment, softwareSystem, fulfillment,],T>

consclient
produce<client,[obligation, payWithInterest, softwareSystem, schedule, end], 10>

4 Proactive Monitoring

The approach specified by ruleR2 for the ex-post checking of a fulfillment (done at the
occurrence of a deadline) works fine for contracts that neither foresee reward criteria
for early delivery nor pursue the optimization of processesarising from contract agree-
ments. On the other side, when contracts are automatically monitored, the likelihood of
violation decreases, as signatories can be alerted in advance of a real violation, and the
failing partner can be forced to commit its obligations ahead of time ([15]).
In order to provide proactive monitoring capabilities, we extend the RSF transition rule
in which the state descriptor assumes the form:

stateDesp = plannedeventDes1 occur eventDes2 not-occur eventDes3

A state descriptor of a ruleR is now satisfied by a states when: 1) a subset of events
scheduled for the future, with respect to the state proper time ofs, satisfyingeventDes1

is present ins; 2) past events satysfingeventDes2 are also present ins; 3) there is no
subset of events satisfyingeventDes3.

R5) Early obligation fulfillment
from planned <Role,[obligation, Ai, Wp1, schedule, end], T1 >

occur <Role,[obligation, Ai, Wp2, execution, end], T2 >

with T2 ≤ T1, compliant(Wp1, Wp2)
cons<Role, [obligation, Ai, Wp1, schedule, end], T1 >

produce<Role, [obligation, Ai, Wp1, fulfillment, ], 0>
<notice,[Role2, Message], 0>

RuleR6 considers an obligation execution that happens before its deadline but still ex-
ists a gap between the provided and the expected workproduct(fig. 2.b e 3.c).

83



R6) Early monitoring of non-compliance
from planned <Role,[obligation, Ai, Wp1, schedule, end],T1 >

occur <Role,[obligation, Ai, Wp2, execution, end],T2 >

with T2 ≤ T1, not(compliant(Wp1, Wp2))
cons<Role,[obligation, Ai, Wp2, execution, end],T2 >

produce<alert,[Role2, Message], 0>

Sometimes the execution of proactive actions before imminent deadlines can be very
useful to prevent the occurence of violations. Rule R7 checks the absence of a fulfill-
ment before the deadline expires. In such a case, the first alert is sent when the system
clock (represented by the keyword At) reaches the value T1−T (a time interval before
the deadline) to solicit the obligation execution. The ruleiterates itself until the time list
is empty or the obligation has been accomplished. For example, if a state si contains
the event<plannedAlert,[Role, obliged, Ai, Wp1, [30, 7, 1]], T>, the rule may send one or
more alert messages with increasing priority.

R7) Imminent contract violation
from planned <Role,[obligation, Ai, Wp1, schedule, end],T1 >

occur <plannedAlert,[Role, obliged, Ai, Wp1, [T|Tlist]], T2 > with At=T1−T
not-occur <Role,[obligation, Ai, Wp2, fulfillment, ], T3 >,

consplannedAlert
produce<alert,[Role, Message, Priority], 0>

<plannedAlert,[Role, obligation, Ai, Wp1, Tlist], 0> with Priority=1/T

5 Conclusions

Contract specification languages are receiving increasingattention in the last years due
to their capability to obtain several benefits such as: ambiguity avoidance, reduced dis-
putes and increased performance of processes arising from contract agreements. The
paper proposes a characterization of the standard deontic concepts of obligations, per-
missions and prohibitions oriented to the real time and proactive monitoring of contract
clauses together with a set of RSF rules usable as patterns for the monitoring of clause
fulfillments and violations. Among the papers recently proposed in the literature our
work has certain similarities with the approaches described in FCL [22], in [17] and
in [15]. However, FCL does not explicitely provide a language construct handling the
concept of non-occurrence of events that is a standard feature of RSF rules. ECA rules
allow a limited treatment of planned events. This feature isvery useful to define con-
tract management systems capable of proactive behaviour. The proposed representation
of deontic concepts in terms of RSF events allow the treatment of the notion of commit-
ments discussed in [15]; furthermore, the monitoring RSF rules can handle fulfillments,
violations and the proactive behaviour of a contract management system.

84



References

1. Grosof, B.N., Labrou, Y., Chan, H.Y.: A declarative approach to business rules in contracts:
courteous logic programs in xml. In: EC ’99: Proceedings of the 1st ACM conference on
Electronic commerce, New York, NY, USA, ACM Press (1999) 68–77

2. Raskin, J., Tan, Y., van der Torre, L.: How to model normative behavior in petri nets (1996)
3. Lee, R.M.: Automated generation of electronic procedures: procedure constraint grammars.

Decis. Support Syst.33 (2002) 291–308
4. Marjanovic, O., Milosevic, Z.: Towards formal modeling of e-contracts. In: EDOC ’01: Pro-

ceedings of the 5th IEEE International Conference on Enterprise Distributed Object Com-
puting, Washington, DC, USA, IEEE Computer Society (2001) 59

5. Dignum, F., Broersen, J., Dignum, V., Meyer, J.J.C.: Meeting the deadline: Why, when and
how. In Hinchey, M.G., Rash, J.L., Truszkowski, W., Rouff, C.,eds.: FAABS. Volume 3228
of Lecture Notes in Computer Science., Springer (2004) 30–40

6. Broersen, J., Dignum, F., Dignum, V., Meyer, J.J.C.: Designing a deontic logic of dead-
lines. In Lomuscio, A., Nute, D., eds.: DEON. Volume 3065 of LectureNotes in Computer
Science., Springer (2004) 43–56

7. Prakken, H., Sergot, M.: Contrary-to-duty obligations. Studia Logica57 (1996) 91–115
8. Carmo, J., Jones, A.: Deontic logic and contrary-to-duties (2001)
9. Governatori, G., Rotolo, A.: Logic of violations: A gentzen system forreasoning with

contrary-to-duty obligations. The Australasian Journal of Logic4 (2006) 193–215
10. Wyner, A.Z.: Sequences, obligations, and the contrary-to-duty paradox. In Goble, L., Meyer,

J.J.C., eds.: DEON. Volume 4048 of Lecture Notes in Computer Science., Springer (2006)
255–271

11. Governatori, G.: Representing business contracts inruleml. Int. J. Cooperative Inf. Syst.14
(2005) 181–216

12. Governatori, G., Milosevic, Z.: Dealing with contract violations: formalism and domain spe-
cific language. In: EDOC ’05: Proceedings of the Ninth IEEE International EDOC Enterprise
Computing Conference (EDOC’05), Washington, DC, USA, IEEE Computer Society (2005)
46–57

13. Neal, S., Cole, J., Linington, P.F., Milosevic, Z., Gibson, S., Kulkarni, S.: Identifying re-
quirements for business contract language: a monitoring perspective. edoc00 (2003) 50

14. Milosevic, Z., Gibson, S., Linington, P.F., Cole, J., Kulkarni, S.:On design and implemen-
tation of a contract monitoring facility. In Benatallah, B., Godart, C., Shan, M.C., eds.:
Proceedings of WEC, First IEEE International Workshop on Electronic, IEEE Computer
Society (2004) 62–70

15. Xu, L., Jeusfeld, M.A.: Pro-active monitoring of electronic contracts. In Eder, J., Missikoff,
M., eds.: CAiSE. Volume 2681 of Lecture Notes in Computer Science., Springer (2003)
584–600

16. Xu, L., Jeusfeld, M.A., Grefen, P.W.P.J.: Detection tests for identifying violators of multi-
party contracts. SIGecom Exch.5 (2005) 19–28

17. Chiu, D.K.W., Cheung, S.C., Till, S.: A three-layer architecture for e-contract enforcement
in an e-service environment. In: HICSS ’03: Proceedings of the 36th Annual Hawaii Interna-
tional Conference on System Sciences (HICSS’03) - Track 3, Washington, DC, USA, IEEE
Computer Society (2003) 74.1

18. Degl’Innocenti, M., Ferrari, G.L., Pacini, G., Turini, F.: Rsf: Aformalism for executable
requirement specifications. IEEE Trans. Softw. Eng.16 (1990) 1235–1246

19. Abate, A.F., D’apolito, C., Nota, G., Pacini, G.: Writing and analyzing system specifications
by integrated linguistic tools. International Journal of Software Engineering and Knowledge
Engineering7 (1997) 69–99

85



20. Linington, P., Milosevic, Z., Raymond, K.: Policies in communities: Extending the odp
enterprise viewpoint (1998)

21. Steen, M., Derrick, J.: Formalising ODP Enterprise Policies. In: 3rd International Enterprise
Distributed Object Computing Conference (EDOC ’99), University of Mannheim, Germany,
IEEE Publishing (1999)

22. Governatori, G., Milosevic, Z.: A formal analysis of a business contract language. Interna-
tional Journal of Cooperative Information Systems15 (2006) 659–685

23. Maurer, W., Mathaus, R., Frey, N.: A guide to successful sla development and management.
http://www.fldcu.org/irmcoord/STOTRANS-SLA%20References.pdf (2000)

86


