
Experiences with the LVQ Algorithm in Multilabel Text
Categorization

A. Montejo-Ŕaez, M. T. Mart́ın-Valdivia and L. A. Urẽna-López

Jáen University, Jáen E-23071 Spain - Departamento de Informática

Abstract. Text Categorization is an important information processing task. This
paper presents a neural approach to a text classifier based on the Learning Vector
Quantization (LVQ) algorithm. We focus on multilabel multiclass text catego-
rization. Experiments were carried out using the High Energy Physics (HEP) text
collection. The HEP collection is an highly unbalanced collection. The results ob-
tained are very promising and show that our neural approach based on the LVQ
algorithm behaves robustly over different parameters.

1 Introduction

Text Categorization (TC) is an important task for many Natural Language Processing
(NLP) applications. Given a set of documents and a set of categories, the goal of a cat-
egorization system is to assign to each document a set (possibly empty) of categories
that the document belongs to. The simplest case includes only one class and the cat-
egorization problem is a decision problem or binary categorization problem (given a
document, the goal is to determinate if the document is ‘relevant’ or ‘not relevant’).

On the other hand, the single-label categorization problem consists on assigning
exactly one category to each document while the multi-label categorization problem
assigns from 0 to m categories to the same document. For a deeper and exhaustive
discussion on different text categorization problem see [1].

This work studies the multi-label categorization problem using the Learning Vec-
tor Quantization (LVQ) algorithm. The LVQ algorithm is a competitive neural learn-
ing algorithm that allows assign a category (from a set of categories) to a document
(single-label problem). In order to accomplish the multi-label categorization problem
we have used the LVQ algorithm as a binary classifier integrated in the TECAT Toolkit
[2]. TECAT stands for TExt CATegorization. It is a tool for creating multi-label auto-
matic text classifiers. With TECAT you can experiment with different collections and
classifiers in order to build a multi-labeled automatic text classifier and implements the
Adaptive Selection of Base Classifiers (ASBC) as approach to the problem.

The paper is organized as follows. First, the HEP collection is introduced. Then,
we describe briefly the TECAT Toolkit as a tool to solve the multi-label automatic text
classification problem. Then, we describe the LVQ algorithm and the integration on
the TECAT in order to accomplish our experiments. After this, we show our evaluation
environment and results obtained. Finally, we discuss our conclusion and future work.

Montejo-Ráez A., T. Martín-Valdivia M. and A. Ureña-López L. (2007).
Experiences with the LVQ Algorithm in Multilabel Text Categorization.
In Proceedings of the 4th International Workshop on Natural Language Processing and Cognitive Science, pages 213-221
DOI: 10.5220/0002419302130221
Copyright c© SciTePress

2 The HEP Collection

The HEP corpus1 is a collection of papers related toHigh Energy Physics, and manually
indexed with DESY labels. These documents have been compiled by Montejo-Ŕaez and
Jens Vigen from the CERN2 Document Server3 and have motivated intensive study of
text categorization systems in recent years [3], [4], [5].

Table 1.The ten most frequent main key words in thehep-expartition.

No. docs.Keyword
1898 (67%)electron positron
1739 (62%)experimental results
1478 (52%)magnetic detector
1190 (42%)quark
1113 (39%)talk
715 (25%)Z0
676 (24%)anti-p p
551 (19%)neutrino
463 (16%)W
458 (16%)jet

In our experiments we have used the meta-data from thehep-expartition of the HEP
collection, composed by 2,839 abstracts related to experimental High-Energy Physics
that are indexed with 1,093 main keywords, with an average number of classes per
document slightly above 11. This partition is highly unbalanced: only 84 classes are
represented by more than 100 samples and only five classes by more than 1,000. The
uneven use is particularly noticeable for the ten most frequent key words: In Table 1
the left column shows the number of positive samples of a key word and the percentage
over the total of samples in the collection.

2.1 Evaluation Measures

The effectiveness of a classifier can be evaluated with several known measures [1]. The
classical “Precision” and “Recall” for Information Retrieval are adapted to the case
of Automatic Text Categorization. To that end, we must first determine the basis the
system will be evaluated in: categories or documents. Traditionally contingency table
for each category should be generated (Table 2), and then theprecision and recall for
each category are calculated following equations 1 and 2. But in a multi-label scenario
also an equivalent contingency table can be computed, wherei in this case represents
a document instead of a class. For this evaluation to be useful, the average number of
classes per document should be relevant. This is the case forthehep-expartition, where
an average number of 15 classes are assigned to a single document. Also, this last

1 The collection is freely available for academic purposes from:
http://sinai.ujaen.es/wiki/index.php/HepCorpus

2 CERN is the European Laboratory for Particle Physics, located in Geneva(Switzerland)
3 http://cds.cern.ch

214

base of evaluation serves better for the purpose of really test the effectiveness of a label
system in real environments, where an user expects a list of classes to a given item. This
difference is only for macro-averaged values, because micro-averaged measurements
remain the same for both evaluation strategies.

Table 2.Contingency Table fori Category.

YES is correct NO is correct

YES is assigned ai bi

NO is assigned ci di

Pi =
ai

ai +bi
(1)

Ri =
ai

ai +ci
(2)

On the other hand, the precision and recall can be combined using theF1 measure:

F1(R,P) =
2PR
P+R

(3)

As we have pointed out, in order to measure globally the average performance of
a classifier, three measures can be used: micro-averaged precisionPµ, macro-averaged
precision in a document basisPmacro−d and macro-averaged precision in a category
basisPmacro−c.

Pµ =
∑K

i=1ai

∑K
i=1(ai +ci)

(4)

Pmacro=
∑K

i=1Pi

K
(5)

whereK is the number of categories or the number of documents depending on the
basis used.

Recall and F1 measures are computed in a similar way. In our experiments we have
used these measures in order to prove the effectiveness of the studied system.

3 The Adaptive Selection of Base Classifiers in TECAT

We developed the TECAT tool for automatic text classification of HEP documents
stored at the CERN digital library [6]. It implements theAdaptive Selection of Base
Classifiers(ASBC) algorithm as classification strategy (shown in Figure 1), which
trains and selects binary classifiers for each class independently. In this algorithm any
type of binary classifier can be used, even a set of heterogeneous binary classifiers, like
SVM [7], Rocchio [8] and others at the same time, but(a) it allows adjusting the binary

215

Input:
a set of training documentsDt

a set of validation documentsDv

a thresholdα on the evaluation measure
a set of possible label (classes)L
a set of candidate binary classifiersC

Output :
a setC′ = {c1, ...,ck, ...,c|L|} of trained
binary classifiers

Pseudo code:
C′← /0
for-eachl i in L do

T← /0
for-eachc j in C do

train-classifier(c j , l i , Dt)
T← T ∪{c j}

end-for-each
cbest← best-classifier(T, Dv)
if evaluate-classifier(cbest) > α

C′←C′∪{cbest}
end-if

end-for-each

Fig. 1.The one-against-all learning algorithm with classifier filtering.

classifier for a given class by a balance factor, and(b) it gives the possibility of choosing
the best of a given set of binary classifiers.

The algorithm introduces theα parameter, resulting in the algorithm given in Fig-
ure 1. This value is a threshold for the minimum performance allowed to a binary clas-
sifier during the validation phase in the learning process. If the performance of a certain
classifier is below the valueα, meaning that the classifier performs badly, classifier and
the class are discarded. The effect is similar to that of theSCutFBR[9], i.e. we never
attempt to return a positive answer for rare classes. This algorithm has been found to
outperform well known approaches like Ada-Boost [10] when applied on HEP data [3].

4 LVQ Integration into TECAT

The Learning Vector Quantization (LVQ) algorithm [11] has been successfully used in
several applications such as pattern recognition, speech analysis, etc. This work pro-
poses the use of the LVQ algorithm to accomplish the multi-label text categorization
problem. However, the LVQ is used only as a binary classifier integrated in the TECAT
system.

216

4.1 The LVQ Algorithm

The LVQ algorithm is a classification method, which allows the definition of a group of
categories on the space of input data by reinforced learning, either positive (reward) or
negative (punishment). The LVQ uses supervised learning todefine class regions on the
input data space. Weight vectors associated to each output unit are known as codebook
vectors. Each class of input space is represented by its own set of codebook vectors.
Codebook vectors are defined according to the specific task.

The basic LVQ algorithm is quite simple. It starts with a set of input vectorsxi

and weight vectorswk which represent the classes to learn. In each iteration, an input
vectorxi is selected and the vectorswk are updated, so that they fitxi better. The LVQ
algorithm works as follows:

In each repetition, the algorithm selects an input vector,xi , and compares it with
every weight vector,wk, using the Euclidean distance‖xi−wk‖, so that the winner will
be the codebook vectorswc closest toxi in the input space for this distance function.
The determination ofc is achieved by following decision process:

‖xi−wc‖= min
k
‖xi−wk‖ (6)

i.e.,
c = argmin

k
‖xi−wk‖ (7)

The LVQ algorithm is a competitive network, and thus, for each training vector,
output units compete among themselves in order to find the winner according to some
metric. The LVQ algorithm uses the Euclidean distance to findthe winner unit. Only
the winner unit (i.e., the output unit with the smallest Euclidean distance with regard to
the input vector) will modify its weights using the LVQ learning rule. Letxi(t) be an
input vector at timet, andwk(t) represent the weight vector for the classk at timet. The
following equations define the basic learning process for the LVQ algorithm:

wc(t +1) = wc(t)+β(t)[xi(t)−wc(t)]

if xi andwc belong to the same class

wc(t +1) = wc(t)−β(t)[xi(t)−wc(t)] (8)

if xi andwc belong to different class

wk(t +1) = wk(t) if k 6= c

whereβ(t) is the learning rate, which decreases with the number of iterations of training
(0 < β(t) << 1). It is recommended thatβ(t) be rather small initially, say, smaller than
0.3, and that it decrease to a given threshold,ν, very close to 0 [11]. In our experiments,
we have initializedβ(t) to 0.1.

4.2 Using LVQ with TECAT

The LVQ algorithm has been integrated into TECAT as a binary classifier. For this, LVQ
has been used to work with only two possible classes: positive or negative. Thus, we

217

can pass as parameters to the algorithm the number of codebook vectors that we want
to associate to each of this two categories. TECAT tries to train a LVQ classifier for
each class, discarding both class and classifier if a minimalvalue of performance is not
reached on a validation subset (the measure used is F1 and thethresholdα on it is set
to 0.1). Therefore, instead of having a set of codebook vectors for each class, we will
have a binary LVQ version of the classifier for each class.

4.3 Adjusting the Codebook Number per Class

The HEP corpus is highly unbalanced, therefore, when learning on a binary space, the
number negative samples clearly would surpass that of the positive ones. Following
this reasoning, we could foresee a benefit on the classifier adaptability if the number of
codebook vectors associated to each of the two sides is set according to the imbalance
that the class reflects. For this reason, we have carried out different experiments to
adjust the number of codebook vectors to every single class.

In order to study the effects of the number of codebooks assigned to each class we
have accomplished several experiments with a varying number of codebook vectors per
class. On the one hand, we have used the same number of codebooks per class. In this
case we have accomplished three different experiments withncb0 = ncb1 = {1,2,5}
wherencb0 is the number of codebooks assigned to class 0 andncb1 is the number of
codebooks assigned to class 1. These two classes representsthe binary decision to take
when assigning each class to a document.

On the other hand, we have assigned different number of codebooks per class de-
pending on the number of negative and positive training samples. Thus, we have as-
signed 1, 2 and 5 codebooks to the class 1, i.e.,ncb1 = {1,2,5}. However, to calculate
the number of codebooks assigned to class 0, we have used the following formula:

ncb0 = ncb1+ log2(
nneg
npos

) (9)

wherenposandnnegare the number of training samples positives and negatives respec-
tively. This fraction would be the inverse if the number of positive samples is larger than
the number of negative ones (which occurs only for one class in the collection used).
For example, if the class had 35 positive samples, and 1671 negative ones, and the value
for ncb1were 2, then 6 codebook vectors would be trained to cover the negative side of
the decision space.

5 Results

Depending on the number of codebook vectors assigned to eachclass we have accom-
plished six different experiments: three experiments withthe same number of code-
books (ncbv1, ncbv2 and ncbv5) and three with different number of codebook (norm-
cbv1, normcbv2 and normcbv5). Results for the 10 most frequent classes are shown in
Table 3 and Figure 2. Tables 4, 5 and 6 show results of macro-averaging and micro-
averaging for the different experiments.

218

Table 3.Results summary for averaged measures on 10 most frequent classes.

Precision Recall F1 Experiment
0.744244 0.570907 0.624045 ncbv1
0.757046 0.613313 0.662224 ncbv2
0.7711960.617652 0.674908 ncbv5
0.768844 0.563419 0.631547 normcbv1
0.7801340.611680 0.669962 normcbv2
0.773607 0.614498 0.674848 normcbv5

Table 4.Results summary on macro-averaged values in a document basis.

Precision Recall F1 Experiment
0.627956 0.404897 0.455048 ncbv1
0.6272460.4504130.490741 ncbv2
0.639530 0.4477630.495636 ncbv5
0.652167 0.378170 0.448980 normcbv1
0.6550890.406707 0.471558 normcbv2
0.645321 0.397321 0.461638 normcbv5

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 1 2 3 4 5 6 7 8 9

p
re

ci
si

o
n

top ranked

ncbv1
ncbv2
ncbv5

normcbv1
normcbv2
normcbv5

Fig. 2. F1 measurements for different configurations on the 10 most frequent classes.

The main remark is that using an uneven number of codebook vectors on positive
and negative sides depending on class imbalance does not yields to better results in
general. This is maybe due to a lack of positive samples in most classes. The decision
on whether to use a different number of positive and negativecodebook vectors should
be restricted to scenarios where classes are well represented. This reasoning can be

Table 5.Results summary on macro-averaged values in a class basis.

Precision Recall F1 Experiment
0.500383 0.320962 0.362223 ncbv1
0.493239 0.327211 0.369442 ncbv2
0.627357 0.386476 0.458187 ncbv5
0.514602 0.274930 0.333245 normcbv1
0.517373 0.294911 0.352776 normcbv2
0.487381 0.262504 0.322848 normcbv5

219

Table 6.Results summary on micro-averaged values.

Precision Recall F1 Experiment
0.656294 0.415546 0.508883 ncbv1
0.656267 0.438942 0.526042 ncbv2
0.716130 0.481063 0.575519 ncbv5
0.710973 0.386372 0.500663 normcbv1
0.701892 0.415265 0.521809 normcbv2
0.710198 0.409406 0.519397 normcbv5

check in Table 3. Here, for most frequent classes, the balancing of codebook vectors
improves the obtained results.

Nevertheless, a binary version of the LVQ algorithm stands as a valid solution to
this multi-label problem. As can be seen, no major variations in evaluation measures
are noticed, despite different configurations, so the algorithm is robust in this sense.

About the number of codebook vectors, it seems that a higher number of them tends
to improve the overall classifier performance. Actually, the ncbv5 experiment is the one
with the highest measured F1 in all averaging strategies.

6 Conclusions

A neural algorithm for multi-label has been studied. This algorithm is based in the LVQ
learning method, integrating it into the ASBC approach. Some experiments have been
carried out on a high unbalanced collection: thehep-expartition of the HEP corpus. The
results obtained show that, despite the complexity of the collection, the robustness of
the algorithm remains against different configuration parameters.

As future work we plan to apply this algorithm on a more comparable collection
in the text-categorization domain, specifically Reuters-21578. For this collection, re-
sults on applying LVQ with a codebook vector per class are available [12], which re-
ported 0,61 macro-averaged precision and 0,73 micro-averaged precision. Also, since
the ASBC algorithm allows to select among a set of possible classifiers, we will test our
approach with a wide range of parameterizations of the LVQ algorithm on every class,
letting the system decide which parameters are the best of each class.

Acknowledgements

This work has been partially supported by a grant from the Spanish Government, project
TIMOM (TIN2006-15265-C06-03), and a grant from the University of Jáen, project
RFC/PP2006/Id514.

References

1. Sebastiani, F.: Machine learning in automated text categorization. ACM Comput. Surv.34
(2002) 1–47

220

2. Montejo-Ŕaez, A.: Automatic Text Categorization of Documents in the High Energy Physics
Domain. PhD thesis, University of Granada (2006)

3. Montejo-Ŕaez, A., Urẽna López, L.: Binary classifiers versus adaboost for labeling of digital
documents. Sociedad Española para el Procesamiento del Lenguaje Natural (2006) 319–326

4. Montejo-Ŕaez, A., Urẽna López, L.: Selection strategies for multi-label text categorization.
Lecture Notes in Artificial Intelligence (2006) 585–592

5. Vassilevskaya, L.A.: An approach to automatic indexing of scientific publications in high
energy physics for database spires-hep. Master’s thesis, Fachhochsule Potsdam, Institut fr
Information und Dokumentation (2002)

6. Montejo-Ŕaez, A., Steinberger, R., Ureña López, L.A.: Adaptive selection of base classifiers
in one-against-all learning for large multi-labeled collections. In et al., V.J.L., ed.: Advances
in Natural Language Processing: 4th International Conference, EsTAL 2004. Number 3230
in Lectures notes in artifial intelligence, Springer (2004) 1–12

7. Joachims, T.: Text categorization with support vector machines: learning with many relevant
features. In Ńedellec, C., Rouveirol, C., eds.: Proceedings of ECML-98, 10th European Con-
ference on Machine Learning. Number 1398, Chemnitz, DE, SpringerVerlag, Heidelberg,
DE (1998) 137–142

8. Lewis, D.D., Schapire, R.E., Callan, J.P., Papka, R.: Training algorithms for linear text clas-
sifiers. In Frei, H.P., Harman, D., Schäuble, P., Wilkinson, R., eds.: Proceedings of SIGIR-96,
19th ACM International Conference on Research and Development in Information Retrieval,
Zürich, CH, ACM Press, New York, US (1996) 298–306

9. Yang, Y.: A study on thresholding strategies for text categorization. In Croft, W.B., Harper,
D.J., Kraft, D.H., Zobel, J., eds.: Proceedings of SIGIR-01, 24th ACM International Confer-
ence on Research and Development in Information Retrieval, New Orleans, US, ACM Press,
New York, US (2001) 137–145 Describes RCut, Scut, etc.

10. Schapire, R.E., Singer, Y.: BoosTexter: A boosting-based system for text categorization.
Machine Learning39 (2000) 135–168

11. Kohonen, T.: Self-organization and associative memory. 2 edn.Springer-Verlag (1995)
12. Mart́ın-Valdivia, M., Garćıa-Vega, M., Garćıa-Cumbreras, M., Urẽna López, L.: Text cat-

egorization using the learning vector quantization algorithm. In: Proceedings of Intelligent
Information Systems. New Trends in Intelligent Information Processingand Web Mining
(IIS:IIPWM-04), Zakopane, Poland, Springer-Verlag (2004)

221

