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Abstract. This paper presents a formal framework for process-oriented model-
ing and analysis of organizations. The high expressivity of a sorted predicate 
logic language used for specification allows representing a wide range of proc-
ess-related concepts (e.g., tasks, processes, resources), characteristics and rela-
tions, which are described in the paper. Furthermore, for every organization, 
structural and behavioral constraints on process-related concepts can be identi-
fied. Some of them should always be fulfilled by the organization (e.g., physical 
world constraints), whereas others allow some degree of organizational flexibil-
ity (e.g., some domain specific constraints). An organizational model is correct 
if it satisfies a set of relevant organizational constraints. This paper describes 
automated formal techniques for establishing correctness of organizational 
models w.r.t. a set of diverse constraint types. The introduced framework is a 
part of a general framework for organization modeling and analysis. 

1 Introduction 

Every organization achieves its goals by performing some set of tasks. The execution 
of tasks is often specified by dynamic structures called flows of control (or work-
flows), in which tasks are represented by processes. Usually control flows are based 
on a set of temporal ordering rules over processes. Tasks and processes are also re-
lated to other organizational concepts, such as resources, roles, agents (actors). Mod-
ern organizations are characterized by a great variety of such relations. To handle the 
high complexity of modern organizations, automated formal modeling and analysis 
techniques are indispensable.  

To this end, this paper introduces a formal framework for process-oriented model-
ing and analysis. In this framework, tasks, processes, resources and other related con-
cepts are specified in the formal language LPR, based on the sorted first-order predicate 
logic [11]. The high expressivity of predicate logic allows including into LPR a wide 
range of process-oriented concepts specified by sorts, sorted constants, variables, 
functions and predicates that represent relations on these concepts.  

For every organization a set of structural and behavioral constraints expressed over 
its tasks and processes can de identified, which should be satisfied by the process-
oriented model. In this paper the set of constraints is represented by the logical theory 
TPR in LPR, i.e., a set of sentences expressed in LPR. It means that all concepts and rela-
tions defined in LPR may be used for the specification of constraints. A process-
oriented model specified in LPR is correct if TPR is satisfied by this model. The con-
straints in TPR may be of different types: some are dictated by the restrictions of the 
physical world and should be satisfied by any process-oriented model; others depend 
on the application domain and may be changed by the designer. The classification of 
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constraints is described in this paper. This paper also introduces automated techniques 
for establishing the correctness of a process-oriented model by verifying constraints. 
Interdependences that may exist in constraint sets are also handled by the proposed 
verification techniques. To our knowledge there exist no other frameworks that allow 
the simultaneous verification of different (interdependent) types of constraints based 
on the extensive set of concepts and relations as can be found in LPR.  

The proposed framework has some similarities with and distinctions from other 
process modeling approaches [5, 6, 8, 9, 18]. In particular, our framework realizes the 
most commonly used workflow patterns identified in [18] extended with time parame-
ters (e.g., sequence and parallel execution, process synchronization, loops). At the 
same time, in comparison with other approaches [3, 9], the proposed framework pro-
vides a more extensive means for resource modeling (shared resources in particular), 
which will be addressed further in this paper. 

A number of informal and semi-formal frameworks [5, 6, 8, 12] provide a rich on-
tological basis for processes-oriented modeling. However, the lack of formal founda-
tions creates a significant obstacle for performing computational analysis in such 
frameworks. Some of the existing formal process-oriented analysis techniques are 
dedicated to the verification of constraints of a particular type only. For example, in 
[15] process algebra is used to model and analyze ordering constraints on processes, 
however it lacks the expressivity to represent global ordering constraints on proc-
esses. This deficiency is addressed in [10], however this approach does not allow the 
specification of (real) numbers (i.e., durations). A technique that provides means for 
reasoning on temporal numerical constraints on processes is described in [4]. An ap-
proach for resource constraints analysis is proposed in [9], however it does not ad-
dress interdependences that may exist between constraints. The problem of establish-
ing the correctness of a workflow with shared resources is considered in [3]. Some 
analysis techniques based on Petri-nets and their modifications take into account both 
ordering and resource-related constraints [17]. However it is difficult to express con-
straints over multiple objects, characteristics and relations of the organization (e.g., 
many physical world and domain-specific constraints considered in this paper) using 
Petri Nets. Furthermore, the proposed framework provides more expressive language 
for specifying constraints than the mentioned approaches. 

Often logic-based process analysis techniques [2] employ general-purpose methods 
for verifying models (e.g., model checking [7]), which have a high computational 
cost. This paper proposes more efficient algorithms dedicated for verifying particular 
types of constraints.  

The framework introduced in this paper constitutes a part of a general formal 
framework for organization modeling and analysis in which organizations are consid-
ered from other perspectives (or views) as well. In particular, the performance-
oriented view [14] describes organizational goal structures, performance indicators 
structures, and relations between them. Within the organization-oriented view organ-
izational roles, their authority, responsibility and power relations are defined. In the 
agent-oriented view different types of agents with their capabilities are identified and 
principles for allocating agents to roles are formulated. The views are related to each 
other by means of sets of common concepts. This enables different types of analysis 
across multiple views. An example of such analysis involving the process- and per-
formance-oriented views is considered in [14].  
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The paper is organized as follows. Section 2 briefly introduces the language LPR. 
Section 3 describes the classification of constraints. In Section 4, the methods for 
verification of constraints are given. The proposed approach is illustrated by an ex-
ample in Section 5. Section 6 concludes the paper.  

2 Process-oriented Modeling 

Process-oriented models in the proposed framework are specified using the sorted 
predicate language LPR. Due to the space limitation, only a general overview of LPR is 
given in this Section. For all formal details of the language we refer to [13].  

To illustrate different aspects of LPR a simplified example is used that describes the 
operation of a 3PL (third-party logistics) provider (see Fig.1). In general, 3PL compa-
nies provide logistics services to other companies. The considered operation cycle be-
gins with the customer order intake process, after which the order is processed and 
depending on the customer (company) is scheduled for some delivery type (for differ-
ent companies different delivery regulations may be applied). During the delivery the 
assigned driver is supervised by the assigned fleet manager. After the delivery is fin-
ished, the delivery summary report is provided to the customer.  

A task represents a function performed in the organization and is characterized by 
a name and by a maximal and a minimal durations. Tasks can be decomposed into 
more specific ones using AND- and OR-relations thus forming hierarchies.  

A workflow is defined by a set of (partially) temporally ordered processes. Each 
process, except for the special ones with zero duration introduced below, is defined 
using a task as a template and all characteristics of the task are inherited by the proc-
ess. Decisions are also treated as processes that are associated with decision variables 
taking as possible values the possible decision outcomes. 

Definition 1 (A workflow): A workflow with the name w is defined by a tuple <w, P, 
C> with a set of processes P and a set of ordering relations C on processes from P.  

 
Fig. 1. The generalized workflow that illustrates the operation of a 3PL delivery company. 

A workflow starts with the process BEGIN and ends with the process END; both 
have zero duration. Only one workflow can be defined in a process-oriented model. 
The (partial) order of execution of processes in the workflow is defined by sequenc-
ing, branching, cycle and synchronization relations (referred to as ordering relations) 
specified by the designer. Fig.1 is a graphical representation of the workflow built for 
the running example. A sequencing relation is specified by the predicate starts_after: 
PROCESS × PROCESS × VALUE expressing that the process specified by the first argu-
ment starts after the process specified by the second argument with the delay ex-
pressed by the third argument, e.g., starts_after(Order_processing, Order_intake, 0) repre-
sented graphically by solid arrows between the processes. Synchronization relations 
define temporal relations between processes that are executed in parallel (e.g., 
starts_with, finishes_with, starts_during). An example of such a relation is shown by a 
dashed line between the beginnings of the processes in Fig. 1, meaning that the con-
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nected processes should start simultaneously. Taken together, synchronization and se-
quencing relations allow specifying all cases of interval relations defined by Allen [1]. 

Branching relations are defined over and- and or-structures. An and(or)-structure 
with name id, starts with the zero-duration process begin_and(id) (begin_or(id)) and fin-
ishes by the zero-duration process end_and(id) (end_or(id)). These special processes are 
represented graphically by rhombuses. Our treatment of AND-structures is similar to 
the parallel split pattern combined with all types of the merge pattern from [18], rep-
resented in our case by an and-condition. In Fig.1 and-structures contain the condition 
value all, meaning that only when all processes in the and-structure are finished, the 
process specified after the end of the and-structure is allowed to start. 

For every or-structure a condition is defined, based on which it is determined 
which branches of the or-structure will start. The condition may consist only of a con-
dition variable. Our treatment of or-structures allows realizing both exclusive and 
multiple-choice patterns from [18]. The or-structure in the running example specifies 
the exclusive choice between two types of delivery depending on the company name.  

Cycle relations are defined over loop-structures with conditions that realize cycle 
patterns from [18]. For every loop-structure a Boolean condition and the maximal 
number of times of the loop execution are specified.  

Tasks use, consume and produce resources of different types. Resource types in-
clude tools, supplies, components and other material or digital artifacts. Also data are 
considered as a special resource type. Resource types are characterized by: name; 
category – discrete or continuous; measurement_unit; expiration_duration – the 
length d of the time interval for which a resource type can be used. Specific resources 
represent instances of particular resource types and inherit their characteristics. The 
resources have, in addition to the inherited characteristics, also name and amount. 
Every resource in the workflow has to be produced by a process of this workflow or 
be available in the organization before the beginning of the workflow execution.  

Some resources can be shared (used simultaneously) by a set of processes (e.g., 
storage facilities, transportation vehicles, some computers). The shared amount of the 
resource should be sufficient for the execution of every process in the set. Our repre-
sentation of shared resources is different from [3] in several aspects: (1) the shared re-
source amount is used by processes simultaneously; (2) alternative sets of processes 
that are allowed to share a resource can be defined; (3) different amounts of a re-
source can be shared simultaneously; (4) specific conditions (requirements) for re-
source sharing can be defined. In the running example, for certain delivery processes 
certain trucks may be considered as shared resources.  

The process-oriented view is related to the organization-oriented and the agent-
oriented views through the sorts ROLE and AGENT. Each object of the sort ROLE de-
scribes a set of functionalities realized by organizational processes in a certain model, 
which are assigned together to individuals who will be performing them. These indi-
viduals are objects of the sort AGENT. An agent can be allocated to one or more roles 
if it satisfies the requirements for performing these roles. For example, 
role_performs_process(Driver,Order_delivery1) and agent_plays_role(Allan, Driver). 

3 Constraints 

Constraints are expressed as formulae in theory TPR that are constructed from terms of 
LPR in a standard way [11] using Boolean connectives and quantifiers over variables. 
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The constraints are divided in two groups: (1) generic constraints need to be satisfied 
by any model built using this framework; (2) domain-specific constraints are dictated 
by the application domain of the model. Two types of generic constraints are consid-
ered: (1) structural constraints used to ensure correctness of the workflow, task and 
resource hierarchies; (2) constraints imposed by the physical world. Both types of ge-
neric constraints are described in Sections 3.1. Section 3.2 discusses the domain-
specific constraints.  

3.1 Generic Constraints 

The language allows building three types of structures: the workflow, the task hierar-
chy and the resource hierarchy. For each of them structural constraints are defined. 

Workflow Structural Constraints. With respect to the workflow we define a set of 
structural constraints: structural correctness, temporal correctness and condition cor-
rectness constraints.  

Structural correctness of the workflow 
First let us introduce reachability and complete reachablitity relations. 

Definition 2 (Reachability relation): The process p2 is reachable from the process 
p1 in the workflow w (reachable_from_in(p2, p1, w)) if there exists a sequence of proc-
esses constructed using the sequencing relations that starts at p1 and includes p2. 

The algorithmic procedures for establishing the truth values of the reachability re-
lation and all the following relations are given in [13].  

Definition 3 (Complete reachability relation): The process p2 is completely reach-
able from the process p1 in the workflow w (completely_reachable_from_in(p2, p1, w)) if 
all process sequences built using the sequencing relations that start at p1 include p2. 

For example, the process Provide_delivery_report from the running example in Sec-
tion 2 is completely reachable from the process Order_intake.  

Definition 4 (A well-formed and-structure): An and-structure with the name and_id 
defined in the workflow <w, P, C> is well-formed if the following constraints hold:  
(1) ∃p∈P such that p = begin_and(and_id); ∃p∈P such that p = end_and(and_id); 
(2) completely_reachable_from_in(end_and(and_id), begin_and(and_id), w) is true. 

Well-formed or- and loop-structures are defined similarly. Both and- and or-
structures defined in the running example in Section 2 are well-formed. 

Now, the structural correctness property for a workflow can be introduced.  
Definition 5 (A structurally correct workflow): A workflow <w, P, C> is structur-

ally correct if the following constraints are satisfied: 
(1) A workflow contains only one BEGIN (the first process), followed by one process  
      and only one END (the last process) preceded by one process. Formally: 

(a) ∃s∈P s=BEGIN; ∃s∈P starts_after(s, BEGIN) ∧ (∀s1∈P starts_after(s1, BEGIN) ⇒ s1=s) 
(b) ∃s∈P s=END; ∃s∈P starts_after(END, s) ∧ (∀s1∈P starts_after(END, s1) ⇒ s1=s) 
(c) ¬∃s∈P starts_after(BEGIN, s); ¬∃s∈P starts_after(s, END) 

(2) For every process p, different from BEGIN, END, and the starting and ending  
     processes for and- and or-structures, exactly two sequencing relations should be    
    defined that identify the process that precedes p and the process that follows after p: 

(a) ∃s∈P starts_after(p, s) ∧ (∀s1∈P starts_after(p, s1) ⇒ s1=s) 
(b) ∃s∈P starts_after(s, p) ∧ (∀s1∈P starts_after(s1, p) ⇒ s1=s) 
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(3) Loops should be introduced only by loop-structures, no other cycles are allowed:  
 ∀p1, p2∈P reachable_from_in(p1, p2, w) ⇒ ¬reachable_from_in(p2, p1, w)  

(4) Processes, over which a synchronization relation is specified, should not  
       belong to the same or-structure.  
(5) All and-, or- and loop-structures in w are well-formed and each process p∈P can be  
      reached from the BEGIN, and the END can be reached from p: 

 ∀p∈P reachable_from_in(p, BEGIN, w)  ∧ reachable_from_in(END, p, w) 
The workflow defined by the running example in Section 2 is structurally correct. 

Temporal correctness of the workflow 
The duration of each process in a workflow may vary in actual executions and, be-
cause of the temporal ordering of processes in the workflow, each process may have 
different starting points in different executions. Among all starting points the earliest 
(estp) and the latest starting time (lstp) for each process p can be identified. The value 
for estp (lstp) is calculated under the assumption that all relevant processes (i.e., proc-
esses that may influence the starting time of p) have minimal (maximal) durations. A 
more detailed description of the calculation procedure is given in [13]. 

The earliest (latest) ending time point of the process p (eetp (letp)) is calculated as 
estp + p.min_duration (lstp + p.max_duration). Then, the earliest (latest) creation time of the 
resource r (ectr (lctr)) produced by p are defined as: ectr = eetp and lctr = letp, and the earli-
est (latest) expiration time of r (eetr (letr)) is calculated as: eetr= ectr + r.expiration_duration 
(letr= lctr + r.expiration_duration). 

Synchronization relations defined in a model may influence the starting time of 
processes in this model. Moreover, some sequencing/branching/cycle relations of the 
model may be in conflict with synchronization relations introduced by the designer. 
Let us define [t1, t2] = [estp, lstp] ∩ [ests, lsts] and [t3, t4] = [eetp, letp] ∩ [eets, lets] for proc-
esses p and s. A conflict occurs in following cases: (a) if starts_with(p, s) is introduced 
and [t1, t2] = ∅; (b) if starts_during(p, s) is introduced and [t1, t2] = ∅; (c) if finishes_with(p, 
s) is introduced and [t3, t4] = ∅. 

Definition 6 (A temporally correct workflow): A workflow <w, P, C> is temporally 
correct in the model M if the set of ordering relations in M is not conflicting. 

If a workflow is temporally correct, starting points of processes influenced by the 
introduced synchronization relation are updated, using the values t1, t2, t3 and t4 de-
fined above: (a) in case of starts_with(p, s) assign estp=t1; ests =t1; lstp =t2; lsts=t2; (b) in 
case of starts_during(p, s) assign estp =t1 and lstp=t2; (c) in case of finishes_with(p, s) assign 
eetp=t3; eets=t3; lets=t4; lets=t4. Then, update the values of the earliest (latest) starting 
points for the processes reachable from p and for the processes reachable from s. 
Condition correctness 
This property concerns conditions specified for or- and loop-structures of a model.  

A condition of the or-/loop-structure is correct iff: 
(1) All values of condition variable(s) considered in the structure belong to the 

domain of this (these) variable(s); 
(2) All elements from the domain of condition variable(s) are taken into considera-

tion in the structure. 

Tasks and Resource Inter-level Consistency Constraints. Tasks form hierarchies 
based on decomposition relations between them. When building such hierarchies, 
consistency should be maintained by making sure the set of inter-level constraints is 
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satisfied. Here only some informal examples of inter-level constraints are given (for 
the complete list of these and other constraints see [13]): 
“For every and-decomposition of a task, the minimal duration of the task is at least the maximal of 
all minimal durations of its subtasks.“ 
“If a task uses certain resource type as input then there exists at least one subtask in at least one 
and-decomposition of this task that uses this resource type.“ 
“For every and-decomposition of a task, if one subtask uses a data type as input which in not an 
input for the composite task then there exists another subtask that produces such data type.” 

Functionally divisible resource or data types also form hierarchies. Due to the wide 
variety of possible situations, only one consistency constraint can be formulated, 
which should be satisfied for data types: 
“If data type dt2 is a functional part of data type dt1, then the expiration duration of dt1 is at most 
the expiration duration of dt2.”  

Physical World Generic Constraints. Generic constraints come from the physical 
world irrespective of the application domain. Here three examples of such constraints 
are given.  
GC1: “No role executes more than one process at the same time” 

∀ r:ROLE, p1, p2:PROCESS, tp1, tp2, tp3, tp4:TIME_POINT role_performs_process(r, p1) ∧ 
role_performs_process(r, p2) ∧ espp1 = tp1 ∧ lepp1 = tp2 ∧ espp2 = tp3 ∧ lepp2 = tp4 
⇒ ((tp2 ≤ tp3) ∨ (tp4 ≤ tp1)) 

GC2: “Not consumed resources become available after all processes are finished” 
GC3: “For every process that uses certain amount of a resource of some type as input, without 
consuming it, either at least that amount of resource of this type is available or can be shared with 
another process at every time point during the possible execution of the process” 

3.2 Domain-specific Constraints 

Domain-specific constraints are imposed by the application domain in which the spe-
cific model will be used and can be classified according to their sources. Constraints 
imposed by the organization have been chosen (e.g. by the management of the com-
pany) as necessary and need to be satisfied by any model for the particular organiza-
tion. Such constraints can often be found in company policy documents, internal pro-
cedures descriptions, etc. For example, “certain information types cannot be used by certain 
tasks” (security/privacy). Constraints coming from external parties are enforced by an 
external party such as the society or the government and can contain rules about 
working hours, safety procedures, emissions, and so on. Sources for such constraints 
can be laws, regulations, agreements, etc. For example, “a driver should not drive more 
than 6 hours per day”. Constraints of the physical world come from the physical world 
w.r.t. the specific application domain and should be satisfied by any model in this 
domain. This is in contrast to the generic physical constraints which should be satis-
fied by any model irrespective of the application domain. For example, “there is always 
a break of at least 15 minutes between two consecutive lectures” (follows from the limitation 
of most humans to stay concentrated on a lecture for a very long time). 

For all these types of constraints there are predefined templates [13], which can be 
selected and customized by the designer by assigning specific values to the parame-
ters of the template. Examples of such templates with their parameters in brackets are:  
DC1(p1:PROCESS, p2:PROCESS, d:VALUE): “If the same agent executes both processes, then 
there is a delay of duration at least d between the end of the first process and the beginning of 
the second one” (can also be formulated for a specific agent as additional parameter) 
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DC2(rt:RESOURCE_TYPE, min_am:VALUE): “At every time point the amount of resource of type 
rt available is at least min_am amount” 
DC3(t:TASK, dr:VALUE): “For every agent performing processes of this task the sum of the dura-
tions of these processes should not exceed dr”  

4 Correctness Verification of a Process-oriented Model 

The verification of the correctness of a process-oriented model is performed during or 
at the end of the design of the model, depending on the verified types of constraints. 
In particular, some domain-specific constraints might not (yet) be satisfied for incom-
plete models. The designer can choose the moment when they should be checked. The 
syntactical check of the specification for a model and the verification of generic con-
straints are performed at every design step. Note that often only the set of relevant ge-
neric constraints is verified. This set is identified based on the type of the change 
made by the designer in the model. For example, if the minimal or maximal duration 
of a task or a decomposition relation between tasks is changed, then the correspond-
ing task inter-level consistency constraint(s) expressed over these tasks should be 
checked. Changes in resource structures are dealt with similarly. If the designer 
changes the set of ordering relations or the (minimum or maximum) duration of a task 
of which an existing process is an instance, then first the structural constraints of the 
workflow are checked, and after that physical world and domain specific constraints. 

For all other types of changes, the set of constraints that should be checked is 
formed from physical world and domain specific constrains from TPR expressed over 
objects involved into relations affected by the change. For the checking, it is assumed 
that each process p in the workflow <w, P, C> can be active (executed) at any time 
point during the interval [estp, letp]. Therefore, it will be checked w.r.t. the whole inter-
val [estp, letp], even though the actual execution of p may take less time. Thus all possi-
ble intervals of the execution of p are taken into account. If the constraint is not satis-
fied in some possible execution, it can be discovered without checking all executions 
separately. This dedicated verification is computationally much cheaper than the gen-
eral-purpose state-based analysis of all possible executions of a model (e.g., by model 
checking [7]), however still allows establishing correctness of the model. 

Here two example algorithms are given for checking the satisfaction of constraints 
GC1 and GC3 defined in Section 3.1. The first algorithm is typical for the verification 
of constraints over processes, roles and agents, and the second one illustrates the veri-
fication of constraints over resource amounts related to processes.  

Algorithm for verification of GC1. Let L be an empty queue and N be an empty set. 
Enqueue in L all roles defined in the model. 
1. Until L is empty perform steps 3-5. 
2. Dequeue L and assign the obtained value to the variable curr_role. 
3. Put into N all processes assigned to curr_role in the model. 
4. For each processes p1,p2∈N determine if they can be executed at the same time: 

if       ¬((letp1 ≤ estp2 ) ∨ (letp2 ≤ estp1)), then GC1 is not satisfied, exit; else empty N. 
5. GC1 is satisfied.  

Before describing an algorithm for checking GC3 let us introduce a definition of a 
workflow segment and a labeling procedure for workflow segments. 

Definition 7 (A workflow segment): A segment SG of the workflow <w, P, C> is a 
set of processes from P ordered by C that are executed under the same set of values of 
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or-conditions from w. This set of values is dynamically formed from the values of 
conditions of or-structures, from which the processes of SG can be reached. The set 
SEGMENTS contains all segments of the workflow. 

Each segment has a label, assigned according to the following rules: 
− the segment that contains processes that are executed independent of any condition 

values has the label “1”. 
− the label for a segment that corresponds to a branch of a certain or-structure is 

formed from three parts that follow each other: 
(1) the prefix defined by the label L of the segment, to which the beginning process of the 

or-structure belongs; 
(2) the index of the branch in the or-structure obtained incrementally starting from 1;  
(3) the sequential index of the or-structure in the segment with the label L, put in square 

brackets.  
For example, the process Order_intake from the example introduced in Section 2 be-

longs to the segment labeled by “1”, whereas the process Order_delivery2 belongs to the 
segment labeled by 1.2[1].  

Further the algorithm is given for checking the satisfaction of GC3 with respect to 
the process p and the resource r. In this algorithm the following notations are used: 

res_produced_by(r, p, am) for is_instance_of(p, t) ∧ task_produces(t, r, am) 
res_used_by(r, p, am) for is_instance_of(p, t) ∧ task_uses(t, r, am) 
res_consumed_by(r, p, am) for is_instance_of(p, t) ∧ task_consumes(t, r, am) 

Algorithm for verification of GC3. Identify the set of time points TP within the dura-
tion of p (estp ≤ t < letp), at which the amount of some resource(s) of type r changes (i.e., 
time points at which other processes that use/consume/produce a resource of type r 
may start or finish). For every time point t ∈ TP perform steps 2-7. 
1. Determine the set RS of segments that contain finished before or executed simultaneously 

with p processes, which execution may influence the amount of resources of type r and 
which belong to the set of relevant processes PR(p) (defined in Section 3):  
RS={s ∈ SEGMENTS | ∃a a∈s ∧ a∈PR(p) ∧ [leta < t ∧ [ am1 > 0 ∨ am3 >0] ] ∨ [ leta > t ∧ esta  ≤ t ∧ [ am1 > 
0 ∨ am2 > 0 ∨ am3 > 0 ], where am1, am2, and am3 are specificied in res_consumed_by(r, a, am1), 
res_used_by(r, a, am2) and res_produced_by(r, a, am3). 

2. The labels of segments in RS that correspond to the branches belonging to the same or-
structure are grouped.  

3. The n-ary Cartesian product of all obtained groups is generated (n is the number of groups): 
g1 ×… × gn. Each tuple in the obtained product set corresponds to a possible combination of 
segments in the workflow. In such a way all possible execution of processes in the work-
flow, which use/produce/consume r and have latest ending time ≤ letp are considered. 

4. For every tuple in the product set identify the set of processes PS that corresponds to the tu-
ple. If two or more processes from the same segment related by a sequencing relation may 
be executed at the same time in different instances of the workflow, replace PS by a number 
of sets, each of which will contain only one from these processes.  

5. For every set of processes PS corresponding to the tuple, identify the set of resources RPS of 
type r produced by processes in PS.  

6. For every process a ∈ PS that consumes some amount of the resource of type r identify if this 
amount of not expired resource(s) from RPS is available. Update RPS after every iteration: 
7.1 Initial settings: Let temp_amount= am, where am is defined by res_consumed_by(r, a, am) 
7.2 Until temp_amount > 0 and RPS is not empty perform 7.3 and 7.4 
7.3 Identify resource res ∈ RPS with the smallest earliest expiration time, which did not  

            expire yet. It is assumed that such resource will be used first by a. 
7.4 If      res.amount  ≥ temp_amount,  
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      then update the amount of the resource as res.amount= res.amount- temp_amount and set  
                    temp_amount=0. 

      else    update temp_amount = temp_amount - res.amount and delete res from the RPS. 
7.5 If       temp_amount > 0,  
      then  GC3 is not satisfied with respect to the process p and resource type r, exit. 

7. For every process a ∈ PS that uses a certain amount of the resource of type r at time point t 
identify, if this amount of not expired resource(s) from RPS is available. Update RPS after 
every iteration: 
8.1 Initial settings: Let temp_amount= 0. 
8.2 From the model identify process lists that may share a resource of type r and that contain  

           as least one process from PS. For each process a ∈ PS at most one list will be chosen  
           from the identified lists. Furthermore, any list that contains a may be selected, since the  
           choice of the list does not influence the amount of available resources in RPS. 

8.3 For every chosen process list L update temp_amount = temp_amount+ am, where am is de 
            fined in res_used_by(r, s, am) and s is some process from L. Delete all processes that  
            belong to L from PS. 

8.4 For every process a ∈ PS update temp_amount = temp_amount+ am, where am is defined in  
           res_used(r, a, am). Then perform the same calculations as on steps 7.2-7.5. 
9. GP3 is satisfied with respect to the process p and resource type r. 

In order to reduce the number of tuples generated at step 4 and to improve the com-
putational properties, the introduced verification algorithm is extended with tuple re-
duction steps (the extended version of the algorithm can be found in [13]). This algo-
rithm performs the local elimination of branches of and- and or-structures that do not 
contribute to the worst case situation. This allows reducing the number of execution 
paths that have to be checked significantly. 

5 Example 

In the context of the running example consider a particular delivery scenario: The lo-
gistics company performs shipments of goods between two departments of some en-
terprise, which are located in different regions. Depending on the type and the size of 
consignments three types of deliveries are distinguished: d1, d2 and d3. Goods for the 
delivery types d1 and d2 are located at the warehouse of department A and should be 
transported to department B. Goods assigned to d3 are stored at the warehouse of de-
partment B, and should be delivered to department A. For efficiency only trucks 
available at the starting location of the delivery can be used. The company owns five 
trucks of type tr1 and two trucks of type tr2. The delivery d1 can be fulfilled either by 
three tr1 trucks or by two tr2 trucks. The d2 can be accomplished by one truck of any 
type. The delivery d3 requires either four trucks tr1 or two trucks tr2. For simplicity, 
other combinations are not considered. One of the domain-specific constraints im-
posed by the company is to give a preference for using trucks of type tr1 (over tr2), 
when they are available (DC4). Formally, 

∀a:TASK ∀p:PROCESS ∀v1:VALUE task_uses(a, tr2, v1) ∧ is_instance_of(p, a) ⇒ 
∃p1:PROCESS ∃a1:TASK ∃v2:VALUE ∃id:OR_STRUCT is_instance_of(p1, a1) ∧ task_uses(a1, 
tr1, v2) ∧ starts_after(p1, begin_or(id)) ∧ starts_after(p, begin_or(id)) ∧ or_cond(id, re-
source_available(tr1) ≥ v2 ∧ or_branch(1, p1) 

Furthermore, for deliveries of types d1 and d2 trucks may be shared (three tr1 
trucks or two tr2 trucks), under the condition that the time difference between two de-
liveries is less than three hours, expressed by the domain-specific constraint DC5: 
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∀p1, p2:PROCESS is_instance_of(p1, d1) ∧ is_instance_of(p2, d2) ∧ ((estp1 ≥ estp2 ∧ (lstp1 - 
estp2) < 3) ∨ (estp1 < estp2 ∧ (lstp2 - estp1) < 3)) ⇒ ∃l:PROCESS_LIST resource_sharable(t1, l) ∧ 
is_in_list(p1, l) ∧ is_in_list(p2, l) (similarly for t2). 

Initially all trucks are located at the base of dept. A. The delivery schedule includes 
processes p1, p4 (type d1), p2, p5 (type d2), and p3, p6 (type d3), ordered as in Fig.2. 

 
Fig. 2. The workflow that illustrates the delivery process considered in the example. 

The constraints DC4 and DC5 are fulfilled by forcing the deliveries d1 and d2 to 
share three tr1 trucks (processes p1 and p2). However, the generic constraint GC3 de-
fined previously is not satisfied by the model. The automatic verification identified 
that there are no sufficient resources provided for p3 (three tr1 trucks released by p1 
and p2 are not sufficient for p3). To achieve the model correctness the designer may 
change either the model specification or the set of constraints imposed on the model. 
For example, without enforcing DC4 two tr2 trucks could be shared by p1 and p2, 
which would be further used by p3 without creating a resource problem. 

6 Conclusions 

This paper introduces a formal framework for process-oriented modeling and analy-
sis. The framework is based on an expressive formal sorted predicate logic language 
and includes efficient dedicated analysis techniques for checking the correctness of 
process-oriented models w.r.t. a set of constraints defined in an organization. The 
constraints classified in the paper may express both local (i.e., related to individual 
objects) and global (i.e., related to multiple objects) properties of an organization. 

The proposed approach differs from constraint satisfaction methods developed in 
[16]. Whereas the main focus of the latter techniques is on finding (optimal) solutions 
given a consistent and stable set of constraints, our approach addresses both design of 
a model and of constraints that should be satisfied by the model. The designer is free 
to vary both the model and the constraint specifications. The designer is supported by 
the automated tool that allows identifying sources of inconsistencies and mistakes 
both in the model and the constraint specifications. 

The developed approach allows scalability by performing compositional design of 
models. Using task hierarchies models can be built at different levels of abstraction. 
General constraints defined for high level processes are refined into more specific 
ones that should be satisfied by processes of lower levels. In such a way, to decrease 
complexity models of different abstraction levels can be analyzed separately keeping 
relations with each other through task hierarchies and the constraint refinement. 

Furthermore, although the introduced predicate language is very intuitive, still a 
graphical interface for specifying models would be of help. Such an interface is cur-
rently being developed. However, graphics would provide only a little help in the 
specification of constraints. For this property templates can be used as shown in [13]. 

The formal methods discussed in the paper are dedicated for the verification of 
process-oriented models, however, also a number of formal techniques for the analy-
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sis of actual execution based on the introduced process-oriented model, have been de-
veloped. These techniques will be discussed elsewhere. 
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