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Abstract. Interval data is attracting attention from the data analysis community
due to its ability to describe complex concepts. Since clustering is an important
data analysis tool, extending these techniques to interval data is important. Ap-
plying traditional clustering methods on interval data loses information inherited
in this particular data type. This paper proposes a novel dissimilarity measure
which explores the internal structure of intervals in a probabilistic manner based
on domain knowledge. Our experiments show that interval clustering based on
the proposed dissimilarity measure produces meaningful results.

1 Introduction

Interval data is a form of symbolic data[1] in which ranges are used rather than single
values. Table 1 gives a small example of interval data.

Table 1. Sample Interval Data.

Age Height | Weight Salary
[20,30] | [160,170]| [80,90] | [23000,30000]
[40,50] | [150,160]| [50,60] | [40000,50000]

Interval data can be obtained from rich sources such as the summaries of huge
amounts of numerical data, the answers to questionnaires, and instances where the val-
ues of the observations are uncertain by nature. Data analysis of interval data gets atten-
tion due to its rich sources and ability to describe complex concepts. Interval patterns
are described by features which are ranges over real axis. Formallgliraensional
interval patternX can be expressed @ = ([zy,z3], ..., [z, ,z;]), wherez; and
x; are the lower and upper bounds of tie feature ofX respectively. Interval data
conveys more information than numerical data. A numerical data usually represents the
distance from the origin in its coordinate system while a interval provides at least two
types of information: the location and the length of that interval. The length or span of
an interval is also called internal structure.
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Clustering is a powerful data analysis tool. Data clusggdaims to partition a set
of patterns into groups such that similar patterns are grdupgether. Clustering of
numerical data has drawn intensive research over the lastadelecades. Comprehen-
sive review literatures can be found in [2] and [3]. Interghistering solves the same
problem as traditional clustering except the objects tdlstered are interval data. Dis-
similarity measures and optimization algorithms are twp &emponents of the clus-
tering methods. Applying traditional distance measuregrototypes of intervals, such
as means or medians, loses information on the internaltateicdHence dissimilarity
estimation for interval data is a new challenge and alsoubgest of this work.

Section 2 reviews distance measures and optimization meteed in some related
work on interval clustering. Section 3 introduces our diseameasure based on proba-
bility density functions(pdfs). We show some promising exmental results based on
the new dissimilarity in section 4, and a short conclusiogiv@n in the last section.
In terms of notation, capital letters are used for pattermssamall letters are used for
features or singleton patterns.

2 Redated work

This section reviews some previous work on interval clusgewith a focus on distance
measures and optimization methods. When talking aboutdistameasures, we denote
distance between two patterns By y- and distance between two featuresday y; .

The Hausdorff distance metric is widely used for intervaiad&arvalho et al.[4]
proposed a dynamic interval clustering method based onddafiglistance. The dis-
tance between pattetN and a prototype}y, of clusterCy, is defined asDx y, =
>0 Akidx, v, .» wheredx, y, , is the Hausdorff distance defined asuz(|x; —
Yl [z = Y,5|). The interesting point is that each cluster is associatéld ayb di-
mensional weight vectak. The optimization method consists of three steps. The first
step tries to find the cluster prototypEgs such thad _ ., dx; v, , is minimized for
each featuré. The second step happens after Yads determined. It seeks to find the
Ak such that th@xeck Dx y, is minimized. The third step reallocates patterns. The
relocation of patterns and optimization steps are repaatétino patterns need to be
relocated. Souze and Carvalho applied the same dynamitehg framework with
Hausdorff distance replaced by Chebyshev[5] and city bthstance[6].

The Hausdorff is also used in [7]. The objects under studynatehyper-boxes
but convex shapes. The dimensions of the original data ateréiduced by PCA for
interval data. Six interval PCA methods(V-PCA, C-PCA, SBFRTPCA, LP MR-
PCA and DG MR-PCA) are introduced and the computationallprob are addressed.
The projection of original hyper-boxes are convex hullse Hausdorff distance is used
to measure dissimilarity of convex hulls and hierarchaktgting is used to classify
them.

Carvalho et al.[8] proposed a partition based intervaltehiisg usingls (Minkowski)
distance.L, distance is defined aBxy = Zle dx,v,, wheredx, y, = |X; —
Y, |? + | X;" — Y;T|%. A standard optimization step is followed, in which clustgr
prototype determination is followed by relocation of patge The scaling problem is
addressed in this work. Difference in variable scales tesnlbias when calculating
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the distancef . distance measures favor features with big scales and dethreslis-
cernment ability of small scale features. Three standatidiz methods were proposed,
based on the dispersion of the interval centers, the digmedd the interval bound-
aries, and the global range. Although these methods nareiidie dispersions, they are
sensitive to outliers.

Asharaf et al.[9] proposed an incremental clustering nebthased on rough set
theory, and using the Minkowski distance measure. Theikwonphasizes scalability
and requires only one scan of the data set. The rough setagipnaturally handles the
inherent uncertainty of the clustering procedure. Twoghodds are needed; however,
the authors did not explain how to estimate them in real wapldlications.

Guru and Kiranagi introduced the concept of mutual distan¢&0]. Their idea is
that the dissimilarity ofX to Y is not necessarily the same as the dissimilarity’db
X. Hencedx, .y, anddy,_, x, are both defined. The dissimilarigfx, vy, = (| X;| +
[maz(X;,Y,”) —min(X;",Y;7)])/|Y;|. The total dissimilarity takes into account the
length of X;, Y; and their separabilitylx, y; is the length of the weighted combination
of dx,—y, anddy,_x, such thatlx, y, = |adx,—v, + Bdy,—.x,|. The optimization
method used is hierarchal agglomeration.

Peng and Li[11] summarized dissimilarity measures forirgedata. They catego-
rized dissimilarity measures into traditional and modifiedasures. Traditional meth-
ods only measure distance between the means or median pbthtsintervals; while
modified methods take into account the boundaries or thetateiof the intervals. Itis
easy to see the modified methods are more natural than thigomatimethods with re-
spect to interval data. They reported empirically that rfiedidistance produces more
accurate clustering results than traditional distanceoAhey proposed a two-stage
clustering method. Traditional distance is first used toegetugh structure of clusters,
then the modified distance is then used to generate fine segatasters. This method
saves unnecessary computation so that the scalabilitygeowad. However it is hard
to decide how many clusters to be generated in the first stegmwie real number of
clusters is unknown.

3 Proposed Measure of Dissimilarity

3.1 Dissimilarity between Intervals

The dissimilarity, particularly for interval data, shoulgke into consideration the in-
formation of both the position and the span of an interval P&sg et al. empirically
demonstrated in[11], clustering based on modified distaooasistently improved clus-
tering quality. Our dissimilarity has two parts which exjtly compute the dissimilarity
over the span and relative positions respectively.

Given twop dimensional interval pattern¥ = ([z;,z5], ..., [z, ,z}]) andY =
(lyr,y3 ], - [y, » 7)), the distance betweel andY is a L, distance:
D(X,Y) = 1)
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whered(z;, y;) is the distance on featuied(z;, y;) is a weighted combination of two
components in the form:

d(x;,y;) = a*x (1 — s_span) + 3 * d_pos, (2)

wheres_span measures similarity over the span and thuss_span is the dissimilarity
over the spang_pos is the dissimilarity over the relative positions;and3 are weight
coefficients and satisfyr > 0, 5 > 0 anda + 3 = 1.

3.2 Dissimilarity Components

When calculating dissimilarity over spans, a family of pdfassumed to be associated
with each feature. To simplify the discussion, fétz|¢, o, ...) denote the parameterized
pdf of featurex. We argue this assumption is reasonable. In real world egin,
each feature has its physical meaning. As mentioned indotrition, interval data is
usually used to summarize huge amount of individual obsemnsor to express certain
degrees of (un)certainty of observations[1]. Hence in fizacwe can obtain, from
domain experts or density estimation over individual datgeneral pdf for each feature.
In the case that a general pdf cannot be obtained, a genarasiaa distribution, which
is usually reasonable, or a uniform distribution can be m&sl

After deciding the general form of the pdfz|¢, o, ...), the parameters for the pdf
will be determined for each interval af These parameters can be estimated by interval
boundaries. The interval stands for the range of the vald@shahave an observed
frequency higher than a certain level, meaning the intésuile support of the assumed
pdf. For example, regarding thh interval of featurer, we have:

Pr(z; <z; < x}'\f,o, N /iﬂ f(z|¢,o,...) > 0.99, 3)

wherez; andaz;r are the lower and upper boundaries respectively. The paeasnean
be determined by solving Eq. 3. As an example, the paramaftarsormal distribution,
with meanu and standard deviatian can easily be obtained from the boundariesd
b, by lettingu = (a + b)/2 ando = (b — p)/3. If only a subset of the parameters is
relevant to the interval spans, all pdfs share the samewalitbe irrelevant parameters.
In this way all pdfs have the same general shapes. That jsatkall concave or convex
functions. In this case, only a rough approximation of theartining pdfs is obtained. It
has minor impact on the final results, however, in that i)rakiivals of a certain feature
have the same pdf shape and only the supports differ, andriprimary interest is the
dissimilarity level not the exact forms of the pdfs.

Once the form of the pdf for a particular interval has beerewined, we can
calculate the similarity of the span,span of Eqg. 2, as the overlapping part of the
aligned pdfs over two intervals:

s_span = pdf (/e 00, ) [\ PAFIYIEy 0y o). @)

Thuss_span depends only on the span of the intervals. To calculaipan, imagine
that the two pdfs are moved together so that the two meangapvate motivation of
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calculatingl — s_span is to capture the probabilistic difference of assigning radti-i
vidual observation to different intervals. It is easy to fest1 — s_span € [0,1] and
equalsO when two pdfs have exactly the same shapes. The dissipitarér relative
position is calculated by the ratio of the spatial differelof means to the total range of
the two intervals. Formally,

|mean(x) — mean(y)|

d_pos = (5)

maw(@®,y*) —min(e.y")

Also it is easy to see thatpos € [0, 1]. As an example, Fig. 1. depicts the calculations
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Fig. 1. Calculation ofs_span andd_pos.

of s_span andd_pos for two interval variablesc = ([5,95]) andy = ([1,19]). For
simplicity, the estimated pdfs are Gaussiffr|50,15) and f(y|10,3). In the upper
subplot in Fig. 1, pdfs o andy are moved together as described previously and the
area of the region with vertical barsdsspan. In the lower subplot in Fig. 1, the length
of the solid line is the distance between means and the lesfgtlash-dot line is the
total range of the two intervals.

3.3 Advantages of the Proposed Dissimilarity M easure

Although a few dissimilarity measures proposed in theait@re such as modified dis-
tance in[11] take into account the internal structure ofiivél data, they are heuristic
to some extent. By assuming probability distribution, ayatailistic view of how to uti-
lize the information of interval span can be given. Actuadlyr approach uses a similar
idea as the Kolmogorov-Smirnov test(KS-test), which camuged to test if two pop-
ulations are from the same underlining probability. Indte&doing hypothesis tests,
we directly use the nonoverlapping part of the pdfs as theiditarity caused by the
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difference in spans. In this way, we use more informatioruatite interval length than
other approaches do. In Eq. 2, the dissimilarity of intestialcture has a weight coeffi-
cienta hence it always contributes(f > 0) to the overall dissimilarity even when two
intervals do not overlap at all.

Our method solves the scaling problem described in[8] intarabway. The actual
value we consider is the difference of pdfs and since thewandar any pdf is 1, every
feature has the same scale.

Additionally, our method is flexible in that domain knowledgan be easily incor-
porated when it is available. On the other hand, a normal iboum distribution can be
used to approximate the unknown probability distributibna domain knowledge is
available.

4 Experimental Results

Allocation and hierarchal based clustering methods arenthet widely used approaches
in practice. Thus our experiments use complete-linkagedhirarchal clustering. Hi-
erarchal clustering does not require initial user inpubpseters and is more robust to
the order of patterns than allocation based clusteringnés drawback, however, is
high computational complexity, which has been improveddyieresearchers. The fol-
lowing experiments use the same optimization method witkréint distance measures
and the results are compared. Experiment results are stoowhrée real world data sets
to demonstrate that clustering methods based on our déstaeasure can get mean-
ingful results. In the following, we denote our distance swa byP-distance since our
method differs from others by using the probability dengityction over intervals.

4.1 Fish Data Set

The first experiment is on a fish data set based on 67 fishes wpesis and mercury
concentrations in 6 organs have been recorded. The indatalis a summary of indi-
vidual observations. The data set can be obtaindd ap: / / ww rocq. i nri a.
fr/sodas/ WP6/ dat a/ dat a. ht ml . The data set consists of 12 patterns according
to 12 fish species which are classified into 4 groups, see Pable

In this experimenty and§ are set to 0.2 and 0.8 respectively. Because of lack of
domain knowledge, we assume the estimated pdfs for allfesfre uniform distribu-
tions. Entropy[12] is used to evaluate the clustering dquaiince the correct classifica-
tion is known. Given a particular clusté. of sizen, , the entropy of this cluster is

defined to beE(S,) = % 1 Z—: log % whereg is the number of classes in the
dataset ana’. is the number of patterns of thith class that were assigned to tté
cluster. The entropy of the entire solution is defined to leestim of the individual clus-
ter entropies weighted according to the cluster size,ketyropy = Zle e B(Sy).

We compare the results obtained by using Hausdorff, modifiednodified L5[11]
and P-distance measures. The clustering results and gntatyes are shown in Ta-
ble 3. This table shows that the modifiéd and L, measures performed the same,
Hausdorff outperformed these two distances and P-distpedermed the best. This
result demonstrates the usefulness of our distance med2legse note that we are



Table 2. Fish Data Set.

Name LONG POID Inte/M Esto/M |REGIME
Ageneiosusbrevifili {[22.5, 35.5] [170, 625] |...[[0.23, 0.63] [0, 0.55] 1
Cynodongibbus [19,32] | [77,359] |.., [0,0.5] |[0.2,1.24] 1
Hopliasaimara [25.5, 63] | [340, 5500]|...|[0.11, 0.49] [0.09, 0.4] 1
Potamotrygonhystrix| [20.5, 45] | [400, 6250]|...| [0,1.25] | [O, 0.5] 1
Leporinusfasciatus | [18.8, 25]| [125, 273]|..., [0,0] |[0.12,0.17 3
Leporinusfrederici | [23, 24.5]| [290, 350] |...|/[0.18, 0.24][0.13, 0.58 3
Dorasmicropoeus | [19.2, 31]| [128, 505] |...| [0, 1.48] | [0, 0.79] 2
Platydorascostatus | [13.7, 25]| [60, 413] |...| [0.3, 1.45]| [0, 0.61] 2
Pseudoancistrusbarbatij3, 20.5] | [55, 210] [0, 2.31] |[0.49, 1.36 2
Semaprochilodusvari [22, 28] | [330, 700] |...| [0.4, 1.68]| [O, 1.25] 2
Acnodonoligacanthug [10, 16.2] |[34.9, 154.7|...| [0, 2.16] ([0.23, 5.97 4
Myleusrubripinis [12.3, 18]| [80, 275] [0,0] |[0.31,4.33 4
Table 3. Clustering result on fish data set.

Distance measures Classification Entropy

P-distance |[1 2 3],[56],[4 7 8 10],[9 11 12]0.2500

Hausdorff  |[13],[2],[456 7 8 10],[9 11 12]0.4796

ModifiedL; |[14568911 12],[2],[3 7],[10]0.7500

Modified Lo |[14 5689 11 12],[2],[3 7],[10]0.7500
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not claiming universal advantage of our approach. Actudilé/result of our approach
is the same as the results achieved using adaptivand Hausdorff[4]. However the
approaches in[4] suffer from the common problems of aliocabased methods.

4.2 Fat and Oil Data Set

The second data set we used is the Fat and Oil data set[1].dalasset collects 4
features of oil and fat obtained from 6 plants and 2 animale @ata set is shown
in Table 4. For this experiment and 5 are set to 0.2 and 0.8 respectively and the

Table 4. Fat and Oil data set.

Name

GRA

FRE

10D

SAP

Linseed

[0.930,0.935

[-27.0,-18.0

[170.0,204.0£

[118.0,196.0

Perilla

[0.930,0.937

| [-5.0,-4.0]

[192.0,208.0]

[188.0,197.0

Cotton

[0.916,0.918

] -6.0,-1.0]

[99.0,113.0]

[189.0,198.0

Sesame

[0.920,0.926

] [-6.0,-4.0]

[104.0,116.0]187.0,193.0

Camellig

[0.916,0.917

[-21.0,-15.0

[80.0,82.0]

[189.0,193.0

Olive

[0.914,0.919

| [0.0,6.0]

[79.0,90.0]

[187.0,196.0

Beef

[0.860,0.870

1130.0,38.0]

[40.0,48.0]

[190.0,199.0

o|~|o|o| M w/ N RO

Hog

[0.858,0.864

1[22.0,32.0]

[53.0,77.0]

[190.0,202.0

e

estimated pdfs are normal distributions. As with the presiexperiment, clustering
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results from different distance measures are comparedieBudts are compared based
on the background knowledge. The clustering results arevishin Table 5 and the
dendrogram is shown in Fig. 2.

Table 5. Clustering result on fat and oil data set.

# of Cluster$Distance measurfsnseedPerilld Cottor] SesamiCamelligOlive|BeefHog
k=4 P-distance 1 1 2 2 3 314 1|4
k=4 Hausdorff 1 1 2 2 3 3 4 | 4
k=4 Modified L, 1 2 3 3 3 3|41 4
k=4 Modified Lo 1 2 3 3 3 3|41 4
k=3 P-distance 1 1 2 2 2 2 3|3
k=3 Hausdorff 1 1 2 2 2 2 3|3
k=3 Modified L, 1 1 2 2 2 2 | 3B
k=3 Modified Lo 1 1 2 2 2 2430 3
k=2 P-distance 1 1 1 1 1 1 2 42
k=2 Hausdorff 1 1 2 2 2 2 2|2
k=2 Modified L, 1 1 2 2 2 2 |1 2|2
k=2 Modified Lo 1 1 2 2 2 2 M2

Dendrogram

12

0.8

Distance

0.6

041

0.2

K [
Data index

Fig. 2. Dendrogram of clustering on Fat and Oil data set.

In this experiment we compare the performance of differéstadce measures ac-
cording to different number of clusters, denotedibhe number of clusters is an input
parameter for allocation based methods. However it is lisuaknown in practice and
the results are generated in a trial-and-error manner. élitrie a desired property for
a clustering method to render reasonable results for a rafhipés parameter. Table 5
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shows, again, the modifiel; and L, measures performed the same. They correctly
classified patterns only fak = 3. The Hausdorff method performed better than the
modified.; and L, methods in that it generated the right classification forcses of

k = 3 andk = 4. These three methods all misclassified patterns when ownlglvsters
are needed: 4 plant oils are grouped together with fat fromnals. Only the results
obtained by using P-distance are robust through the thréenspof k. When thek is

set to 4, the result is consistent with the fact that linseetierilla are used for paint,
cotton and sesame are for foods, camellia and olive are fanetics[13]. Whetk is 3,

the result is the same as the one obtained in[1] by GaloisdéaitVhenk is set to 2, the
plant oils are grouped together and separated from the &fatma

4.3 Temperature Data Set

The last experiment was conducted on the Long-Term Instniteh€limatic Database
of the Peoples Republic of China. This Database containsng@tthly temperatures
for 12 months observed in 60 meteorological stations of &Himom 1974 to 1988.
This experiment tests the performance of our method on m&lesata. The correctness
of the clustering results is again measured by entropy.eT@ldhows the entropy of
the clustering using the Hausdorff distance, and the pexgpdsstance with different
levels.

Table 6. Performance on temperature data set.

e 01| 02| 03 [ 04 | 05| 06 | 07| 08| 09 1
Entropy(P-distance().SlBEO.310‘0.30440.292C0.28210.27150.25940.283'0.32450.4231
Entropy(Hausdorff 0.4561

Our method performs better than Hausdorff for all thealues. The optimal result
is obtained whem = 0.7 which indicates that for certain domains(temperature is th
case), the span may be more important than the position aftérals when measuring
(dis)similarities.

4.4 Discussion

From the above experimental results we can see that our agpgets better results
than other methods in some situations. However our methedHhrae parameters to
be tuned. The underlining density function over each irlecan be obtained from
domain knowledge or simply assumed to be gaussian or unifbineidea of providing
« andg is to give users a chance to weight the dissimilarities opansand location.
However the performance of our distance measure dependeahoices ofv andg.
The values of these two parameters were obtained by a triéakaror manner in our
experiments. The stability of clustering algorithms againandg is also tested(only
observations are reported here due to space limitatiohg) optimal results in Table 2
for the fish data set can be obtained over a wide range which is from 0.2 to 1. The
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optimal results in Table 4 for fat and oil data set can be olethiover a small range of
«, which is from 0.1 to 0.2, and one pattern is misclassifiedHercase that = 4 and
0.3 < a < 0.7. How to improve the robustness of the clustering algorithith vespect
to the parameters and how to automatically determine theesadfa and g can be the
topics of future work.

5 Conclusion

In this work, we presented a novel dissimilarity measurérfterval data. This dissim-
ilarity provides a framework to incorporate domain knovgedAlso it gives a proba-
bilistic view of exploring the dissimilarity(similaritypver the interval’s internal struc-
ture. Experiments on clustering algorithms based on the disgimilarity were con-
ducted with promising results. Future work may include ioyimg the robustness and
automatically determining the parameter settings.
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