
Bluetooth Gaming with the Mobile Message Passing
Interface (MMPI)

Daniel C. Doolan and Sabin Tabirca

University College Cork, Ireland

Abstract. The Mobile Message Passing Interface (MMPI) is a library imple-
mented under J2ME to provide the fundamental functions that can be found in
the standard MPI libraries used on Clusters and Parallel Machines. Nodes of a
Cluster are usually connected to one another over a very high speed cabled inter-
connect. Within the mobile domain one does not have the luxury of connecting
the devices with cabling, hence the MMPI library was built to take advantage of
the Bluetooth capabilities that the majority of current mobile devices feature as
standard. Mobile devices inherently have limited processing abilities. The MMPI
library alleviates this problem by allowing the processing power of several de-
vices to be used. Thus one can solve problems that a single device would be
incapable of doing within a reasonable time frame. This paper discusses how
the MMPI library can be applied to the application domain of Bluetooth enabled
mobile gaming.

1 Introduction

The world of gaming is an ever expanding realm of the software sector. A myriad of con-
sole based game stations are available from the Playstation 2 and Playstation Portable to
the X Box, and recently arrives Playstation 3. The mobile gaming market is also becom-
ing ever more popular pass time for consumers. The market is driving phone users to
constantly upgrade their phones and as such more and more people are purchasing high
end phones capable of running games. The majority of phones support the execution of
J2ME [1] applications. This however still leaves the developer with several problems
such as varying screen sizes, and differences in how the virtual machine is implemented
on across devices. Some of the API’s may be device specific and the audio capabilities
vary from model to model. The sales of Java based games are ever on the increase, this
is driven by the fact that the process of installing a Java game is very straight forward.
Mechanisms such as over the air provisioning (OTA) and WAP allow users to quickly
and easily download the latest games from the content providers.

Games are generally classified into several genres that reflect the role of the gaming
experience. These classifications may include: Strategy, Driving, Puzzle, Role Playing,
Sports, Action and Adventure. Wang et. al [2] describe a new classification framework
specifically for mobile peer to peer gaming. Within this classification they have broken
down games into two distinct categories: Updating and User Interaction. The Updating
dimension focuses on the updating of data between peers. This is divided into three

C. Doolan D. and Tabirca S. (2007).
Bluetooth Gaming with the Mobile Message Passing Interface (MMPI).
In Proceedings of the 1st International Joint Workshop on Wireless Ubiquitous Computing, pages 74-85
DOI: 10.5220/0002427400740085
Copyright c© SciTePress



subcategories: U1 Asynchronous, U2 Synchronous, U3 Real-time. The other dimen-
sion describes the type of user interaction, be it: I1 Controlled, I2 User Interaction, I3
Automatic Triggered or I4 Automatic. The main results of the work is that categories
I1, I2 and U1, U2 are well supported under current Bluetooth enabled mobile devices.

1.1 Motivation

Originally the MMPI library was designed to enable parallel processing across several
mobile devices connect together over a piconet network. All Bluetooth [3] [4] based
applications have large sections of similar code (for example Device and Service Dis-
covery). One must also manage a whole host of other details such as InputStreams and
OutputStreams to achieve communication between devices. The MMPI library com-
pletely removes the need for writing Bluetooth specific code, hence one can focus on
the topic at hand. As the library simplifies the inter-device communications process, it
may be used for other purposes besides parallel computing applications. Thus it was
decided to apply the library to the area of Bluetooth gaming [5].

Wang et. al [2] discuss that Real time updating of data over existing Bluetooth
devices is not well supported. This paper describes how the MMPI library may be used
to allow for the real time updating of multiplayer games as user interaction occurs across
devices within the network.

The key contributions of this paper are the presentation of new data concerning
the MMPI library. This relates to the metrics provided regarding the World creation
times and the transmission times for communication. A template for the development
of multiplayer games is presented, and a practical example of its usage discussed.

1.2 Key Terms and Background

The terms “World”, “Master” and “Slave” are used continually throughout this paper,
therefore a clear understanding of these terms are critical to understand the context of
this paper.

The “World” is used in standard MPI terminology to represent the communications
world, this is the collection of nodes (processors) that make up the collective unit of the
parallel machine. Every processor within the collective unit is capable of communicat-
ing with every node within the “World”.

Client / Server architectures use “Master” and “Slave” the differentiate between the
controlling node and the worker nodes. Bluetooth technology is based on this architec-
ture. The creation of a Bluetooth network of more than two devices will yield a Star
network topology. In this form of network the “Master” is capable of communicating
with any of the “Client” nodes. However, a Client device is unable to directly commu-
nicate with another Client device.

The MPI implementations found on Cluster, have an architecture where all nodes
are equal. Every node is capable of communicating directly with every other node.
Thereby the architecture is a fully interconnected mesh. In many MPI applications
however a node called the “Root” node often controls the program execution. Paral-
lel graphics is an excellent example of this where all of the actual drawing is carried out
on the root node.

75



The MMPI system runs on top of Bluetooth, therefore the underlying technology is
essentially Client / Server in nature. The MMPI system creates a fully interconnected
mesh of all the devices in the “World”, allowing each device to communicate directly
with every other device. The only time that the Client / Server architecture is apparent is
when an MMPI application is started, as it is necessary to define devices as Client and
Servers to allow the Device Discovery process to execute. In MPI the manner in which
the lines of communication are established is completely hidden from the developer.

1.3 Overview of Bluetooth Gaming

Bluetooth gaming is largely an under developed sector of the mobile gaming market.
A chief reason for this is that only mid to high end mobiles come with Bluetooth as
standard. Within this segment of the mobile market, many of these devices can have dif-
ficulty in communication because of differing implementations on the Bluetooth stan-
dard. Many devices do not fully support the standard, allowing for only a few devices
to be connected rather than the eight defined as the maximum for a piconet network.

Mobile gaming is a very competitive market, therefore one must guarantee that any
game developed is capable of running on as many devices as possible without problems
to ensure maximum return on the capital invested in the project. Due to unreliability
and the small market of Bluetooth devices, it is simply not technically of financially
viable to develop multiplayer bluetooth games. However as with all technologies they
are continually improving, and perhaps in the not too distant future multiplayer mobile
games will rival the ferocious appetite for online multiplayer games that we see on the
Internet today.

2 Mobile Parallel Computing

2.1 Message Passing

Since it’s introduction in 1992 parallel programming has long benefitted from the Mes-
sage Passing Interface (MPI). MPI is a library specification for message-passing, pro-
posed as a standard by a broad group of vendors, implementers and users [6].

MPICH is one of the most well known freely available MPI implementations cur-
rently available [7]. MPI systems are usually based on the C or Fortran programming
languages. Several Java based implementations are in existance (mpiJava) [8]. The mpi-
Java implementation is an object-orientated Java interface to the standard MPI libraries.
It is implemented as a set of Java Native Interface wrappers to native MPI packages. An
all Java example is Message Passing in Java (MPJ) [9] [10].

2.2 MMPI and Parallel Computation

The primary purpose of MMPI [11] was to produce an MPI like system for mobile de-
vices. This abstracts the programmer from the Bluetooth communications libraries and
allows for more productive development of the task at hand. The MMPI libraries speeds
up computationally expensive tasks, by means of parallel processing. One example of

76



its usage in this regard is the computation Mandelbrot Set in parallel. This is a classical
application of parallel computation [12], and is described as an “embarrassingly parallel
computation” as each node can process a distinct section of the image without reliance
on data from other nodes. An example of its usefulness may be seen in the fact that
to generate a 200 pixel square Mandelbrot Set on a Nokia 6630 device requires almost
one minute of processing. Generating the image with two nodes achieves a processing
time of just over 30 seconds while four nodes allow for computation in approximately
22 seconds, using a Uniform Block approach.

Devices such as the Nokia 6630 and 6680 are powered by an ARM based processor
running at 220Mhz [13]. This gives a computation capacity of approximately sixty mil-
lion operations per second. With more powerful processors in constant development the
mobile device will become the indispensable tool of the not too distant future, capable
of more or less all the functions one would expect from a standard computer system.
The announcement by ARM in October 2005 of their 1Ghz Cortex-A8 processor is a
clear indication of the future of mobile computation [14] [15] [16]. Unlike previous
ARM chips, the new Cortex-A8 has a superscalar architecture [17]

2.3 Initialising the World

Bluetooth itself is inherently a Client / Server based system. Therefore the underlying
core of the MMPI library uses the same model. This is hidden from the developer who
may be using the library. As with MPI, should it be necessary for one node to commu-
nicate with another, the Rank (identifier) of the node is the only variable that needs to
be known.

The used of Bluetooth technology necessitates the need for Device Discovery, where
by the Master (Controller) device discovers other devices within its catchment region.
To create a World with four devices it is necessary to start three of them up in “client”
mode before starting the “master” that will carry out the discovery process. In total
their are three distinct phases in establishing a Bluetooth connection: Device Discovery,
Service Discovery and the opening of Data streams.

The entire process of establishing a connection between two or more devices is
a very slow process often taking twenty to twenty five seconds to complete. This is
a detrimental factor to the uptake of multiplayer wireless gaming. People generally
only play a mobile game for a few minutes, often while waiting for a bus, or while
advertisements are on during a film on tv. Given that a game may last only two or
three minutes having to wait for twenty five seconds or more just for the underlying
communications system to be established is a huge percentage of the actual game play
time. As an example a game may last for two minutes and require 25 seconds to initialse,
therefore this accounts for almost 21% of the game playing time.

Of the three phases in establishing a connection Device Discovery takes the longest.
According to the Bluetooth specification the inquiry phase must last for 10.24 seconds
[18]. However in reality this figure is usually several seconds more. Scott et. al [19]
discuss in their paper an alternative means of discovering devices by using Visual Tags.
Under this scheme each device would have a small marker attached to the device. Using
the built in camera one can retrieve an image of the tag which encodes a 48-bit Blue-
tooth Device Address (BD ADDR) and 15 bits of application specific data. Thus one

77



need simply point a device to a tag to retrieve the device address. This greatly reduced
the time it takes. Experiments showed the time to get the BD ADDR with this new
system was on average 0.56 seconds compared with 13.57 seconds for standard Device
Discovery. The implementation was developed in C++. Another use of Visual Tags is
from a company called OP3 [20] that offers a tool called ShotCodes that acts as an off
line weblink. Once captured by the camera it will instantly take users to the desired
location on the Internet.

3 Devices

2 Devices

Establishing Connections

Service Search

Device Discovery

Total Time

0

5000

10000

15000

20000

25000

P
ro

c
e
s
s
in

g
 T

im
e

Number of Devices Operation

Fig. 1. World Creation Times for two and three Devices, processing time in milliseconds.

The Bluetooth standard specifies that a Bluetooth master can connect to seven Blue-
tooth slaves at the same time. This however seems to vary from device to device. Under
tests carried out by Wang et. al [2] the Sony Ericsson P900 was capable of connecting
to only one device the Siemens S65 could connect to three, while the Nokia 6600 was
capable of connecting to seven devices as per the specification.

Figure 1 shows the times required to establish a World with both two and three de-
vices. The tests were carried out with the devices in close proximity < 0.5 meters apart.
A desktop machine was also within the Bluetooth range of the Master device. The dis-
covery time in the case of the World with two devices required on average 12,019ms
while the latter required 12,926ms. As expected the process of service discovery re-
quired some extra time for three devices over that of a World with two (6,109.5ms and

78



4,367.25ms respectively). The final stage of the process is the establishment of the data
communication streams, the World with three devices required 2,136.5ms while the
World of size two required 1,251ms. In the case of a World with two nodes the Master
was a Nokia 6680 and the Slave a Nokia 6630. The world with three nodes again had
the same device for the Master and both a 6680 and 6630 as the slave devices.

The creation of the data streams in the case of a World with three devices took
significantly longer than that of the World with two, this is due to the establishment of
additional Server and Client connections. This was necessary to create a fully connected
mesh network as opposed to the standard Bluetooth style (star) network topology of a
piconet. Hence the extra time represents the establishment of a Server connection on
device 1 and the communication to device 0 that it has been established. As each Client
can have many Server connections listening for Clients to connect, it is essential to
synchronize the establishment of these connections. The first step is for device 1 to
establish a Server connection. This device will then send a message back to the root
node. Included in the message is the address of the newly created Server connection.
The root will then forward the message to the required Client (Client 2). On receiving
the message Client 2 can then open a connection to the Server of Client 1.

2.4 Communication

In MMPI Point to Point communication is carried out using the send(. . .) , recv(. . .)
methods, in the same manner as MPI itself. The sending and receiving of data is carried
out by specifying the device number to which data is to be sent, and the device number
from where to data will be received from. In MPI programming a Send on one node
must match up with a Receive on the destination node. Hence if you send some data
from device 0 to device 1, device 1 must have a corresponding recv(. . .) method with
device 0 specified as the device to receive from. Data is sent in the form of an Array
of data which is in turn passed to the MMPI methods in the form of an standard java
Object. The parameters required by these methods include: the input or output buffers,
the starting position of the array, the number of elements to send or receive, the data
type and the identifier of the node with which data will be sent to or received from.

One can achieve global communication with all nodes of the world by using a for
loop and sending the data using the send(. . .) , recv(. . .) to each device. This is where
collective communication methods are of use where by a node can for example send
some data to all devices with just a single method call. This may be achieved by using
methods such as Scatter, Gather and Broadcast.

A Logical Link Control and Adaptation Protocol (L2CAP) packet can have a maxi-
mum of 216−1 bytes of data payload [21]. Asynchronous Connection Less (ACL) links
have a maximum payload size of 339 bytes [22]. The Radio Frequency Communication
(RFCOMM) (used in the MMPI library) layer emulates RS-232 serial ports and serial
data streams. RFCOMM relies on L2CAP for multiplexing multiple concurrent data
streams and handling connections to multiple devices. The majority of Bluetooth pro-
files use this protocol due to it ease of use over direct interaction with the L2CAP layer.

The testing of the communication times between two devices was carried out in two
differing manners. In the first example a flag is sent to the receiver device to indicate
that it should get the start time and begin receiving the actual data. On receipt of all the

79



Table 1. Communication Times for send(. . .) , recv(. . .) , time is milliseconds, data size in Bytes,
Tested using Nokia 6630’s.

Data Size Time
200 15
400 16
800 31
1,200 32
2,500 47
5,000 109
10,000 204

data the clock is again inspected and the communication time established. In this case
the sending of data containing packet sizes of 4, 20 and 40 bytes all came back with a
communication time of zero milliseconds.

Even for larger packet sizes the communication time is still very positive for exam-
ple 200 bytes of data took 15ms. Even updating the graphical screen at a frame rate of
20fps, this still allows 50ms for the gathering of current data from other devices in the
World. Table 1 shows the results for various packet sizes (up to 20000 bytes). The data
being sent in these test cases were Integers hence 10 integers = 40 bytes. The Sender
device was a Nokia 6680 and the receiver was a Nokia 6630.

Another set of tests that were carried out were of a more global nature where by data
was sent to a receiver which in turn sent an acknowledgement back to the sender. This
was tested using two (6680, 6630) and also three (6680 x2, 6630 x1) devices. Such a
communication wouldn’t typically be necessary for Bluetooth gaming, as generally one
may just need to send the updated positions of a character for example. Table 2 shows
the communications times.

In the case of two devices the 6680 was the Master node and the 6630 was a client
node. For the World of three devices the 6680 was again the Master with the 6630 again
being a client along with another 6680 device. Even for sending 40 bytes of data a time
of 31ms still gives leeway for providing responsive graphics to all devices of the world.
One may also note that the communication times for both two and three devices for data
packets under 40 bytes are quite similar. These times are again the averages for several
test runs.

Table 2. Communication Times for send(. . .) , recv(. . .) , time is milliseconds (Send + Ack), data
size in Bytes.

Data Size 6630 6630 & 6680
4 31 32
20 32 31
40 32 32
200 47 63
400 47 109
800 47 141
1,200 52 187

80



2.5 MMPI for Bluetooth Gaming

The communications involved for the Bluetooth game (discussed in Section 3) requires
the communication of the location of Keys, and the positions of Player Characters. In
the case of a simple two player game one can use send(. . .) and matching recv(. . .)
methods to achieve communication (Listings 1.2, 1.3). For true multiplayer gaming the
use of global communication is necessary (broadcasting).

Listing 1.1 shows an of a typical communications Thread for the receiving of data.
The first data to be received is simply a flag to indicate what type of data to receive
next, be it character positions or key positions. For the recv(. . .) method to function
they must be matched with send methods. Thus the sending of data happens in two
distinct locations within the program.
for(;;){
if(rank==0){
mpiNode.recv(recvOperationType, 0, 1, MMPI.SHORT, 1);
if(recvOperationType[0] == POSITIONMOVEMENT){
mpiNode.recv(posBuffer, 0, 2, MMPI.SHORT, 1);
coordX[1]=posBuffer[0];
coordY[1]=posBuffer[1];

}
}else{
mpiNode.recv(recvOperationType, 0, 1, MMPI.INT, 0);
if(recvOperationType[0] == POSITIONMOVEMENT){
mpiNode.recv(posBuffer, 0, 2, MMPI.SHORT, 0);
coordX[1]=posBuffer[0];
coordY[1]=posBuffer[1];

}else{
mpiNode.recv(recvKeyLocations, 0, 10, MMPI.SHORT, 0);

}
}

}

Listing 1.1. Example of recv(. . .) from within a Thread.

Sending of character positional information. When a user presses a key the key-
Pressed method is called. The position of the character on the users screen is updated,
and consequently the other device needs to be informed of this position change. There-
fore if the device is the Master then the positional information is transmitted to the
Client, and vice versa.
protected void keyPressed(int keyCode) {
if(rank==0){
mpiNode.send(sendOperationType, 0, 1, MMPI.SHORT, 1);
mpiNode.send(posCoords, 0, 2, MMPI.SHORT, 1);

}else{
mpiNode.send(sendOperationType, 0, 1, MMPI.SHORT, 0);
mpiNode.send(posCoords, 0, 2, MMPI.SHORT, 0);

}
}

Listing 1.2. Example of keyPressed().

The process of updating key positions is carried out by the controlling device (Mas-
ter). Whenever the key positions are updated the new positions must be transmitted to
the Client device so both game screens remain synchronised.

By combining the sending operations of both the updateKeys() and keyPressed()
methods the data transmission operations are perfectly matched with the corresponding

81



receive operations carried out within the receive Thread. The example listings above
demonstrate that only a small amount of data is transmitted at any instant. This allows
for a very short latency between transmission and receipt of the data. In the case of
positional information an array of size two is sent. This occurs at every keyPressed
event. The sending of an array of size ten is carried out every second for the updating
of key positions.

updateKeys(){
setNewKeyPositions();
mpiNode.send(sendOperationType, 0, 1, MMPI.SHORT, 1);
mpiNode.send(sendKeyLocations, 0, 10, MMPI.SHORT, 1);

}

Listing 1.3. Example of updateKeys().

2.6 MMPI Gaming Template

Many games have a similar structure. They all need screens / canvas’s for the Game
Setup and the Game Conclusion. A GameThread class may be provided to run the game
animation. Thus the only classes that need significant modified are the class directly
dealing with the display of the graphics. These may be summarised as GameCanvas
and GameLayerManager classes. By combining the MMPI system with this structure
one can achieve a template that allows for a wide selection of games to be rapidly
developed (Figure 2).

GameThread

GameMidlet

GameCanvas

GameLayerManager

GameSetup

GameOverMMPI

Fig. 2. Template for MMPI Gaming.

3 The Bluetooth Game

The game that was implemented with the library was that of a maze game. To play the
game each player must first select the appropriate mode to play the game in be it Master
or Client. The next few screens allow the user to choose a character and and give the
character some attributes (Figure 3). Once the character has been fully created the game
itself may be played. The objective of the game is for the user to guide their character
through the maze and get to the end point (the room with the treasure chest). The player
who reaches the treasure chest first is declared the winner. To complete a level users
must collect keys so they can pass through the doors and into the adjoining room. To

82



win a level it is necessary to have accumulated five keys, with which the treasure chest
may be unlocked and the level concluded.

Fig. 3. Initial Character Configuration Screens.

Two distinct properties must be communicated between the devices. These comprise
the positions of the characters, and the positions of the keys (Figure 4). The Master
device controls the position of the keys which are generated randomly. Each key staying
in the same position for 5 seconds before moving.

Fig. 4. The Maze Displayed on two Devices.

The key positions are changed every second hence the new positions must be com-
municated to the Client devices. The most time critical values are that of the positions
of the Characters, as it is necessary that the characters appear at the same location on
all the devices the moment a player moves. Therefore the moment a player moves a
character, the positional information must be transmitted to all the other devices within
the World.

83



In the initialisation phase of the game it is necessary for all devices to tell every other
device what character has been chosen so the correct characters can be displayed on
screen. At the conclusion of a level a message must be sent to all the devices to indicate
that somebody has won the level, hence prepare to receive new random positions from
the master device.

4 Conclusion

This work has shown that the MMPI library is suitable not only for Parallel program-
ming over Bluetooth networks, but that it can also be successfully applied to the domain
of wireless gaming on mobile devices. It has been shown that one can use the MMPI
library to produce a game that provides up to date graphics to each of the users playing
the game. To ensure all user devices display the exact same screens it is essential that the
amount of data transmitted is kept to a minimum so that latency issues in the updating
of the graphical displays are kept to a minimum. Data has been presented to show the
creation time of an MMPI World, and the communication times for a varying selection
of data transmission sizes. In summary the MMPI library provides the developer with a
very simple to use interface for the development of Bluetooth enabled games, without
the need to develop any Bluetooth specific code themselves.

Acknowledgements

Research funding source: ”Irish Research Council for Science, Engineering and Tech-
nology”, funded by the ”National Development Plan”. We would also like to thank
Tracey J. Mehigan for her work on the Bluetooth game.

References

1. Microsystems, S.: Java 2 platform, micro edition (j2me). http://java.sun.com/j2me/
index.jsp (2007)

2. Wang: Issues related to development of wireless peer-to-peer games in j2me. In: Inter-
national Conference on Internet and Web Applications and Services (ICIW 20006), IEEE
Computer Society Press (2006)

3. Bluetooth.com: The official bluetooth website. http://www.bluetooth.com/ (2007)
4. Bluetooth.org: The official bluetooth membership site. http://www.bluetooth.org/

(2007)
5. Long, B.: A study of java games in bluetooth wireless networks. Master’s thesis, Department

of Computer Science, University College Cork (2004)
6. MPI: The message passing interface (mpi) standard. http://www-unix.mcs.anl.gov/

mpi/ (2007)
7. MPICH: Mpich - free implementation of mpi. http://www-unix.mcs.anl.gov/mpi/

mpich/ (2007)
8. HPJava: mpijava. http://www.hpjava.org/mpiJava.html (2007)
9. DSG: Message passing in java (mpj) project. http://dsg.port.ac.uk/projects/mpj/

(2007)

84



10. M. Baker, D.C.: Mpj: A proposed java message-passing api and environment for high per-
formance computing. In: In Proceedings of IEEE International Parallel & Distributed Pro-
cessing Symposium. (2000)

11. Doolan, D.C., Tabirca, S.: Mobile parallel computing. In: Fifth International Symposium on
Parallel and Distributed Systems. (2006) 161–167

12. Book, M.: Parallel fractal image generation. http://www.mattiasbook.de/papers/
parallelfractals/ (2007)

13. Freak, S.: Nokia 6680 is loosing the battle to 6630. http://www.symbian-freak.com/
news/0305/6680.htm (2006)

14. ARM: Arm cortex-a8. http://www.arm.com/products/CPUs/ARM_Cortex-A8.html
(2005)

15. ARM: Arm introduces industry’s fastest processor for low-power mobile and consumer
applications. http://www.arm.com/news/10548.html (2005)

16. Pilato, F.: Arm reveals 1ghz mobile phones processors. http://www.mobilemag.com/
content/100/102/C4788/ (2005)

17. Robinson, D.: Arm chips to power 1ghz mobiles. http://www.vnunet.com/itweek/
news/2143741/arm-chips-power-1ghz-mobiles (2005)

18. Bluetooth-SIG: Annex a (normative): Timers and constants. In: Bluetooth Specification
Version 1.1. (2001)

19. Scott, D.: Using visual tags to bypass bluetooth discovery. In: ACM Mobile Computing and
Communications Review (MC2R). (2005)

20. OP3: Shotcodes. http://www.op3.com/en/technology/shotcodes (2007)
21. Klingsheim, A.: J2me bluetooth programming. Master’s thesis, Department of Informatics,

University of Bergen (2004)
22. Nokia: Games over Bluetooth: Recommendations to Game Developers. Nokia (2003)

85


