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Abstract. In the context of pose robust face recognition, some approaches in the
literature aim to correct the original faces by synthesizing virtual images facing
a standard pose (e.g. a frontal view), which are then fed into the recognition sys-
tem. One way to do this is by warping the incoming face onto the average frontal
shape of a training dataset, bearing in mind that discriminative information for
classification may have been thrown away during the warping process, specially
if the incoming face shape differs enough from the average shape. Recently, it
has been proposed a method for generating synthetic frontal images by modifi-
cation of a subset of parameters from a Point Distribution Model (the so-called
pose parameters), and texture mapping. We demonstrate that if only pose param-
eters are modified, client specific information remains in the warped image and
discrimination between subjects is more reliable. Statistical analysis of the veri-
fication experiments conducted on the XM2VTS database confirm the benefits of
modifying only the pose parameters over warping onto a mean shape.

1 Introduction

It is well known that the performance of face recognition systems drops drastically
when pose differences are present within the input images, and it has become a major
goal to design algorithms that are able to cope with this kind of variations. Some of
these approaches aim to synthesize faces across pose in order to cope with viewpoint
differences. One of the earliest attempts was done by Beymer and Poggio [1]: from a
single image of a subject and making use of face class information, virtual views facing
different poses were synthesized. For the generation of the virtual views, two different
techniques were used: linear classes and parallel deformation. Vetter and Poggio also
took advantage of the concept of linear classes to synthesize face images from a single
example in [8]. Blanz et al. employed the 3D Morphable Model [6] to synthesize frontal
faces from non frontal views in [7], which were then fed into the recognition system.

In this same direction, other researchers have tried to generate frontal faces from non
frontal views, like the works proposed by Xiujuan Chai et al. in [4], via linear regression
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in each of the regions in which the face is divided, and in [Beve a 3D model is used.
More recently, Gonazlez-Jineénez and Alba-Castro [9] have proposed an approach for
generating frontal faces via modification of a subset of p&tars from a Point Dis-
tribution Model (so-called pose parameters) and texturppimg. Another possibility

is to warp the face image onto a frontal standard shape {eg@verage frontal shape
of a training dataset) prior to recognition. This solutisradopted by methods that use
holistic features for face representation (e.g. Eigersg2p, and that need all images to
be embedded into a constant reference frame. For exampigis.et al. [10] deformed
each face image to the mean shape using 14 landmarks, exts@pe and appearance
parameters and classified using the Mahalanobis distance.

The difference between the synthetic images obtained wsangethods described
in [9] and [10] relies on the generation of the synthetic fadishapes onto which the
original faces must be warped. It seems rather safe to thiakwarping faces onto
a mean shape may provoke discriminative information redngcspecially if the in-
coming face shape differs enough from the average shapé&igae® 1). On the other
hand, [9] did not analyze whether the modification of the pus@meters had any in-
fluence on non-rigid factors (such as expression and igg¢narhich could provoke non
desirable effects in the synthesized faces. The goal opdper is two-fold:

1. Show that, if the training set is chosen appropriatelggguarameters do not contain
important non-rigid (expression/identity) informatiand

2. Propose an empirical comparison of the synthetic imabe&sred with the meth-
ods described in [9] and [10] respectively. Obviously, wedea non-subjective
way to compare the two approaches and, to this aim, we coeddate verifica-
tion experiments on the XM2VTS database [11] using Gabariilg for feature
extraction.

iy

Fig. 1. Images from subject 013 of the XM2VTS. Left: Original image. Rightaga warped
onto the average shape. Observe that subject-specific informatidiebaseduced (specially in
the lips region).

The paper is organized as follows. Next section briefly rgsi®oint Distribution
Models, and introduces the concepts of Pose Eigenvectorf®age Parameters. The
two techniques used to generate frontal face images arergegsin Section 3. Section
4 shows the results of the verification experiments conduatethe XM2VTS database
[11]. Finally, conclusions are drawn in Section 5.
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2 A Point Distribution Model For Faces

A point distribution model (PDM) of a face is generated fronsed of training ex-
amples. For each training imadge, N landmarks are located and their normalized
coordinates (by removing translation, rotation and scate)stored, forming a vector
X; = ($1i7 X2y e o s TNy Ylis Y2y - - 7yNi>- The pair(acji, yﬂ) represents the normal-
ized coordinates of th¢gth landmark in the-th training image. Principal Components
Analysis (PCA) is performed to find the most important modeshape variation. As a
consequence, any training shapecan be approximately reconstructed:

X; = X + Pb, 1)

whereX stands for the mean shafe= [¢1]¢2| . .. |#;] is a matrix whose columns are
unit eigenvectors of the firstmodes of variation found in the training set, dnd the
vector of parameters that define the actual shapg; 080, thek-th component fronip
(bx, k = 1,2,...,t) weighs thek-th eigenvector;. Also, since the columns dt are
orthogonal, we have th&" P = I, and thus:

b=P" (X; - X), 2)

i.e. given any shape, it is possible to obtain its vector shpeetersh. We built a 62-
point PDM using manually annotated landmarks (some of themewgrovided by the
FGnet project, while others were manually annotated by ourselves). Ei@ushows
the position of the landmarks on an image from the XM2VTS blase [11].

Fig. 2. Position of the 62 landmarks used in this paper on an image from the XM2Miehase.

2.1 Pose Eigenvectors and Pose Parameters

Among the obtained modes of shape variation, the authorg]adi¢ntified the eigen-
vectors that were responsible for controlling the appacbanges in shape due to rigid
facial motion. However, it was not analyzed whether the riication of these pose pa-
rameters had any influence on non-rigid factors (such agesjmn and identity), which

1 Available atht t p: / / waw pri ma. i nri al pes. fr/ FGnet/ dat a/ 07- XMRVTS/ xn2vt s- mar kup. ht ni
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could provoke non desirable effects on the synthesizedfdnehis section, we show
that if the training data are appropriately chosen, thetiled pose parameters do only
account for pose variations.

Clearly, the eigenvectors (and their relative positionfaoted after PCA strongly
depend on the training data and hence, the choice of the déeanmged to build the PDM
is critical. In fact, if all training meshes were strictlyofital, there would not appear any
eigenvector explaining rotations in depth. However, if we sure that pose changes
are present in the training set, the eigenvectors explitiose variations will appear
among the first ones, due to the fact that the energy assodiatggid facial motion
should be higher than that of most expression/identity gharfonce again, depending
on the specific dataset used to train the PDM). With our it turned out thap,
controlled up-down rotations (see Figure 3) while (Figure 4) was the responsible
for left-right rotations. Hence, given a me&hwith a vector of shape parametdrs=
[b1,b2, ..., bt]T, we can change the valuesigfandb, (i.e. the pose parameters), and
use equation (1) to generate a synthetic mgsliacing a different pose.

A major problem, inherent to the underlying PCA analysisieseon the fact that
a given pose-eigenvector may not only contain rigid faciation (pose) but also non-
rigid (expression/identity) information, mostly depemglion the training data used to
build the PDM. The reconstructed shapes in Figure 4, shoirxettpaession changes are
not noticeable when sweepinhg. Regardingp,, it has been shown [15] that there exists
a dependence between the vertical variation in viewpoinddimg) and the perception
of facial expression, as long as faces that are tilted fats/éleftmost shape in Figure
3) are judged as happier, while faces tilted backwardsfrigkt shape in Figure 3) are
judged as sadder. Apart from this subjective perceptionpregide visual evidence in
the next section suggesting that the influence of non-rigidioirs withing; and¢, is
small.
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Fig. 3. Effect of changing the valué; on the reconstructed shapes. controls the up-down
rotation of the face.
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Fig. 4. Effect of changing the valué, on the reconstructed shapes. controls the left-right
rotation of the face.
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2.2 Experiment on a Video-sequence: Decoupling of Pose andaifession

In order to demonstrate that the presence of non-rigid faetihin the identified pose-
eigenvectors is minimal, we used a manually annotated vsgeoience of a man during
conversatiofi (hence, rich in expression changes). For each frérmethe video, the
vector of shape parameters

b(f)=[b1(f),b2(f),-- b ()"

of the corresponding meski(f) was calculated and splitted into the rigid (pose) part
bpose(f) = [bl (f)’b2 (f)707"'70]T

and the non-rigid (expression) part

beﬂﬁp(f):[O7Oﬂb3(f)7"'7bt(f)]T

Finally, we calculated the reconstructed meskes.. (f) andX.,, (f) using equa-
tion (1) withb,es. (f) andb.., (f) respectively. IdeallyX,.s. (f) should only contain
rigid mesh information, whileX.,, (f) should reflect changes in expression and con-
tain identity information. As shown in Figure 5, it is cledrat although there exists
some coupling (specially in the seventh row with small egebioending inX s (f)).
Xeap(f) is responsible for expression changes and identity infiomgface shape
is clearly encoded iX.,,(f)) while X,.s.(f) does mainly contain rigid motion in-
formation. For instance, the original shapes from the fingt second rows share ap-
proximately the same pose, but differ substantially inrtegpression. Accordingly, the
Xpose's are approximately the same while the,,,’s are clearly different.

3 Synthesizing Frontal Faces

Given two faced 4 andIg to be compared, the system must output a measure of simi-
larity (or dissimilarity) between them. Straightforwarkture comparison betwedn
and/z may not produce desirable results as differences in podd beuwuite impor-
tant. In this section, we describe the two approaches peapiog10] and [9] for frontal
face synthesis. These two methods share one common fegittge:one face image,

the coordinates of its respective fitted meX&h.and a new set of coordinates;, a syn-
thetic face image must be generated by warping the origatd bnto the new shape.
For this purpose, we used a method developed by Bookstejnija8ed on thin plate
splines. Provided the set of correspondences betweand X5, the original face is
allowed to be deformed so that the original landmarks areasdw fit the new shape.

Zhttp://wwwwprima.inrial pes.fr/FGnet/data/01- Tal ki ngFace/
tal ki ng_face. htni
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Fig. 5.Experiment on the video sequence. Each row shows, for a givereffathe original shape
X (f) and the reconstructed shapé& ¢, (f) andXpose (f)) Usin@beqp (f) andbyose (f) respec-
tively. Clearly, Xc.,(f) controls expression and identity whifé,.s.(f) is mostly responsible
for rigid changes.

3.1 Warping to Mean Shape (WMS) [10]

Once the meshes have been fitted faand g, both faces are warped onto the average
shape of the training seX,, which corresponds to setting all shape parameters to.0, i.e
bs = bg = 0. Thus, the images are deformed so that a set of landmarksamedm

to coincide with the correspondent set of landmarks on tleeame shape, obtaining
I, andIz. The number of landmarks used as “anchor” points is anotaéable to be
fixed. For the experiments, we used two different sets:

— The whole set of 62 points.
— The set of 14 landmarks used in [10].

As the number of “anchor” points grows, the synthesized iniagmore likely to
present artifacts because more points are forced to be miodaddmarks of a mean
shape (which may differ significantly from the subject’sjsta On the other hand, with
few “anchor” points, little pose correction can be made.
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3.2 Normalizing to Frontal Pose and Warping (NFPW) [9]

Once demonstrated that the pose parameters do only acooyrtse variations (Sec-
tions 2.1 and 2.2), we suggest that normalizing only thesampaters should produce
better results than warping images onto a mean shape, aasomng are not modifying
identity information. In Figure 6, we can see a block diagwdrthis method. Givelb 4
andbp, only the pose parameters are fixed to the typical valuewofdi faces from the
training set (as the average shape corresponds to a frantlwe fixed pose parame-
ters to zero, i.eb’’** = b'y** = 0). New coordinates are computed using Equation 1,
and virtual images] 4 and/, are synthesized.

Input image

Pose
2 Normalization
k- N Face Alignment ‘
L “ [r-j S— 7E

Training

- -

ONLINE

OFFLINE

Pose H Final
Normalization [~ 3 s
: Comparison
2 __:‘ TPS Warping e

Face Alignment

Fig. 6.Block diagram for pose correction usihirPW. After face alignment, the obtained meshes
are corrected to frontal posBdse Normalization block), and virtual faces are obtained through
Thin Plate Splines (TPS) warping. Finally, both synthesized images aneagerh It is important
to note that the processing of the training image could (and should) beafftine, thus saving
time during recognition.

4 Face Authentication on the XM2VTS Database

Using the XM2VTS database [11], authentication experimerre performed on con-
figuration | of the Lausanne protocol [12] in order to confitme advantages of modi-
fying only pose parameters over warping onto a mean shape.

4.1 Feature Extraction

Holistic approaches such as eigenfaces [2] need all images émbedded into a con-
stant reference frame (an average shape for instancejjén rrepresent these images
as vectors of ordered pixels. This constraint is violatedH&yfaces obtained through
NFPW, leading us to the use of local features: Gabor jets as defingd] are ex-
tracted at each of the pose corrected mesh coordinatesa@ned $or further compari-
son.



145

4.2 Database and Experimental Setup

The XM2VTS database contains face images recorded on 29&cssi200 clients, 25
evaluation impostors, and 70 test impostors) during fossisas taken at one month
intervals. The database was divided into three sets: drigpget, an evaluation set, and
a test set. The training set was used to build client modétievthe evaluation set
was used to estimate thresholds. Finally, the test set wadoged to assess system
performance.

We compared the performance of the different methods predén section 3a)
WMS 14: Warping images onto a mean shape using the same set ofdo4 points
employed in [10]p) WMS_62: Warping images onto a mean shape using the full set of
62 “anchor” points, ang) NFPW: Normalizing only the subset of pose parameters to
generate a frontal mesh. Table 1 shows the False AcceptatedFRAR), False Rejec-
tion Rate (FRR) and Total Error Rate (TER=FAR+FRR) over # set for the above
mentioned methods. Moreover, the last row from this tabés@nts the baseline results
when no pose correction is applied (Baseline).

Table 1. False Acceptance Rate (FAR), False Rejection Rate (FRR) and TotalF&ate (TER)
over the test set for different methods.

METHOD|FAR(%)[FRR(%) TER(%)
WMS14| 231 | 500 | 7.31
WMS62| 264 | 450 | 7.14

NFPW | 2.17 | 2.75 | 4.92

| Baseline] 2.93 | 4.25 [ 7.18 |

Table 2.Confidence interval around yrpr = HTERa — HTERp for Z,, /o = 1.645.

METHOD]  WMS62 NFPW Baseline

WMS. 14 [[—1.15%, 1.32%][[0.07%, 2.32%] | [—1.16%, 1.29%]
WMS 62 [0.02%, 2.20%] | [=1.21%, 1.17%]
NFPW [—2.20%, —0.06%)

4.3 Statistical Analysis of the Results

In [14], the authors adapt statistical tests to compute denfie intervals around Half
Total Error RatesFTER = TER/2) measures, and to assess whether there exist
statistically significant differences between two apphaecor not. Given methods A
and B with respective performanc&&' R4 and HT ERg, we compute a confidence
interval (Cl) aroundAyrgr = HTER4 — HTERg. Clearly, if the range of ob-
tained values is symmetric around 0, we can not say the twhadstare different. The
confidence interval is given by rer £ 0 - Z,, /2, Where

4-NI +
FRRA(1-FRRA)+FRRp(1-FRRB)
4-NC

©)

\/ FARs(1-FARs)+FARp(1—FARg)
g =
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and

1.645 for a 90% ClI
Zy2 = § 1.960 for a 95% ClI (4)
2.576 for a 99% ClI

In equation (3) N C stands for the number of client accesses, whilestands for
the number of imposter trials. For each comparison betweemiethods presented in
table 1, we calculated confidence intervals which are shavatile 2. From both tables
we can conclude:

1. Although pose variation is not a major characteristihefXM2VTS database, itis
clear that the use dfiIFPW significantly improved system performance compared
to the baseline method.

2. Warping images to a mean shape suffers from the greatgsddigion in perfor-
mance. It is clear that synthesizing face images WMAS does seriously distort
the “identity” of the warped image, as long as the perfornearaf the baseline al-
gorithm and the tw&MSs methods are very similar (robustness to pose provokes
subject-specific information supression, leading to naroupment at all). Further-
more, we assess that significant differences are presemteameparingVMSwith
NFPW, as the confidence intervals do not include 0 in their rangafes.

3. There are no statistically significant differences betm&MS_14 andWMS 62, as
the confidence interval is symmetric around 0.

It was previously stated th&FPW was not suitable for holistic feature extraction, but
this is not the case AMMS. In order to assess the performance of a (baseline) holistic
method onWW M S faces, we applied eigenfaces [2] and obtained a TER of 16.27%
which is significantly worse than that of the local featurgr&stion on\WMS faces,
with a confidence interval aroundy g of [2.95%, 6.01%)].

5 Conclusions

We have demonstrated that, if the training set is appragyiathosen, the pose eigen-
vectors as introduced in [9] are mostly responsible foidrigiesh changes, and do not
contain important non-rigid (expression/identity) infaation that could severely distort
the synthetic meshes. Moreover, we have confirmed, withrerpatal results on the
XM2VTS database, the advantages of modifying these posergders over warping
faces onto a mean shape.
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