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Abstract. This paper presents the improved recognition of patients with sus-
tained ventricular tachycardia and flicker after myocardial infarction based on 
signal averaged electrocardiography. The novel approach includes: new filter-
ing technique, extended signal description by a set of 9 parameters and the ap-
plication of transductive support vector machine classifier. The dataset consists 
of 376 patients selected and commented by cardiologists of the Warsaw Medi-
cal University. The best score 94% of successful recognition on the test set was 
obtained for signals filtered by FIR method, described by 9 parameters. 

1 Introduction 

Ventricular tachycardia is a difficult clinical problem for the physician [4], [5], [9], 
[14], [15], [16], [17], [18]. Patients with sustained ventricular tachycardia and ven-
tricular fibrillation have a potential for sudden death. After myocardial infarction the 
chance to get sustained ventricular tachycardia or ventricular fibrillation increases, 
thus reduction in number of sudden death requires advanced predictive procedures. 
The ability to identify properly arrhythmias from signal-averaged ECG (SAECG)[20] 
recordings is important for clinical diagnosis and treatment. This paper presents a 
novel approach to efficiently and accurately identify normal patients and sustained 
ventricular arrhythmias through the SAECG parameters by using the Transductive 
Support Vector Machines [6], [15], [21]. 

Signal-averaged electrocardiography is a technique involving computerized analy-
sis of segments of a standard surface electrocardiogram. [3], [20] Signal-averaging 
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techniques, which reduce the noise (low-frequency, high-amplitude signals) interfer-
ing with the surface ECG, have been used since the 1970s , and it is used for detect-
ing small electrical impulses, termed ventricular late potentials (VLP), that follow the 
QRS segment. Ventricular late potentials in patients with cardiac abnormalities, espe-
cially coronary artery disease or following an acute myocardial infarction, are associ-
ated with an increased risk of ventricular tachyarrhythmias and sudden cardiac death.  

The application of support vector machine to the classification of electrocardio-
graphic signals gave excellent results [10], [11]. However, the severe problem deals 
with the requirement of labelling the training set examples by cardiologists. Usually 
the data set consists of few commented examples and a large set of unlabeled signals. 
This fact strongly motivated us to use the transductive approach to medical data rec-
ognition. 

2 Transductive Support Vector Machine 

Transductive support vector machine (TSVM) is a statistical learning system that 
explores the information from the labelled data as well as unlabelled data distribution 
in the input space. It is the extension of supervised support vector machine.  
The idea of transductive learning was postulated by Vapnik [21] who stated that 
transduction – labelling a test set is easier than induction – learning a general rule. 

The objective is the classification of unlabelled data by a separating hypersurface 
in the Hilbert space between classes with the maximum margin with respect to la-
belled as well as unlabelled data points. The unlabelled points can be assigned to the 
class suggested by this solution, named the transductive support vector machine.  

Intuitively, we expect that the separating hypersurface is located in the low density 
region of unlabelled data points between two classes.  

Although the transductive support vector machine defines many new theoretical 
and numerical problems (it is NP.-completed problem) the idea is attractive due to 
following reasons: 
1. The problem is perfectly suited for the applications in medicine [15], bioinformat-

ics [13], text categorization [12] etc., as the data labelling of large data sets is prac-
tically impossible; 

2. It is expected that the consideration of unlabelled data distribution can significantly 
improve the classifier generalisation with respect to supervised classification, es-
pecially if the number of labelled points is small as compared to the number of 
unlabelled points; 

3. Semi-supervised classifier has well-defined statistical properties (margin width, 
separating border, generalisation), thus it is superior of unsupervised classifiers ob-
tained by some heuristics (e.g. self-organising maps).  
There exist some solutions for efficient transductive support vector machines, as 

the semi-supervised support vector machine S3VM by K. Bennett and Demiriz [2] 
that enabled to perform up to several hundreds unlabelled points, SVM-light imple-
mentation of Joachims [12] and large-scale TSVM by Collobert et al. [7] that use 
iterative concave-convex procedure (CCCP). 
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The data set consists of l labelled training pairs {(xl1, yl1),…,(xll, yll)}, x ∈ Rn, 
y ∈ {1, -1} denoted as L set and u unlabelled vectors {xu1,…,xuu} denoted as U set.  

The problem of transductive support vector machine can be performed as an exten-
sion of supervised soft-margin support vector machine by adding 2 constraints to 
every point of the working set: One constraint enables to calculate the cost to classifi-
cation error if a given point belongs to the positive class and the second one – the 
error cost if a given point belongs to the negative class. The objective function for 2 
cases of classification errors is calculated. The minimum cost suggests the labelling 
decision of a given unlabelled point. Hence, we deal with the hard combinatorial task.  

The primal form of the objective function of linear transductive support vector ma-
chine is as follows: 
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where: w, b – parameters of the optimal separating hyperplane, ξ, ξ* - slack variables. 
The parameters C and C* express the trade-off between the margin width and the 

number of classification errors on the labelled set data or exclusion of unlabelled data 
points. The labels are numbers: +1, −1. 

In general, we can introduce a non-linear kernel in order to generalize the trans-
ductive support vector machine. We applied the radial basis function (RBF) kernel 
[19]  

)||'||exp()',( 2xxxx −−= γK    (2) 

The quality of TSVM classifier strongly depends on the proper choice of the pa-
rameters C and C* and on the kernel function parameter γ.  

Our calculations are based on the SVM-light algorithm that operates in the follow-
ing way. The input information consists of labelled data set L and unlabeled set data 
U. The parameters set up by the user are: C, C* and num+, the predicted cardinal 
number of points from positive class of entire set L+U. The algorithm starts from 
solving the problem of supervised support vector machine for labelled data set L. The 
unlabelled data U are given the labels resulting from the obtained classifier.  

The first num+ data points of the largest values of discriminative function:  
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where αi are the Lagrange multipliers of each data point, are assigned to the positive 
class and the remaining points to the negative class.  

The initially small value of parameter C* (10-5) is multiplied by 1.5 on each itera-
tion up to the value C set by the user, hence the influence of unlabelled data U on the 
position of separating hypersurface grows up. The next loop performs the label 
switching caused by some data points and verifies their influence on the objective 
function. 

 

 
Fig. 1. a) Decision boundary based on small number of labelled examples. b) The decision 
boundary is moved to place with low local density: * class +1 examples, + class -1 examples, 

 support vectors, light grey – unlabeled data, black – labelled data. 

Therefore the solution is improved by modifying the initial labels of data set points 
U in the direction of decreasing objective function. The output of TSVM procedure is 
a set of predicted labels of the data set U.  

The algorithm is convergent in finite number of label changes due to finite number 
of permutations of U points.  

The idea of transductive support vector machine is shown in Fig. 1 for a case of 
two-dimensional data sets. 

3 Signal-averaged ECG Analysis 

The Agency for Health Care Policy and Research [1] published a Health Technology 
Assessment of SAECG in 1998, concluding that clinical studies of SAECG consis-
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tently demonstrated a very high negative predictive value (76-100%), variable sensi-
tivity (35-83%) and specificity (47-91%), and poor positive predictive value (8-48%) 
when performed on patients with cardiomyopathy or following a myocardial infarc-
tion. 

The ability to properly identify arrhythmias from SAECG recordings is important 
for clinical diagnosis and treatment, also predictive procedure can reduce the number 
of sudden cardiac death. 

The method of recording and analysis of SAECG is recommended by the 
AHA/ACC/ESC Policy Statement on SAECG Standards, as well as the ACC Expert 
Consensus Document on SAECG [5]. After recording x,y,z signals (recommended 
Frank leads) the signals are averaged, then filtered using the Bidirectional Butter-
worth Filter. [3] After filtering each lead, x(t), y(t), z(t), the resulting vector magni-
tude (VM) is calculated as (x2 + y2 + z2)1/2.  

Three time domain parameters were calculated: 
1. the total duration of the filtered QRS complex (hfQRS),  
2. the root mean square voltage of the last 40 ms of the filtered QRS complex 

(RMS40)  
3. the duration of the low amplitude (LAS<40 µV) signals at the terminal portion of 

the QRS complex.  
It was shown that this method has several limitations, as the differences in the al-

gorithms for defining the end and the beginning of QRS, the normal values of men-
tioned parameters and others. [1, 3, 8].  

This problem can be solved by using statistical classification method and testing if 
we can better extract patients with high risk of ventricular tachyarrhythmia and sud-
den cardiac death. [9] The aim of our study was to improve the method of signal-
averaged ECG for extraction of patients after myocardial infarction with the risk of 
sustained ventricular tachycardia by applying different type of filtration and 6 new 
parameters. Our study is based on a data set performed at the Chair and Clinic of 
Internal Medicine and Cardiology, Warsaw University of Medicine. It consists of 376 
patients underwent the signal-averaged ECG recordings. Upon the medical diagnosis, 
these patients are divided into 3 groups: 
1. patients with sustained ventricular tachycardia (sVT+) after myocardial infarction - 

100 patients; 
2. patients without sustained ventricular tachycardia (sVT−) after myocardial infarc-

tion - 199 patients;  
3. healthy persons – 77 patients. 

Only 76 patients from the first group satisfied the common criteria of existence of 
late potentials. 

4 Time Domain Parameters 

The QRS complex of three bipolar leads were combined into the vector magnitude 
(Figure 2 and 3). For each of 2 types of filtration (a four-pole IIR Butterworth filter, 
FIR filter with Kaiser window) we calculated 9 signal parameters: 3 commonly used 
and 6 additional ones, as defined in Table 1. 
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Fig. 2. Example of vector magnitude of filtered QRS complex for patient with sVT+ (four-pole 
IIR Butterworth filter). 

 
Fig. 3. Example of vector magnitude of filtered QRS complex for patient with sVT-  (four-pole 
IIR Butterworth filter). 

Table 1. Signal-averaged ECG parameters. 

 Parameter Definition 
1 hfQRS (msec)  the total duration of the filtered QRS complex 
2 RMS40 (µV) rms voltage of the last 40 ms of the filtered QRS complex 
3 LAS<40 µV (ms) the duration of the low amplitude < 40 µV signals at the 

terminal portion of the QRS complex 
4 LAS<25 µV (ms) the duration of the low amplitude < 25 µV signals at the 

terminal portion of the QRS complex 
5 RMS QRS (µV) rms voltage of the filtered QRS complex 
6 pRMS (µV) rms voltage of the first 40ms of filtered QRS complex 
7 pLAS (ms) the duration of the low amplitude < 40 µV signals within 

QRS complex 
8 RMS t1(µV) rms voltage of the last 10 ms the filtered QRS complex 
9 RMS t2 (µV) rms voltage of the last 20 ms the filtered QRS complex 
rms – root mean square 
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5 Results 

Based on signal-averaged ECG recordings nine data sets described in Table 2 were 
created.  

Table 2. Description of the data sets. 

Data set Number of 
parameters 

Filtration type 

WS3-1,2,t 3 40Hz high-pass and 250Hz low pass four-
pole IIR Butterworth filter 

WS9-1,2,t 9 40Hz high-pass and 250Hz low pass four-
pole IIR Butterworth filter 

WK9-1,2,t 9 FIR filter with Kaiser window 45-150 Hz 
 
Data sets WS3-t, WS9-t and WK9-t contained 188 cases and were used for testing 

of obtained classifiers. Data sets WS3-1, WS9-1 and WK9-1 contained 188 cases and 
were used for creation of three supervised SVM models (all data were labelled). Data 
sets WS3-2, WS9-2 and WK9-2 contained the same 188 cases as Wxx-1 sets but only 
50% of them were labelled. They were used for creation of three TSVM models. 

The application runs in Windows system environment. No additional libraries are 
required. The input data for the models creation are read from files. The results are 
send to standard output of the application. It enables redirection to file for further 
analysis or viewing on the screen. The calculations required for the transductive sup-
port vector classifier are much more time consuming than those for the supervised 
SVM method due to iterative nature of the TSVM algorithm. 

Table 3 contains model properties for the supervised SVM method. 

Table 3. Model properties – supervised SVM method. 

Data set No. of sup-
port vectors 

No. of support 
vectors at C 

C, gamma Estimation of VC 
dimension 

WS3-1 25 20 100,  
0,5 

358,94 

WS9-1 26 11 100, 
0,5 

770,79 

WK9-1 24 9 100, 
0,5 

1010,37 

 
Table 4 contains model properties for the TSVM method. TSVM model contains 

fewer support vectors and has higher estimation of VC dimension than equivalent 
SVM model. 
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Table 4. Model properties – TSVM method. 

Data set No. of sup-
port vectors 

No. of support 
vectors at C 

C, gamma Estimation of VC 
dimension 

WS3-2 16 12 100, 
0,5 

423,34 

WS9-2 21 8 100, 
0,5 

664,41 

WK9-2 24 6 100, 
1 

1642,40 

 
The results of classification are listed in Table 5. Each test data set (different from 

learning set) was classified by means of regular SVM classifier as well as TSVM 
classifier. The results confirm good generalization of obtained models. It is worth to 
note that results of SVM and TSVM classification are similar, although only 50% of 
data in the second case was labelled. In data set WK-9 the TSVM method achieved 
better results. 

Table 5. Results of SVM and TSVM classification. 

Data set Correct 
classifications 

[%] 

No. of correct 
classifications 

No. of  
misclassifications 

 SVM TSVM SVM TSVM SVM TSVM 
WS3-1,2 92,51 92,51 173 173 15 15 
WS9-1,2 92,55 90,43 174 170 14 18 
WK9-1,2 93,09 94,15 175 177 13 11 

6 Conclusions 

This paper reports the study of risk recognition of sustained ventricular tachycardia 
and flicker in patients after myocardial infarction based on high-resolution electrocar-
diography. We considered 3 data sets consisting of the signal averaged ECG:  
1. filtered by 40Hz high-pass and 250Hz low pass four-pole IIR Butterworth filter 

described by three standard parameters,  
2. filtered by 40Hz high-pass and 250Hz low pass four-pole IIR Butterworth filter 

described by 9 parameters,  
3. filtered by FIR filter with Kaiser window 45-150 Hz described by 9 parameters.  

We compared the results obtained by the supervised and the transductive SVM 
classifier. In all considered cases we obtained very high score of successful recogni-
tion (90-94%). This result is significantly better than 76% obtained by the commonly 
used criteria. The best recognition score is obtained for the signal-averaged ECG 
recordings filtered by the FIR filter with Kaiser window 45-150 Hz described by 9 
parameters. In this case the transductive SVM (TSVM) classifier is superior over the 
supervised SVM classifier. All studied support vector classifiers exhibit also excellent 
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statistical properties expressed by small number of support vectors and high value of 
estimated VC dimension.  

The system is fast enough. The TSVM solution for a data set of several hundreds 
points is of order 20-30 seconds, the recognition time is about 0.1 s. 

It can be concluded that the transductive support vector machine is an efficient tool 
of computer-aided medical data recognition. It enables the improvement of results for 
labelled data by exploring much larger set of unlabelled data.  
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