
Confining the Insider Threat
in Mass Virtual Hosting Systems

Marco Prandini, Eugenio Faldella and Roberto Laschi

DEIS, Università di Bologna, Viale Risorgimento 2
Bologna, Italy

Abstract. Mass virtual hosting is a widespread solution to the market need for a
platform allowing the inexpensive deployment of web sites. By leveraging the
ever-increasing performances of server platforms, it is possible to let hundreds
of customers share the available storage, computing, and connectivity facilities,
eventually attaining a satisfying level of service for a fraction of the total cost of
the platform. Since the advent of dynamic web programming, however,
achieving a sensible tradeoff between security and efficiency in mass hosting
solutions has become quite difficult. The most efficient and widespread
solution, in fact, foresees the execution with undifferentiated rights of code
belonging to different customers, thus opening the possibility of unauthorized
access of one customer to the others’ data. This paper illustrates a possible
solution to this problem, based on the integration of Mandatory Access control
techniques within the web server. The proposed solution guarantees robust
isolation between resources belonging to different subjects, without introducing
a sensible increase in resource utilization.

1 Introduction

The traditional approach to hosting sites on a server relies on the classical access
control schemes provided by modern operating systems. In a scenario where the
server is called to handle only static websites, these schemes offer both a sufficient
level of separation between customers, by authenticating them when they manage
their files on their filesystem share, and a satisfactory level of efficiency, by serving
all of the contents through a single, optimized set of processes. The latter detail
explains the notion of virtual hosting: in a system working as described, not even the
web server process is dedicated to a specific customer; instead, a single program
leverages the capabilities of the HTTP/1.1 protocol [1] to distinguish between sites
with different names even if all the requests come to a single address. However, this
approach is unsuitable for the hosting of dynamic sites, i.e. when the customers are
allowed to upload programs that run on the server in order to generate content on-the-
fly, rather than static files which are sent to the browsers as they are. This scenario
raises the problem of implementing an effective access control scheme also in the web
server process, possibly without compromising the resource sharing efficiency.

In the following section, we analyze the possible approaches to the implementation
of a secure virtual hosting system, discussing their security and efficiency

Prandini M., Faldella E. and Laschi R. (2007).
Confining the Insider Threat in Mass Virtual Hosting Systems.
In Proceedings of the 5th International Workshop on Security in Information Systems, pages 105-114
DOI: 10.5220/0002431801050114
Copyright c© SciTePress

characteristics. Subsequently, we illustrate how the integration of Mandatory Access
Control systems within the most efficient solution can lead to an optimal balance
between security and performance. Finally, we present a prototype implementing the
proposed solution, based on the ubiquitous Linux/Apache/PHP platform and on the
prominent SELinux security module.

2 Performance and Security Issues in Mass Virtual Hosting

The main concern in a web hosting server regards scalability, i.e. the capability to
power a large number of sites without causing unacceptable performance degradation.
The obvious method to pursue this result is minimizing the amount of resources
needed just for making each site work, leaving as many resources as possible free for
serving the actual requests hitting the sites. In a multitasking operating system,
several kinds of resources must be allocated for a web server process to work:
memory, file descriptors, IP addresses, processor time, and bandwidth are just the key
examples. In order to minimize the static allocation of these resources to a single
website, they have to be shared between all.

Sharing is possible only with some degree of cooperation between the processes
associated to the different sites, which could mean lack of isolation between the
resources belonging to different customers. A viable solution, then, must implement
an efficient sharing model but also execute the processes related to each site
according to the least privilege principle. The most commonly adopted solution,
however, almost completely fails to provide this kind of guarantee: there is a single
process serving every virtual site by spawning sub-processes or threads. In order to
limit the effects of bugs or intrusions, this process runs as an unprivileged user, and
consequently it cannot assume different identities for the different sites. The chosen
user, then, must have read access to every site’s files, and consequently a dynamic
page belonging to a hosted site, when invoked, can perform local operations with
enough privileges to read other sites’ sensitive data.

In the following, more sophisticated solutions are described, showing how higher
security can be attained at the cost of lower efficiency. The analysis of the possible
solutions will make reference to Apache [2], the world’s most used web server [3]. It
exhibits a modular structure [4, 5] allowing to extend the core functionalities so as to
support almost any need.

2.1 Virtual Machines

Serving different sites through separate virtual machines (VMs) offers the highest
possible degree both of mutual isolation between sites and of protection of the host
system from intrusions exploiting the web server processes. The price to pay is
sensible resource duplication, because in this case an entire “guest” operating system
is run within a “host” platform. The performance impact in terms of CPU usage is
moderate (in the order of 2-3% for the widespread VMware [6] and Xen [7]
platforms), but the memory footprint even of an idle VM is quite high: in our tests,

106

each VMware-based site absorbs nearly 70 Mbytes just for making its VM work,
requiring as much memory as roughly 35 web server processes would.

2.2 Separate Processes within the Host System

A good level of isolation can also be obtained by serving the different sites through
separate process trees, each one running under its own identity. The overall security
level of this solution is lower than what can be achieved with VMs, because the
effective separation both between the different processes, and between each process
and the host system is enforced by one operating system, with visibility of every
resource. Any kind of attack directed to a web server process, which succeeds in
granting the attacker a privilege escalation, allows breaking all the barriers.

As previously noted, the memory occupation gain over the VM solution is sensible.
However, a single process tree serving all the virtual sites is much more effective at
pooling available resources, for two main reasons. First, a simple test performed on a
stock distribution shows that in every new, master Apache process takes up
approximately 2.5 Mbytes more than a child process spawned by an existing master.
Second, spare child processes are needed in order to achieve acceptable performance
during peak times. On a single-process-tree system a child process can be allocated on
any site, while, when separate process trees are used, each site has to keep its share of
spare sub-processes. Their total number consequently increases for each added site.

2.3 Identity Change of the Sub-processes

In order to get a more efficient resource pooling, it is possible to envisage a mode of
operation where a child sub-process, spawned from a single master to serve a request,
assumes the specific identity related to the corresponding site (in the Apache project,
an implementation of this model is available as mod_perchild; unfortunately, it is not
functional). This approach solves the first of the two inefficiencies associated to the
previous solution. However, after completing its duty, a sub-process can be reused for
the same site only, because it cannot switch to a different identity. Eventually, this
approach is slightly less secure than running separate processes, because of possibility
of attacking the master process running with administrative privileges, and only
marginally more efficient, because it does not solve the problem of the excess of spare
sub-processes.

2.4 Execution of Dynamic Content Outside of the Web Server Process

The generation of dynamic contents, also called server-side programming, is actually
the only activity performed by the web server which needs strict access control. It is
commonly handled in two different ways, with peculiar reflexes on security.

CGI (Common Gateway Interface) [8] is the oldest model for the implementation
of dynamic pages on web servers. Basically, as its name suggests, it defines a
standard interface between the web server process and an external program it invokes.

107

The web server acts almost as a pure gateway, passing all the data received from the
browser to the external program, and passing the program's output back.

By adding an intermediate set-user-id wrapper program it is easy to execute the
CGI programs with the site-specific credentials, instead of changing the credentials of
the web server process. A comparison between this mediated CGI execution and a
solution based on changing the identity of the web server sub-processes shows that,
on the efficiency side, the first solution has the advantage of exploiting
undifferentiated (thus reusable) Apache processes, while on the security side it
introduces another potentially exploitable component, that is the wrapper executing
with root privileges. This problem is mitigated by the fact that, conversely to Apache,
the wrapper is an extremely simple piece of code, which should be easily security-
tested.

The vast majority of dynamic pages are, however, mostly composed of fixed
HTML elements, with some dynamically-generated information inserted in between.
CGI programming can be uselessly cumbersome in this scenario: the program has to
deal with countless details, which often prevail over its specific function. For this
reason, server-side scripting has known a great success as a newer model for the
implementation of dynamic pages. It works by tightly integrating the language used to
program dynamic behavior with the web server, making the latter able to parse a page
while serving it. When, at some point in a page, the server recognizes the special tags
marking embedded instructions, it executes them and inserts their results at the same
point within the data flow. From the security point of view, isolation is obviously
more difficult when this approach is chosen over CGI. Being the scripting engine
actually part of the web server, isolation between virtual sites could only be attained
by separating the web server processes, by means of one of the aforementioned
techniques (i.e. different servers, different virtual machines, or per-child user id
assignment). Some third-party addition pursues the goal of getting the best of both
worlds, that is, being able to develop sites according to the simpler server-side
scripting model, and executing the resulting code outside of the web server, like a
CGI program. We describe one of these additions in section 4, showing our prototype
of a secure hosting server.

3 MAC/TE Applications to Hosting

In addition to the illustrated analysis of the possible security scenarios, we should
note that any approach based on a simple identity change (of the process in charge of
generating a dynamic page) leaves many potential security problems open. The
discretionary access control model implemented on Linux leaves many options
available to a malicious customer for trying to compromise the server's security or
simply misuse the server resources.

Several freely available systems implement various kinds of “hardening”
techniques in the Linux operating system, making it an ideal choice for building a
secure, efficient and economical hosting platform. The functionalities added by these
systems range from enhanced access control models like Mandatory Access Control
(MAC) to code execution checks.

Among the most important projects, we can recall:

108

• RSBAC – Amon Ott began to develop the Rule Set Based Access Control project
[9] in 1996, with the goal of providing a Linux implementation of the Generalized
Framework for Access Control (GFAC) by Abrams and LaPadula [10]. It
implements MAC functionalities and several other security modules.

• LIDS – The Linux Intrusion Detection System [11] is an integration to the Linux
kernel exclusively aimed at implementing MAC functionalities.

• grsecurity – This project, started by Brad Spengler around the year 2002 [12],
implements MAC as Role-Based Access Control (RBAC), and several other
functionalities aimed at containing the effects of compromised processes on the
system.

• SELinux – The Security-Enhanced Linux project [13] is developed by the
National Security Agency (NSA) and released as open-source. It implements MAC
as Role-Based Access Control (RBAC) and other sophisticated security models.

Each of the listed projects would be worth a deep analysis. In this work, we chose to
build a prototype based on SELinux for two main reasons. First, it is the most
theoretically sound and carefully validated one, thanks to the NSA leading the project.
Second, it is the only one that provides an Application Programming Interface (API)
allowing SELinux-aware programs to fully exploit the potential of its features,
whereas the other projects provide only a static, configuration-based behavior.

3.1 SELinux Basic Concepts

The foundation of SELinux is the Flask architecture [14], the result of a decade of
research on the subject of MAC lead by the National Security Agency (NSA), the
Secure Computing Corporation, and University of Utah.

The origin of the MAC concept, in turn, can be traced back to the research activity
undertaken in the seventies by Bell and LaPadula, with their formal description of the
Multi-Level Security System (MLS) [15]. Since then, access control is regarded as a
key property in systems security, and finding an efficient and effective
implementation for the MAC model has been an important task. On a MAC-based
system, the security manager can finely tune which resources are available to which
users and processes, and enforce the chosen policies in a way that cannot be
circumvented, not even by the system privileged account.

After the conclusion of the aforementioned theoretical studies, the NSA proceeded
to implement the Flask architecture within the Linux operating system [16], releasing
the first prototype of SELinux in year 2000 as open-source. The project is undergoing
continuous development since then.

The architecture of Flask, and thus of SELinux, encompasses two components. The
Security Server contains the definition of every security policy, and takes decisions
accordingly. The Object Managers (one for each OS subsystem) enforce the policies
by querying the Security Server for each relevant action.

Four different models cooperate to define the access control mechanism
implemented by the Security Server [17]: Type Enforcement (TE) [18], Role Based
Access Control (RBAC) [19], User Identity (UI) and, rarely used, Multi-Level
Security (MLS).

109

The key component for the proposed application is TE. According to the TE
model, each subject on the system has an associated security attribute called domain,
and similarly each object on the system has a type. Interactions between subjects, or
actions performed by subjects on objects are controlled by an access control matrix
stating the rights of a given domain when dealing respectively with another domain or
a type. Each subject/object is associated with a label called security context composed
of three attributes (user, role and type/domain). The Security Server works under a
closed-world policy, meaning that permissions not explicitly granted are denied, so a
security context is effectively taken into account for mapping the associated subject
on its domain only when the subject is invoked by the listed user, acting under the
specified role. After this mapping has taken place, the Security Server bases its
security decision (i.e. decides whether granting the subject access to the object or not)
on the third field of the context only (type being a synonym of domain for subjects).
The Security Server makes also another kind of decision, labeling decisions, choosing
the proper security context to be assigned to an object, typically at its creation time.
The configuration of SELinux, according to the described models, encompasses two
actions: the labeling of each object with the right security context, and the definition
of type enforcement policies.

3.2 Enhancing the Security of CGI Execution

Many Linux distributions already leverage the MAC layer enforced by SELinux in
order to confine Apache (as well as the other services) to a specific domain. Without
further configuration actions, any process spawned by Apache will run within the
same domain, thus inheriting the same capabilities. As already noted, this is not
desirable, since in general dynamic page generation requires much lower privileges
than the web server. Enforcing a precise and effective limitation of the capabilities
associated to the sub-processes is particularly important for the wrapper-based models
of CGI execution, which momentarily gain unrestricted powers (with respect to the
standard Linux access control model) in order to eventually switch to the identity
associated with the virtual site.

To achieve both proper privilege reduction and isolation between virtual sites, it is
possible to define a different domain for each virtual site, and induce a domain
transition from the Apache starting domain to the site-specific one. The transition can
be handled in three different ways: two requiring the modification of either the
module component of the wrapper subsystem (the one which, tightly integrated within
Apache, makes it aware of the wrapper) or the actual external wrapper program, in
order to make them SELinux-aware, and one exploiting the configurable SELinux
automated labeling capabilities.

3.2.1 Domain Transition Induced by the Module

A suexec-like module, when loaded, becomes part of the running Apache process, and
handles the creation of the child wrapper process when needed. A simple modification
to the module code allows to invoke the SELinux API function setexeccon() just
before child creation. This function sets the context that SELinux will create the child

110

processes within, and thus allows to directly start the wrapper process within the
domain associated to the virtual site to be served. The context is reset to its original
value after the external execution has ended, allowing correct reuse of the Apache
process for other requests.

This is probably the optimal strategy, security-wise, because the wrapper never
runs in any other domain than the site-specific one. It requires modifying a code
portion which runs within the Apache process, so theoretically, if its implementation
is flawed, it could add a vulnerability to the whole server. However, the patch is
usually so small that a thorough security revision should not be absolutely difficult.

3.2.2 Domain Transition Induced within the Wrapper

The setcon() function, available within the SELinux API as well, allows to design an
alternative transition model. When called from within the wrapper, it causes the
context transition of the process, which leaves the generic Apache domain to enter the
site-specific domain, much like the setuid() and setgid() system calls cause the
process to assume the identity related to the virtual site to be served.

This approach has the only, negligible advantage of modifying a component which
is not part of the main Apache process. However, it requires passing the final domain
(read from the Apache configuration file) to the wrapper process through the
environment, thus complicating the code and making more correctness checks
necessary.

3.2.3 Policy-driven Domain Transition

It is possible to configure SELinux, by means of the domain_auto_trans macro, for
executing a program within a specified domain instead of inheriting the domain of the
caller. The domain is determined within the policy file in function of the type label
associated to the executable file. By exploiting this feature, the wrapper process can
execute the correct domain transition without introducing changes to either the
module or the wrapper itself. There is a drawback: since a file can only be labeled
with a single type, in order to attain transitions to different domains (one for each
virtual site) it is necessary to create a separate, uniquely labeled copy of the wrapper
executable for each one.

3.3 Enhancing the Security of PHP Execution

PHP [20] is probably the most commonly used language for the implementation of
dynamic web sites [21]. It can be deployed within Apache either as a module
implementing the server-side scripting functionality, or as a CGI program. The former
approach is usually preferred, but the peculiar property of supporting both models
with very small changes to pages can be leveraged to attain both the security
advantages of the CGI model and the practicality of server-side scripting at the same
time. The suPHP project [22] pursues this goal. Its structure, similarly to suexec, is
composed of two parts: a small Apache module which exposes the same

111

functionalities of the full PHP module to the web server, and a wrapper program
which invokes the actual PHP interpreter in CGI mode. These components take care
of invoking the PHP interpreter so that (1) PHP pages written according to the server-
side scripting model are correctly processed without changes, and (2) its credentials
can be changed accordingly to the involved virtual site. Thus, we chose suPHP over a
generic suexec-like, CGI executing package as a good candidate for building efficient
and secure hosting platforms.

4 A Prototype of MAC-enhanced suPHP-based Hosting Server

The implementation of the prototype required two main activities: modifying the
suPHP code in order to achieve the both the module-induced and the wrapper-invoked
domain transition, and designing the proper configuration rules for SELinux.

4.1 Code Modifications, Configuration Issues

In the solutions based on suPHP code modification, the domain associated with the
virtual site must be passed as a parameter to the suPHP module. As any Apache
module, suPHP declares its configuration directives, so that, when the module is
loaded, Apache is able to recognize them within its configuration file, to perform a
formal check of their syntax, and to make the associated values available to the
module. The original suPHP module declares a suPHP_UserGroup directive,
specifying the standard Unix identity associated with the virtual site. The code has
been modified in order to handle a suPHP_SeLinux directive too. The added directive
allows specifying only the SELinux domain which the suphp wrapper will run within.
All the instances will use the same user and role, because these attributes are not
considered by the Security Server when making security decisions. A proliferation of
useless users and roles would only make policy definition exponentially more
complex. In the solution based on automatic, labeling-induced domain transition, the
filename pointing to the correctly labeled wrapper copy must be passed as a parameter
to the suPHP module. To avoid unnecessary duplications, a simple convention has
been adopted regarding filenames: the wrapper copy which, by virtue of its type and
of SELinux configuration, is going to run within a given domain has to be named
/path/to/wrapper/suphp.domain. In this way, the same parameter suPHP_SeLinux can
be used, and the module computes the filename as the concatenation of the fixed
prefix and the passed domain.

4.2 Policy Definition

In order to highlight the relevant capabilities needed by the web server, and to make
policies independent from the specific distribution (which, for the development of our
prototype, was Fedora Core 5), a specific apache_suphp_t domain has been defined
for standard Apache operation. As already noted, security decisions depend on the
domain only, thus no new users and roles have been defined, using system_u and

112

system_r which are the default for executing system daemons. The simplest
configuration activity consisted in preparing the common TE directives giving the
apache_suphp_t domain access to all the relevant Apache+suPHP subsystem files.
The specific policy for the concession of proper capabilities to each domain is much
more complex. Moreover, every time a new virtual site is added, the corresponding
policy must be added to SELinux configuration. Consequently, theoretical analysis
and experimental validation was performed on a single site and lead to the policy
definition for a specific domain, then the policy file has been rewritten as a template,
by inserting a <<<Domain>>> parameter which is substituted with the actual value by
an installation script. The main template does not contain the essential rules allowing
the domain transition from apache_suphp_t to SuPhp_<<<Domain>>>_t, because
their implementation depends on the chosen transition model and thus are integrated
from specific sub-templates as requested during system configuration.

4.3 Experimental Results

The efficiency of the proposed prototype has been tested, in order to estimate the
potential performance hit introduced by the complex checks enacted by the SELinux
system. The results are easily summarized:
• the increment of memory occupation is negligible;
• the increase in the average response time, measured over several tests with the

apache benchmark (ab) tool, is very small (a few percents), thanks to the Access
Vector Cache (AVC) component of SELinux, which stores the security decisions
after the first time they are taken;

• the response time variability, however, tends to be somewhat higher than what can
be observed on a plain Apache server, probably for a bottleneck effect introduced
by SELinux.

5 Conclusions

When relying on the traditional access control models implemented by the most
common operating systems, designing a configuration for a web server shared among
several users that balances security and performance can be very difficult. The
administrator is faced with the challenge of choosing a layout of ownerships and
permissions allowing each webmaster to work with its files, making them readable by
the web server, but keeping them confidential with respect to other sites. Any small
mistake can either prevent a site from working or make its sensitive data easily
available, and within a DAC system there is no guarantee of stability, since each user
can change the permissions of its own files, either maliciously or mistakenly.

The presented work shows a practical application to this context of the powerful
access control model implemented by SELinux. By means of the provided Type
Enforcement functionalities, it has been possible to achieve effective isolation
between virtual hosts served by a single process tree. Simple tools assist the
administrator in configuring the security policies, which are then mandatorily and
automatically enforced. The described suPHP-SELinux-based system has been fully

113

implemented and tested, both verifying the correspondence between attended and real
behavior of the domain transition policies, and measuring the impact on performance,
obtaining very satisfying results on both fronts.

Current work is aimed to extend the analysis to the alternative systems, verifying
the feasibility of defining a common framework for the configuration of secure multi-
user web servers on different platforms.

References

1. Hypertext Transfer Protocol - HTTP/1.1 - http://www.ietf.org/rfc/rfc2616.txt
2. Apache Server website. - http://httpd.apache.org/
3. Netcraft Web Server Survey. - http://news.netcraft.com/archives/web_server_survey .html
4. Apache: Conceptual Architecture by Ahmed Hassan. - http://plg.uwaterloo.ca/~aeehassa/

cs746/as1/apache1.html
5. Extending Apache: Apache Modules. - http://apache.hpi.uni-postsdam.de/document/

3_3Extending _Apache.html
6. VMware web site. - http://www.vmware.com/
7. Barham P., Dragovic B., Fraser K., Hand S., Harris T., Ho A., Neugebauer R., Pratt I., and

Warfield A., Xen and the art of virtualization. Proc. 19th ACM symposium on Operating
systems principles, October, 2003, ACM Press, 162-177

8. Common Gateway Interface v1.1. - http://hoohoo.ncsa.uiuc.edu/cgi/
9. RSBAC web site. - http://www.rsbac.org/
10. La Padula, L. J., Rule Set Modeling of a Trusted Computer System, Essay, in: Information

Security: An Integrated Collection of Essays, Hrsg.: Abrams, M. D., Jajodia, S., Podell, H.
J., IEEE Computer Society Press, 1995

11. LIDS web site. - http://www.lids.org/
12. grsecurity web site. - http://www.grscurity.net/
13. National Security Agency. Security-Enhanced Linux (SELinux). -

http://www.nsa.gov/selinux
14. Spencer R., Smalley S. D., Loscocco P., Hibler M., Andersen D. and Lepreau J., The Flask

Security Architecture: System support for diverse security policies, Proc. 8th USENIX
Security Symposium, Washington, D.C., 1999, pp 123-139

15. D. E. Bell and L. J. LaPadula, Secure Computer Systems: Mathematical Foundations and
Model, Technical Report M74-244, The MITRE Corporation, Bedford, MA, May 1973

16. Smalley S., Vance C. and Salamon W. Implementing SELinux as a Linux Security Module
- http://www.nsa.gov/selinux/papers/module.pdf

17. Smalley S. D., Configuring the SELinux Policy. Nai Labs Report #02-007, June 2002
18. Badger L., Sterne D. F., Sherman D. L., Walker K. M. and Haghighat S. A., A Domain and

Type Enforcement Unix Prototype, Proc. 5th USENIX UNIX Security Symposium, Salt
Lake City, UT, 1995, pp 127-140

19. Sandhu R., Role-Based Access Control, Advances in Computer Science, 46, Academic
Press, 1998

20. PHP website. - http://www.php.net/
21. PHP usage stats. - http://www.php.net/usage.php
22. suPHP Project by Sebastian Marsching - http://www.suphp.org/

114

