
Towards a Scalable Representation of Run-time
Information: The Challenge and Proposed Solution

Abdelwahab Hamou-Lhadj

Electrical and Computer Engineering, Concordia University, 1455 de Maisonneuve West
Montreal, Canada

Abstract. An important issue in application modernization is the time and
effort needed to understand existing applications. Understanding the dynamic
aspects of software is a difficult task, further complicated by the lack of a
scalable way of representing the extracted knowledge. The behavior of a
software system is typically represented in the form of execution traces. Traces,
however, can be extraordinary large. Existing metamodels such as the
Knowledge Discovery Metamodel and the UML metamodel provide limited
support for handling large execution traces. In this paper, we describe a
metamodel called the Compact Trace Format (CTF) for efficient modeling of
traces of routine (method) calls generated from multi-threaded systems. CTF is
intended to facilitate the interoperability among modernization tools that focus
on the analysis of the behavior of software systems. CTF is designed to be
easily extensible to support other types of traces.

1 Introduction

Software modernization is defined as the process of understanding and evolving
existing software systems for the purpose of improving their various facets [1].

Understanding a software system requires both static and dynamic analysis
techniques. The former focuses on exploring the structure of the system by analyzing
its source code, whereas the latter, which is the focus of this paper, provides insight
into the system’s behavioral properties. Both approaches aim at extracting knowledge
about the system under study that can later be fed to a modernization tool for further
analysis.

There exist several standards for representing the knowledge extracted from
software systems, among which the most recent is the Knowledge Discovery
Metamodel (KDM) [10] supported by the Object Management Group (OMG). Others
include the UML 2 metamodel [17], the Dagstuhl Middle Metamodel (DMM) [12],
etc.

However, while existing metamodels provide a full range of constructs for the
modeling of the static aspects of the system (i.e. its static components and the way
they interact), they do not support efficient representation of the system’s behavioral
features, typically represented in the form of execution traces. Traces have historically
been difficult to work with since they may contain millions of events. The challenge
is to develop a trace format that scales up to handle large and complex traces.

Hamou-Lhadj A. (2007).
Towards a Scalable Representation of Run-time Information: The Challenge and Proposed Solution.
In Proceedings of the 3rd International Workshop on Model-Driven Enterprise Information Systems, pages 95-104
DOI: 10.5220/0002433900950104
Copyright c© SciTePress

In this paper, we describe ongoing work towards the development of a scalable
format for representing execution traces. A particular format called CTF (Compact
Trace Format) is proposed. CTF focuses on representing traces of routine (methods)
calls generated from multi-threaded systems. It is built with scalability in mind using
graph theory concepts. In addition, CTF metamodel is defined in such a way that it
can be easily extended to support other types of traces and constructs.

The remaining of this paper is organized as follows: In Section 2, we discuss the
requirements that guided us in the development of CTF. In Section 3, we present the
CTF metamodel and its syntactic form. CTF semantics are presented in the appendix
section.

2 Requirements for a Trace Exchange Format

Requirements for an effective exchange format have been the subject of many studies
[2], [15], [18]. In this section, we present the ones that a trace exchange format should
fulfill in order to facilitate its adoption. These requirements were used to guide the
development of CTF.

2.1 Scalability

The adoption of a trace exchange format will greatly depend on its ability to support
large-sized traces. Trace, however, tend to contain many repetitions due to the
presence of loops and recursions in the source code. They also contain non-
contiguous repetitions known as trace patterns. The scalability of a trace exchange
format can, therefore, be significantly improved if repeated events are factored out
and represented only once. For example, the trace of routine calls described in Figure
1a can be transformed into an ordered directed acyclic graph (DAG) represented in
Figure 1b by representing the repeated subtree rooted at “B” only once. This
technique was first introduced by Downey et al. in [3] to improve tools that
manipulate trees. It was also used by Larus [11] and Reiss and Renieris [14] to encode
traces with the objective of saving disk space.

It should be noticed, however, that the graph must be ordered in order to be able
to restore the initial order of calls. In addition, the graph representation of a trace does
not necessarily result in a loss of information associated with individual nodes of the
tree such as timing information commonly collected when generating a trace. The
simplest solution is to augment the nodes of the graph with ordered collections that
holds the information describing individual nodes of the tree.

In previous work [6], we applied this compaction technique to over thirty
execution traces and showed that it can reach a 97% compression ratio (i.e. the graph
contains only 3% of the number of nodes of the tree). This has led us, as we will see
in Section 3, to build CTF using the ordered DAG as its main mechanism.

96

2.2 Completeness

This requirement consists of having an exchange format include all the necessary
information needed during the exchange: The data to exchange as well the metamodel
that describes the structure of the data. The rationale behind this is to enable tools to
check the validity of the instance data against the metamodel. To address this
requirement, we need to select a syntactic form language (i.e. the language that
“carries” CTF instance data) that is designed to support the exchange of the instance
data as well as the metamodel. In Section 3.2, we discuss possible syntactic forms that
could be used with CTF.

a) b)

Fig.1. a) An example of a call tree. b) The compact form of the call tree.

2.3 Extensibility

The data model of a trace exchange format must be flexible enough to support new
types of traces, language specific entities and properties, and some properties that are
specific to the trace analysis tool that uses the format. CTF addresses this requirement
by adopting an open design based on abstract classes that allow new constructs to be
easily added.

2.4 Tool Support

In order to facilitate the adoption of an exchange format by tool builders, we need to
develop well-defined mechanisms that facilitate the manipulation of traces. First, we
need to design procedures that ensure that the information exchanged is represented
without any alteration. Second, we need to develop algorithms for on the fly
generation of traces in the new format. Finally, we need to create converters that will
convert other commonly used formats into the new format to facilitate the transition
to the new exchange format. Since CTF is still an ongoing project, this requirement
will be addressed in future work.

97

Fig. 2. CTF Metamodel.

3 CTF

In this section, we present CTF metamodel and its syntactic form. CTF semantics are
presented in the appendix section.

The initial version of the CTF metamodel was presented at the First International
Workshop on Metamodels and Schemas for Reverse Engineering [5]. The metamodel had
since undergone significant changes. The current version of CTF is described in this
paper. Due to limited space, we did not attempt to show the changes made to the
previous version.

3.1 CTF Metamodel

CTF metamodel is presented in Figure 2. CTF models traces as ordered directed
acyclic graphs and not as tree structures. The elements of CTF metamodel as
presented in what follows:

The class Trace is an abstract class that describes common information that
different types of traces usually share such as timing information. To create other
types of traces, one needs to extend this class.

The class CallTree depicts a trace of routine or method calls. The class Node
refers to nodes in the ordered DAG; each can have many child nodes and many parent
nodes as illustrated on the diagram using the parent and child roles. Each node

98

maintains a collection of timestamps and another one that stores the execution times
of the individual routine calls represented by this node.

Edges (i.e. calls) are depicted using the TraceEdge class. An edge links two nodes
of the DAG. Nodes that are repeated contiguously due to the presence of loops or
recursion in the source code are collapsed into one single node; the attribute
“repetitions” of the class TraceEdge records the number of repetitions.

As its name indicates, the class TracePattern represents patterns of execution
invoked in the trace. A trace pattern is defined as a sequence of events that is repeated
non-contiguously in the trace. They are used by software engineers as a means to
uncover key domain concepts from the trace. The common hypothesis is that the
sequence of calls that appears in various places in the trace might encapsulate some
knowledge about the system such as a particular aspect of an algorithm, etc. [9], [16].
Software engineers often associate a textual description to trace patterns that are
deemed important. The class TracePattern uses an attribute called “description” to
capture this textual description.

A node can either be a routine call node (RoutineCallNode), a method node
(MethodCallNode), or a control node (ControlNode). A RoutineCallNode object
represents a call to a routine that is not a method of a class, whereas a
MethodCallNode stands for a method invocation. Method calls are considered as
routine calls except that they may contain additional information such as the objects
(represented using the class Object) on which the methods are invoked.

The above metamodel relies on a string label to identify trace events (i.e. the
routines invoked). It does not provide any other static information about the routines
(or methods) invoked such as the parameter list and return type. The reason is that
CTF is intended to work with existing metamodels such the UML metamodel, KDM,
or DMM. For example, DMM defines two classes called Routine and Method that
describe the static elements of a routine and a method respectively. Assuming that
CTF is used with DMM, the classes RoutineCallNode and MethodCallNode will need
to be linked to DMM classes Routine and Method in order to retrieve static
information. This linkage is not defined in this paper and will be the subject of future
improvements of CTF. The advantage of such design is that it allows CFT to be
adopted by static analysis tools that use the aforementioned metamodels.

Fig.3. The control node SEQ is used to represent the contiguous repetitions of the subtrees
rooted at B and D.

Control nodes represent extra information that might be used by software
engineers to customize parts of the trace. In particular, we define two control nodes:
SequenceNode and RecursionNode. A SequenceNode object is used to represent

99

contiguous repetitions of multiple sequences of events. Figure 3 illustrates how such
node is used to avoid repeating the sequence “BC and D” twice. The label “SEQ” is
used in CTF to identify a SequenceNode object.

A recursive sequence of calls is represented using another control node called
RecursionNode, which in turn refers to the recursively repeated sequence of calls.
Figure 4 shows a recursion occurrence node labeled “REC” that is used in CTF to
collapse the recursive repetitions of the node B. It should be noted that the number of
repetitions is captured through the attribute “repetitions” of the class TraceEdge since
an edge will be created between the routine “A” and the recursive sequence.

Fig.4. The control node REC is used in CTF to represent the recursive repetitions of a sequence
of calls.

The class Thread represents the thread that executes the corresponding portion of
the trace (represented by the class Node). Threads are identified using unique thread
names since this is a common practice in languages such as Java and C++. We do not
distinguish between thread start/end routines from other routines for simplicity
reasons. An obvious extension to this model is to fully support various multi-thread
communication mechanisms.

3.2 Syntactic Form

CTF instance data can be carried using a syntactic form that supports the
representation of graph structures. There exist several languages that satisfy this
requirement, which differ essentially on whether they rely on XML or not. In this
paper, we discuss how the Graph Exchange Language (GXL) [8] and the Tuple
Attribute (TA) [7] can be used with CTF. The choice of these languages is due to the
fact that they are widely used by the reverse engineering research community. In
addition, both languages support the exchange of the instance data as well as the
metamodel; this is compliant with the completeness requirement discussed in Section
2.2.

A GXL file consists of XML elements for describing nodes, edges, attributes, etc.
It was designed to supersede a number of pre-existing graph formats such as GraX
[4], TA [7], and RSF [13]. GXL has been widely adopted as a standard exchange
format for various types of graphs by both industry and academia.

However, an XML-based representation of a trace would tend to be much larger
than necessary due to the use of XML tags and the explicit need to express the data as
XML nodes and edges. The compactness benefits of a trace exchange format
discussed earlier would therefore be partially cancelled out by representing it using
XML. One reasonable alternative to GXL is the Tuple Attribute (TA) [7], which

100

would substantially reduce the space required by a CTF trace (since it is not based on
XML). The TA language was originally developed to help visualize information
about software systems. It has been used as a model interchange format in several
contexts and has a reasonable tool support despite the fact that it is not XML-based.

We are still in the process of testing CTF in order to determine the most suitable
syntactic form that represents its instance data efficiently.

4 Conclusions

Application modernization requires the representation of knowledge about the system
under study. Existing metamodels such as KDM, UML, and DMM are designed
mainly to model the structure of a software system. They lack an efficient
representation of its behavioral properties. In this paper, we presented CTF (Compact
Trace Format), an exchange format for representing traces of routine (method) calls.
To deal with the vast size of typical traces, we designed CTF based on the idea that
dynamic call trees can be turned into ordered directed acyclic graphs, where repeated
subtrees are factored out. CTF, as described in this paper, is a metamodel. Trace data
conforming to CTF can be expressed using GXL, TA, or any other data “carrier”
language. However, we suggest using a compact representation since doing otherwise
would somewhat defeat the compactness objective of CTF.

While CTF covers a significant gap in terms of exchanging traces of routine calls,
dynamic analysis is a highly versatile process that has a large number of needs
including needs for dynamic information that is not necessarily supported by CTF.
Therefore, the main future work is to work towards enhancing CTF in order to
support other types of traces and constructs as well as testing CTF using large traces.

References

1. Bézivin J., 2004. Model Engineering for Software Modernization. In WCRE'04, 11th
Working Conference on Reverse Engineering.

2. Bowman T., Godfrey M. W., and Holt R. C., 1999. Connecting Architecture Reconstruction
Frameworks. In CoSET’99, 1st International Symposium on Constructing Software
Engineering Tools.

3. Downey J. P., Sethi R., Tarjan R. E., 1980. Variations on the Common Subexpression
Problem. Journal of the ACM. 27(4).

4. Ebert J., Kullbach B., Winter A., 1999. GraX – An Interchange Format for Reengineering
Tools. In WCRE’99, 6th Working Conference on Reverse Engineering.

5. Hamou-Lhadj A. and Lethbridge T., 2003. The Compact Trace Format, In ATEM’03, 1st
International Workshop on Metamodels and Schemas for Reverse Engineering.

6. Hamou-Lhadj A. and Lethbridge T., 2005. Measuring Various Properties of Execution
Traces to Help Build Better Trace Analysis Tools. In ICECCS’05, 10th IEEE International
Conference on Engineering of Complex Computer Systems.

7. Holt R. C., 1998. An Introduction to TA: The Tuple Attribute Language. Department of
Computer Science, University of Waterloo and University of Toronto.

8. Holt R. C., Winter A., Schürr A., 2000. GXL: Toward a Standard Exchange Format. In
WCRE’00, 7th Working Conference on Reverse Engineering.

101

9. Jerding D., Rugaber S., 1997. Using Visualisation for Architecture Localization and
Extraction. In WCRE’97, 4th Working Conference on Reverse Engineering.

10. Knowledge Discovery Metamodel (KDM) 1.0 Specifications, 2007: http://www.omg.org/
cgi-bin/doc?ptc/2007-03-15

11. Larus J. R., 1999. Whole program paths. In PLDI'99, Conference on Programming
language design and implementation.

12. Lethbridge T. C., 2003. The Dagstuhl Middle Model: An Overview. In ATEM’03, 1st
International Workshop on Metamodels and Schemas for Reverse Engineering.

13. Müller H. A., Klashinsky K., 1988. Rigi – A System for Programming in-the-large. In
ICSE’88, 10th International Conference on Software Engineering.

14. Reiss S. P. and Renieris M., 2001. Encoding program executions. In ICSE’01, 23rd
International Conference on Software Engineering.

15. St-Denis G., Schauer R., and Keller R. K., 2000. Selecting a Model Interchange Format:
The SPOOL Case Study. In Proc. of the 33rd Annual Hawaii International Conference on
System Sciences.

16. Systä T., 2000. Understanding the Behaviour of Java Programs. In Proc. of the 7th Working
Conference on Reverse Engineering (WCRE).

17. UML 2.0 Specifications, 2005: http://www.omg.org/technology/documents/formal/uml.htm
18. Woods S., Carrière S. J., Kazman R., 1999. A semantic foundation for architectural

reengineering and interchange. In ICSM’99, 15th International Conference on Software
Maintenance.

Appendix

In this appendix, we present the detailed semantics of CTF.

Class “Trace”

Semantics: An abstract class representing common information about traces generated from
the execution of the system.
Attributes:
• startTime: Time - Specifies the starting time of the generation of the trace.
• endTime: Time - Specifies the ending time of the generation of the trace.

Associations: No associations.
Constraints:
• endTime should be greater than or equal to startTime: self.endTime >= self.startTime

Class “CallTree (Subclass of Trace)”
Semantics: An object of CallTree represents a trace of routine calls. A routine is defined as
any function whether it is in a class or not. Although the class refers to a tree but, in fact, it
will be saved as an ordered DAG.
Attributes: No additional attributes.
Associations:
• root: Node[1] - Specifies the root of the call tree.

Constraints:
• The root of a trace must not have parent node: self.root.incoming ->isEmpty()
• The root node cannot be an object of ControlNode subclasses:
 not self.root.oclIsTypeOf(SequenceNode) and
 not self.root.oclIsTypeOf(RecursionNode)
• The graph needs to be an ordered directed acyclic graph.

102

Class “TracePattern”
Semantics: An object of the class TracePattern represents a sequence of calls that is repeated
in a non-contiguous manner in the trace.
Attributes:
• description: String - Specifies a textual description that a software engineer can assign to a

trace pattern.
Constraints: No additional constraints.

Class “Node”

Semantics: Node is an abstract class that represents the nodes of the directed acyclic graph
(i.e. compact form of the call tree).
Attributes:
• label: String - Represents the name of the routine represented by this node.
• timestamps: Time[] - Specifies the timestamps of the routines represented by this node.
• executionTime: double[] - Specifies the execution times of the routines represented by

this node.
Associations:
• DAG: CallTree [1] - References the Trace for which this node is the root.
• incoming: TraceEdge [*] - Specifies the TraceEdge objects that represent the incoming

edges of this node.
• outgoing: TraceEdge [*] - Specifies the TraceEdge objects that represent the outgoing

edges of this node.
• Thread [*] - References the Thread objects that represent the thread in which this node is

executed.
Constraints:
• The timestamps of the routine calls represented by this node must be sorted in an

ascending manner. This guarantees that the graph maintains the sequential execution of
the routines.

• The parent nodes of this node cannot be the same as its child nodes and vice-versa since
the graph is acyclic.

self.incoming->excludesAll(self.outgoing) and
self.outgoing ->excludesAll(self.incoming)

Class “TraceEdge”

Semantics: Objects of the TraceEdge class represent edges of the directed acyclic graph.
Attributes:
• repetitions: int - Specifies an edge label that will be used to represent the number of

repetitions due to loops and recursion. Default value is zero, i.e., no repetitions.
Associations:
• child: Node[1] - References the node that represents the child node that is pointed to by

this trace edge.
• parent: Node [1] - References the node that represents the parent node from which this

edge is an outgoing edge.
Constraints:
• The child and the parent nodes must be different. Recursion is represented using the

RecursionNode class (Section 3.1):
sefl.child <> self.parent

• The value of the attribute “repetitions” must be greater than or equal to zero
self.repetitions >= 0

103

Class “Thread”
Semantics: Objects of the Thread class represent the thread of execution invoked in the trace.
Attributes:
• name: String - Specifies the name of the thread.

Associations:
• Node[1..*] - References the nodes that are executed in this thread of execution.

Constraints: No constraints.

Class “RoutineCallNode (Subclass of Node)”
Semantics: Objects of the RoutinceCallNode represent the routine calls invoked in the trace.
A routine here should not be confused with a method of a class.
Attributes: No additional attributes.
Associations: No additional associations.
Constraints: No additional constraints.

Class “MethodCallNode (Subclass of Node)”
Semantics: Objects of the MethodCallNode represent the method calls invoked in the trace.
Attributes: No additional attributes.
Associations:
• Object [0..1] - References the object, if known, on which the method is invoked.

Constraints: No additional constraints.

Class “Object”
Semantics: This class represents the objects invoked in the trace. In some traces, information
about objects may be present; in others such information (and hence instances of this class)
may be absent.
Attributes:
• objectID: String - Specifies the object identifier.

Associations:
• MethodCallNode [1..*] - Specifies the methods invoked on this object.

Constraints: No additional constraints

Class “ControlNode (Subclass of Node)”
Semantics: The ControlNode class is an abstract class that is used to specify additional
information that can help better structure the trace.
Attributes: No additional attributes.
Associations: No additional associations.
Constraints:

• A control node cannot be the root of the entire trace: self.incoming ->notEmpty()
• A control node must have children: self.outgoing -> notEmpty()

Class “RecursionNode (Subclass of ControlNode)”
Semantics: An object of the RecursionNode is added to represent graph nodes that are
repeated recursively. In this case, this object will be labeled ‘REC’.
Attributes: No additional attributes.
Associations:

• repeatedOccurrence: Node[1] - References the subtree that is repeated recursively.
Constraints: No additional constraints

Class “SequenceNode (Subclass of Control Node)”
Semantics: An object of the SequenceNode class is added to represent multiple nodes that are
repeated in a contiguous way. In this case, this object will be labeled ‘SEQ’.
Attributes: No additional attributes.
Associations: No additional associations.
Constraints: No additional constraints.

104

