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Abstract. An important issue in application modernization is the time and 
effort needed to understand existing applications. Understanding the dynamic 
aspects of software is a difficult task, further complicated by the lack of a 
scalable way of representing the extracted knowledge. The behavior of a 
software system is typically represented in the form of execution traces. Traces, 
however, can be extraordinary large. Existing metamodels such as the 
Knowledge Discovery Metamodel and the UML metamodel provide limited 
support for handling large execution traces. In this paper, we describe a 
metamodel called the Compact Trace Format (CTF) for efficient modeling of 
traces of routine (method) calls generated from multi-threaded systems. CTF is 
intended to facilitate the interoperability among modernization tools that focus 
on the analysis of the behavior of software systems. CTF is designed to be 
easily extensible to support other types of traces. 

1 Introduction 

Software modernization is defined as the process of understanding and evolving 
existing software systems for the purpose of improving their various facets [1]. 

Understanding a software system requires both static and dynamic analysis 
techniques. The former focuses on exploring the structure of the system by analyzing 
its source code, whereas the latter, which is the focus of this paper, provides insight 
into the system’s behavioral properties. Both approaches aim at extracting knowledge 
about the system under study that can later be fed to a modernization tool for further 
analysis.  

There exist several standards for representing the knowledge extracted from 
software systems, among which the most recent is the Knowledge Discovery 
Metamodel (KDM) [10] supported by the Object Management Group (OMG). Others 
include the UML 2 metamodel [17], the Dagstuhl Middle Metamodel (DMM) [12], 
etc.  

However, while existing metamodels provide a full range of constructs for the 
modeling of the static aspects of the system (i.e. its static components and the way 
they interact), they do not support efficient representation of the system’s behavioral 
features, typically represented in the form of execution traces. Traces have historically 
been difficult to work with since they may contain millions of events. The challenge 
is to develop a trace format that scales up to handle large and complex traces.  
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In this paper, we describe ongoing work towards the development of a scalable 
format for representing execution traces. A particular format called CTF (Compact 
Trace Format) is proposed. CTF focuses on representing traces of routine (methods) 
calls generated from multi-threaded systems. It is built with scalability in mind using 
graph theory concepts. In addition, CTF metamodel is defined in such a way that it 
can be easily extended to support other types of traces and constructs.  

The remaining of this paper is organized as follows: In Section 2, we discuss the 
requirements that guided us in the development of CTF. In Section 3, we present the 
CTF metamodel and its syntactic form. CTF semantics are presented in the appendix 
section.  

2 Requirements for a Trace Exchange Format  

Requirements for an effective exchange format have been the subject of many studies 
[2], [15], [18]. In this section, we present the ones that a trace exchange format should 
fulfill in order to facilitate its adoption. These requirements were used to guide the 
development of CTF.  

2.1 Scalability 

The adoption of a trace exchange format will greatly depend on its ability to support 
large-sized traces. Trace, however, tend to contain many repetitions due to the 
presence of loops and recursions in the source code. They also contain non-
contiguous repetitions known as trace patterns. The scalability of a trace exchange 
format can, therefore, be significantly improved if repeated events are factored out 
and represented only once. For example, the trace of routine calls described in Figure 
1a can be transformed into an ordered directed acyclic graph (DAG) represented in 
Figure 1b by representing the repeated subtree rooted at “B” only once. This 
technique was first introduced by Downey et al. in [3] to improve tools that 
manipulate trees. It was also used by Larus [11] and Reiss and Renieris [14] to encode 
traces with the objective of saving disk space.  

It should be noticed, however, that the graph must be ordered in order to be able 
to restore the initial order of calls. In addition, the graph representation of a trace does 
not necessarily result in a loss of information associated with individual nodes of the 
tree such as timing information commonly collected when generating a trace. The 
simplest solution is to augment the nodes of the graph with ordered collections that 
holds the information describing individual nodes of the tree. 

In previous work [6], we applied this compaction technique to over thirty 
execution traces and showed that it can reach a 97% compression ratio (i.e. the graph 
contains only 3% of the number of nodes of the tree). This has led us, as we will see 
in Section 3, to build CTF using the ordered DAG as its main mechanism. 
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2.2 Completeness 

This requirement consists of having an exchange format include all the necessary 
information needed during the exchange: The data to exchange as well the metamodel 
that describes the structure of the data. The rationale behind this is to enable tools to 
check the validity of the instance data against the metamodel. To address this 
requirement, we need to select a syntactic form language (i.e. the language that 
“carries” CTF instance data) that is designed to support the exchange of the instance 
data as well as the metamodel. In Section 3.2, we discuss possible syntactic forms that 
could be used with CTF. 

 
a)        b)    

Fig.1. a) An example of a call tree. b) The compact form of the call tree. 

2.3 Extensibility 

The data model of a trace exchange format must be flexible enough to support new 
types of traces, language specific entities and properties, and some properties that are 
specific to the trace analysis tool that uses the format. CTF addresses this requirement 
by adopting an open design based on abstract classes that allow new constructs to be 
easily added.  

2.4 Tool Support 

In order to facilitate the adoption of an exchange format by tool builders, we need to 
develop well-defined mechanisms that facilitate the manipulation of traces. First, we 
need to design procedures that ensure that the information exchanged is represented 
without any alteration. Second, we need to develop algorithms for on the fly 
generation of traces in the new format. Finally, we need to create converters that will 
convert other commonly used formats into the new format to facilitate the transition 
to the new exchange format. Since CTF is still an ongoing project, this requirement 
will be addressed in future work.  
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Fig. 2. CTF Metamodel. 

3 CTF  

In this section, we present CTF metamodel and its syntactic form. CTF semantics are 
presented in the appendix section. 

The initial version of the CTF metamodel was presented at the First International 
Workshop on Metamodels and Schemas for Reverse Engineering [5]. The metamodel had 
since undergone significant changes. The current version of CTF is described in this 
paper. Due to limited space, we did not attempt to show the changes made to the 
previous version. 

3.1 CTF Metamodel 

CTF metamodel is presented in Figure 2. CTF models traces as ordered directed 
acyclic graphs and not as tree structures. The elements of CTF metamodel as 
presented in what follows: 

The class Trace is an abstract class that describes common information that 
different types of traces usually share such as timing information. To create other 
types of traces, one needs to extend this class. 

The class CallTree depicts a trace of routine or method calls. The class Node 
refers to nodes in the ordered DAG; each can have many child nodes and many parent 
nodes as illustrated on the diagram using the parent and child roles. Each node 
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maintains a collection of timestamps and another one that stores the execution times 
of the individual routine calls represented by this node. 

Edges (i.e. calls) are depicted using the TraceEdge class. An edge links two nodes 
of the DAG. Nodes that are repeated contiguously due to the presence of loops or 
recursion in the source code are collapsed into one single node; the attribute 
“repetitions” of the class TraceEdge records the number of repetitions.  

As its name indicates, the class TracePattern represents patterns of execution 
invoked in the trace. A trace pattern is defined as a sequence of events that is repeated 
non-contiguously in the trace. They are used by software engineers as a means to 
uncover key domain concepts from the trace. The common hypothesis is that the 
sequence of calls that appears in various places in the trace might encapsulate some 
knowledge about the system such as a particular aspect of an algorithm, etc. [9], [16]. 
Software engineers often associate a textual description to trace patterns that are 
deemed important. The class TracePattern uses an attribute called “description” to 
capture this textual description.  

A node can either be a routine call node (RoutineCallNode), a method node 
(MethodCallNode), or a control node (ControlNode). A RoutineCallNode object 
represents a call to a routine that is not a method of a class, whereas a 
MethodCallNode stands for a method invocation. Method calls are considered as 
routine calls except that they may contain additional information such as the objects 
(represented using the class Object) on which the methods are invoked.  

The above metamodel relies on a string label to identify trace events (i.e. the 
routines invoked). It does not provide any other static information about the routines 
(or methods) invoked such as the parameter list and return type. The reason is that 
CTF is intended to work with existing metamodels such the UML metamodel, KDM, 
or DMM. For example, DMM defines two classes called Routine and Method that 
describe the static elements of a routine and a method respectively. Assuming that 
CTF is used with DMM, the classes RoutineCallNode and MethodCallNode will need 
to be linked to DMM classes Routine and Method in order to retrieve static 
information. This linkage is not defined in this paper and will be the subject of future 
improvements of CTF. The advantage of such design is that it allows CFT to be 
adopted by static analysis tools that use the aforementioned metamodels.  

 
Fig.3. The control node SEQ is used to represent the contiguous repetitions of the subtrees 
rooted at B and D. 

Control nodes represent extra information that might be used by software 
engineers to customize parts of the trace. In particular, we define two control nodes: 
SequenceNode and RecursionNode. A SequenceNode object is used to represent 
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contiguous repetitions of multiple sequences of events. Figure 3 illustrates how such 
node is used to avoid repeating the sequence “BC and D” twice. The label “SEQ” is 
used in CTF to identify a SequenceNode object. 

A recursive sequence of calls is represented using another control node called 
RecursionNode, which in turn refers to the recursively repeated sequence of calls. 
Figure 4 shows a recursion occurrence node labeled “REC” that is used in CTF to 
collapse the recursive repetitions of the node B. It should be noted that the number of 
repetitions is captured through the attribute “repetitions” of the class TraceEdge since 
an edge will be created between the routine “A” and the recursive sequence.  

 
Fig.4. The control node REC is used in CTF to represent the recursive repetitions of a sequence 
of calls. 

The class Thread represents the thread that executes the corresponding portion of 
the trace (represented by the class Node). Threads are identified using unique thread 
names since this is a common practice in languages such as Java and C++. We do not 
distinguish between thread start/end routines from other routines for simplicity 
reasons. An obvious extension to this model is to fully support various multi-thread 
communication mechanisms. 

3.2 Syntactic Form 

CTF instance data can be carried using a syntactic form that supports the 
representation of graph structures. There exist several languages that satisfy this 
requirement, which differ essentially on whether they rely on XML or not. In this 
paper, we discuss how the Graph Exchange Language (GXL) [8] and the Tuple 
Attribute (TA) [7] can be used with CTF. The choice of these languages is due to the 
fact that they are widely used by the reverse engineering research community. In 
addition, both languages support the exchange of the instance data as well as the 
metamodel; this is compliant with the completeness requirement discussed in Section 
2.2. 

A GXL file consists of XML elements for describing nodes, edges, attributes, etc. 
It was designed to supersede a number of pre-existing graph formats such as GraX 
[4], TA [7], and RSF [13]. GXL has been widely adopted as a standard exchange 
format for various types of graphs by both industry and academia.  

However, an XML-based representation of a trace would tend to be much larger 
than necessary due to the use of XML tags and the explicit need to express the data as 
XML nodes and edges. The compactness benefits of a trace exchange format 
discussed earlier would therefore be partially cancelled out by representing it using 
XML. One reasonable alternative to GXL is the Tuple Attribute (TA) [7], which 
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would substantially reduce the space required by a CTF trace (since it is not based on 
XML). The TA language was originally developed to help visualize information 
about software systems. It has been used as a model interchange format in several 
contexts and has a reasonable tool support despite the fact that it is not XML-based.  

We are still in the process of testing CTF in order to determine the most suitable 
syntactic form that represents its instance data efficiently. 

4 Conclusions 

Application modernization requires the representation of knowledge about the system 
under study. Existing metamodels such as KDM, UML, and DMM are designed 
mainly to model the structure of a software system. They lack an efficient 
representation of its behavioral properties.  In this paper, we presented CTF (Compact 
Trace Format), an exchange format for representing traces of routine (method) calls. 
To deal with the vast size of typical traces, we designed CTF based on the idea that 
dynamic call trees can be turned into ordered directed acyclic graphs, where repeated 
subtrees are factored out. CTF, as described in this paper, is a metamodel. Trace data 
conforming to CTF can be expressed using GXL, TA, or any other data “carrier” 
language. However, we suggest using a compact representation since doing otherwise 
would somewhat defeat the compactness objective of CTF. 

While CTF covers a significant gap in terms of exchanging traces of routine calls, 
dynamic analysis is a highly versatile process that has a large number of needs 
including needs for dynamic information that is not necessarily supported by CTF. 
Therefore, the main future work is to work towards enhancing CTF in order to 
support other types of traces and constructs as well as testing CTF using large traces. 
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Appendix 

In this appendix, we present the detailed semantics of CTF. 
 
Class “Trace” 

Semantics: An abstract class representing common information about traces generated from 
the execution of the system.  
Attributes: 
• startTime: Time - Specifies the starting time of the generation of the trace.  
• endTime: Time - Specifies the ending time of the generation of the trace.  

Associations: No associations. 
Constraints: 
• endTime should be greater than or equal to startTime: self.endTime >= self.startTime 

Class “CallTree (Subclass of Trace)” 
Semantics: An object of CallTree represents a trace of routine calls. A routine is defined as 
any function whether it is in a class or not. Although the class refers to a tree but, in fact, it 
will be saved as an ordered DAG. 
Attributes: No additional attributes. 
Associations: 
• root: Node[1] - Specifies the root of the call tree. 

Constraints: 
• The root of a trace must not have parent node:  self.root.incoming ->isEmpty() 
• The root node cannot be an object of ControlNode subclasses:  
 not self.root.oclIsTypeOf(SequenceNode) and 
 not self.root.oclIsTypeOf(RecursionNode) 
• The graph needs to be an ordered directed acyclic graph. 
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Class “TracePattern” 
Semantics: An object of the class TracePattern represents a sequence of calls that is repeated 
in a non-contiguous manner in the trace.  
Attributes: 
• description: String - Specifies a textual description that a software engineer can assign to a 

trace pattern.  
Constraints: No additional constraints. 

 
Class “Node” 

Semantics: Node is an abstract class that represents the nodes of the directed acyclic graph 
(i.e. compact form of the call tree). 
Attributes: 
• label: String - Represents the name of the routine represented by this node. 
• timestamps: Time[] - Specifies the timestamps of the routines represented by this node.   
• executionTime: double[] - Specifies the execution times of the routines represented by 

this node.   
Associations: 
• DAG: CallTree [1] - References the Trace for which this node is the root.   
• incoming: TraceEdge [*] -  Specifies the TraceEdge objects that represent the incoming 

edges of this node. 
• outgoing: TraceEdge [*] - Specifies the TraceEdge objects that represent the outgoing 

edges of this node. 
• Thread [*] - References the Thread objects that represent the thread in which this node is 

executed. 
Constraints: 
• The timestamps of the routine calls represented by this node must be sorted in an 

ascending manner. This guarantees that the graph maintains the sequential execution of 
the routines.  

• The parent nodes of this node cannot be the same as its child nodes and vice-versa since 
the graph is acyclic. 

self.incoming->excludesAll(self.outgoing) and 
self.outgoing ->excludesAll(self.incoming) 

 
Class “TraceEdge” 

Semantics: Objects of the TraceEdge class represent edges of the directed acyclic graph.  
Attributes: 
• repetitions: int - Specifies an edge label that will be used to represent the number of 

repetitions due to loops and recursion.  Default value is zero, i.e., no repetitions. 
Associations: 
• child: Node[1] - References the node that represents the child node that is pointed to by 

this trace edge. 
• parent: Node [1] - References the node that represents the parent node from which this 

edge is an outgoing edge. 
Constraints: 
• The child and the parent nodes must be different. Recursion is represented using the 

RecursionNode class (Section 3.1): 
sefl.child <> self.parent 

• The value of the attribute “repetitions” must be greater than or equal to zero 
self.repetitions >= 0 
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Class “Thread” 
Semantics: Objects of the Thread class represent the thread of execution invoked in the trace. 
Attributes: 
• name: String - Specifies the name of the thread.  

Associations: 
• Node[1..*] - References the nodes that are executed in this thread of execution. 

Constraints: No constraints. 

Class “RoutineCallNode (Subclass of Node)” 
Semantics: Objects of the RoutinceCallNode represent the routine calls invoked in the trace.  
A routine here should not be confused with a method of a class. 
Attributes: No additional attributes. 
Associations: No additional associations. 
Constraints: No additional constraints. 

Class “MethodCallNode (Subclass of Node)” 
Semantics: Objects of the MethodCallNode represent the method calls invoked in the trace. 
Attributes: No additional attributes. 
Associations: 
• Object [0..1] - References the object, if known, on which the method is invoked.  

Constraints: No additional constraints. 

Class “Object” 
Semantics: This class represents the objects invoked in the trace. In some traces, information 
about objects may be present; in others such information (and hence instances of this class) 
may be absent. 
Attributes: 
• objectID: String - Specifies the object identifier. 

Associations: 
• MethodCallNode [1..*] - Specifies the methods invoked on this object. 

Constraints: No additional constraints 

Class “ControlNode (Subclass of Node)” 
Semantics: The ControlNode class is an abstract class that is used to specify additional 
information that can help better structure the trace. 
Attributes: No additional attributes. 
Associations: No additional associations. 
Constraints: 

• A control node cannot be the root of the entire trace: self.incoming ->notEmpty() 
• A control node must have children: self.outgoing -> notEmpty() 

Class “RecursionNode (Subclass of ControlNode)” 
Semantics: An object of the RecursionNode is added to represent graph nodes that are 
repeated recursively. In this case, this object will be labeled ‘REC’. 
Attributes: No additional attributes. 
Associations: 

• repeatedOccurrence: Node[1] - References the subtree that is repeated recursively. 
Constraints: No additional constraints 

Class “SequenceNode (Subclass of Control Node)” 
Semantics: An object of the SequenceNode class is added to represent multiple nodes that are 
repeated in a contiguous way. In this case, this object will be labeled ‘SEQ’. 
Attributes: No additional attributes. 
Associations: No additional associations. 
Constraints: No additional constraints.  
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