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Abstract. Flexible and personalized instruction is one of the most important re-
quirements to next generation intelligent educational systems. The intelligence 
of any e-learning system is thus measured by its ability to sense, aggregate and 
use, the various contextual elements to characterize the learner, and to react ac-
cordingly by providing a set of customized learning services. In this paper we 
propose a proactive context aware mobile learning system on the Semantic 
Web. The contribution of this work is a combined model using both a probabil-
istic learning technique and an ontology-based approach to enable intelligent 
context processing and management. The system uses a Naïve Bayesian classi-
fier to recognize high level contexts in terms of their constituent atomic context 
elements. Recognized contexts are then interpreted as triggers of actions yield-
ing a Web service composition. This is achieved by reasoning on the ontologi-
cal description of atomic context elements participating in the high level con-
text. 

1 Introduction 

Research work in the field of mobile learning [1][2][3][4][5] has shown that the edu-
cational potential of mobile technologies is driven by the continuing expansion of 
broadband wireless networks and the capacity of the new generation of cellular 
phones. However, the utilization of these technologies for educational purposes has 
been sparsely explored and many problems related to: context acquisition and man-
agement, conceptual knowledge modeling for personalized instruction, and adaptive 
information discovery remain unresolved. This paper contributes towards this direc-
tion, aiming at using the evolving semantic web and mobile computing to enable 
context-aware learning which delivers adaptive instructional resources on a learner’s 
schedule. Context-aware learning is a critical support mechanism for educational 
institutions and organizations to compete in the new economy. Today’s global market 
requires adaptive, fast, just-in time, and relevant learning processes that can be initi-
ated by user profiles and business demands [6]. 

In this paper we propose an integrated approach to context modeling and reasoning 
based on Naïve Bayesian classifiers and ontological structures. First, higher-level 
contexts are recognized using a Naïve Bayesian classifier. Then, ontology-based 
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reasoning with the recognized contexts triggers actions yielding Web service compo-
sition that are customized to learner’s context, needs, and preferences. The contextual 
information used in the personalization process encompasses all elements that charac-
terize the learner’s interaction, task at hand, the resources on which the Web services 
are to be performed, and surrounding environment.  

The remaining of the paper is organized as follows. Section 2 describes back-
ground knowledge and related work. Section 3 describes context representation and 
modeling schemes. In section 4, we describe the higher-level context recognition 
process. Section 5 presents the framework for ontology reasoning and Web services 
composition to generate adaptive learning services. Finally, conclusions are drawn 
and further research work is suggested. 

2 Background and Related Work 

A considerable amount of research in knowledge-based and intelligent e-learning 
systems is now moving towards ontology-based context acquisition and management 
for personalized learning [7][8][9][10]. The main issues and challenges are however 
related to the ability of such systems to model and consistently reason with high level 
contexts at the semantic level. Although, some research attempts were made to solve 
some of these problems [9][10][11][12], the shortcoming of most of these efforts is 
their limitations to specific context elements and specific learning scenarios. General-
purpose modeling and reasoning with context is a complex problem, and much re-
search work is needed before achieving any real progress in this field. Most devel-
oped learning systems restrict the use of ontology relations and rules to describing 
and adapting content and sequencing of learning material according to some sensed 
context. However, little contextual semantics has been embedded in the ontology 
itself.  

Other approaches to context modeling have also been considered. McCalla [13] 
has introduced an approach to learning design where learners’ models are attached to 
Learning Objects (LOs) they interact with, and useful learning patterns are then de-
rived by mining those models. The problem with this approach is its limitation to 
context that can be inferred from the learner’s profile only, ignoring other type of 
context. Stojanovic et al. [6] however, have extended ontology usage to describe 
content, context, and sequence of learning material. Content-ontology was used for 
checking consistency as well as searching and navigating repositories of LOs. Con-
text-ontology was used to present learning material in various learning contexts. 
However, learning style ontology was used to describe the way knowledge can be 
dynamically connected to adapt to learners’ cognitive needs and preferences. Sets of 
relations, rules and axioms have been separately defined for each type of adaptation. 
The shortcoming of this approach is that efficient modeling of mobile learning sce-
narios would require the definition of atomic context elements at the semantic level 
and the use of the various ontologies in an orthogonal way. This is due to the fact that 
context, content, and learning styles are semantically inter-related aspects of cognitive 
learning [14]. This paper explores such a new dimension. The emphasis is on context 
discovery and its semantic modeling and management. Mobile users equipped with 
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wireless devices go through several contextual changes as they move around in physi-
cal and social surroundings. These contextual changes could be used to drive ontol-
ogy navigation and reasoning for better modeling of mobile learning scenarios. 

Another challenging aspect addressed in this paper is automation of metadata gen-
eration for mobile learning. Metadata provides a common set of tags for describing, 
indexing, searching, and reusing learning materials on the Web in an interoperable 
way [14]. However, it is really difficult to create and maintain metadata rich enough 
to meet the diverse and ever changing needs of potential mobile learners. Mobile 
learning requires additional metadata to capture context. In this study, an attempt is 
made to solve this problem by defining contextual information at three hierarchical 
levels – atomic context – composite context – and higher-level context. Atomic con-
text elements are sensed from the learner’s interaction, task at hand, the used mobile-
device, and the surrounding environment. These are then grouped into four composite 
context classes – learner context – activity context – device context and environment 
context. Composite contexts are further aggregated to build meaningful time-stamped 
higher-level contexts which are matched against context classes describing typical 
learning scenarios. Context classes are simply built from previously sensed similar 
higher-level contexts that have exhibited high degree of confidence. Matching higher-
level contexts against these context classes is performed using a Naïve Bayesian clas-
sifier. The Naïve Bayesian classifier technique is used to cope with the uncertainty 
embedded in most sensed atomic contextual elements. Recognized contexts are then 
interpreted as triggers of actions that are translated into Web service compositions. 
This is achieved through ontological descriptions and reasoning with higher-level 
context. 

Fig. 1 describes the overall system architecture which consists of four main com-
ponents – context acquisition and aggregation – context recognizer – ontology  rea-
soning engine – and Web-service composer. The context acquisition and aggregation 
component controls the user’s interaction with the system and senses atomic context 
information from different sources. These are then aggregated into domain related 
contexts. Mobile learners go through continuous contextual changes as they move in 
their environments. It is the context acquisition and aggregator’s job to communicate 
and update such changes yielding new contexts. The context recognizer identifies the 
aggregated contexts by matching them against well defined context classes stored in a 
context repository. The recognition process is performed using a Naïve Bayesian 
classifier. The context recognizer also allows for newly formed context classes to be 
added to the context repository. 

The third component of the system is an ontology reasoning engine which uses the 
recognized higher-level contexts to customize learning services. Two ontologies are 
used to perform such a task – device/environment ontology – and domain ontology. 
The former is used to generate metadata that is used to discover Web-services that 
can run in the learner’s device/network environment. However, the later is used to 
customize the learning content and the learning sequence according to the learner’s 
current activity, background and preferences. This requires an ontological description 
and interpretation of higher-level contexts in terms of their constituent atomic context 
elements. Finally, the Web-service composer uses the generated device/environment 
metadata and the inferred learning concepts’ sequence to compose Web-services 
accordingly. 
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Fig. 1. System Architecture. 

3 Context Acquisition and Aggregation 

Contextual information used in this study is defined at three hierarchical levels – 
atomic context – composite context – and higher-level context. At the lower level, 
atomic contextual elements consist of the basic information describing the learner’s 
profile, the current learner’s activity, the used mobile device, and the surrounding 
environment. These can be either direct or indirect atomic contextual elements. Direct 
atomic contextual elements are those that can be directly sensed from the user interac-
tion with the system and may originate from different sources such as the used device 
(i.e. device type, communication protocol), the task at hand (i.e. current learner’s 
activity), and the surrounding environment (i.e. location, time, wireless network, 
network security). Indirect atomic contextual elements are however those elements 
that can be indirectly inferred from the direct atomic context elements. Inference of 
indirect atomic context elements is performed by the context aggregator relying on 
the device/environment repository and the learner profile repository. For instance, 
information such as device’s operating system, device memory, and screen resolution 
of a specific mobile device which is previously stored in a device repository can be 
inferred using the atomic context element device-type. Similarly, other information 
related to the learner’s pre-requisite knowledge, previously accessed services, and 
learner’s preferences can be inferred from the learner profile repository. The use of 
indirect contextual elements aims at reducing the amount of contextual information 
that has to be sensed from the learner’s interaction, device, and surrounding environ-
ment, which significantly speedup the context recognition process. 
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An atomic context element ci is defined by:  
 
                                                     ),( ipivi ccc =                                                  (1) 

 
where ivc is the context value, and ipc is the probability of context ic of value 

ivc being part of a higher-level context. The context value ivc , as shown below, can 
be either a specific value (i.e. device type, learner identifier), a binary value (i.e. 
whether the used device is browser-enabled or not, secured/non-secured wireless 
network), or a value within a predefined range (i.e. network bandwidth, screen resolu-
tion). 

 
(2) 

 
 
 
Composite contextual elements are aggregates of atomic context elements describ-

ing a specific context type. There are four context types – Lc learner context – Dc de-

vice context – Ec environment context – and Ac activity context. Each of which is 
defined by: 

 
(3) 

 
Finally, higher-level contexts consist of four-tuples tAEDLt ccccC ),,,(= which 

are built out of configurations of composite context elements sensed at time t and 
which characterize typical learning scenarios in a specific domain. Classes of higher-
level contexts are defined at the ontological level in that they can be interpreted di-
rectly as triggers of learning actions implemented as Web service compositions. 

4 Context Recognition 

While ontologies have the ability to communicate context information by naming 
different concepts in machine readable fashion and allowing for the use of everyday 
words and concepts when interacting with the technology, they are unable to effi-
ciently recognize learners’ context. This is because the mapping between the defined 
concepts and the sensed real world atomic context elements is not so straightforward 
due to the uncertainty embedded in some atomic context elements. The mapping fails 
because ontologies do not handle uncertainty. They rather rely on well defined logic 
which assumes all information required to make a logical decision is available and 
produces either true, false or undeterminable statements. Uncertainty on the other 
hand produces similar statements but with degrees of truth or falseness [15]. To cope 
with uncertainty, higher-level contexts are recognized using a Naïve Bayesian Classi-
fier. Bayesian Classification is a probabilistic learning technique where prior knowl-
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edge can be combined with observed data. The aim is to recognize a currently ob-
served context state against a set of learned context classes. The input to the classifier 
is thus a set of sensed/observed atomic context elements which describe the user’s 
context at a given instant of time, while the output is a learned context class. The 
classification process is thus performed with no user intervention or understanding 
required. The Bayesian classification also makes the implicit assumption that the data 
being handled is noisy and can tolerate any missing pieces of information. One differ-
ence between the Bayesian classification and the ontology approach is that once the 
ontology is defined then it can be available immediately whereas in the Bayesian 
classification approach each context has to be experienced at least once before being 
recognized again [15]. 

Let X be a current context whose class label is unknown, and let H be a hypothesis 
that X belongs to context class C, the classification problem consists of determining 
P(H/X) that is the probability that the hypothesis holds given the observed context X. 
This is defined by: 

 
(4) 

 
where : 

• P(H) is the prior probability of hypothesis H (i.e. the initial probability be-
fore we sense the current context and reflects the background knowledge). 

• P(X) is the probability associated to the current context. 
• P(X|H) is the probability of observing the context X, given that the hypothe-

sis holds. 
 
The above Bayesian model assumes that the observed context elements are re-

lated and depend on each other, and therefore, requires initial knowledge of many 
probabilities, as well as, significant computational cost. However, since most sensed 
atomic context elements are independent, the above model can be further simplified 
by applying the Naïve Bayesian classifier which is defined by: 

(5) 
 
 
Where: Ci is a context class, and the set of xks are the atomic context elements 

forming the higher-level context X as defined in section 3.1. 
 
The Naïve Bayesian classifier greatly reduces the complexity of the model, as well 

as its computational requirements. The context recognition problem is solved by as-
signing the current context X to the class Ck that satisfies the following condition: 

 
(6) 

where m is the number of recognized context classes. 
Fig. 2 describes the context acquisition and recognition cycle. First, direct-atomic 

context elements are sensed, these are then used to infer related indirect-context ele-
ments. Next, the Naïve Bayesian classifier is applied to recognize the associated 
higher-level context-class, and finally, changes to the learner’s context are sensed and 
a new context recognition cycle is performed. It should be noted here that the context-
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change detection process significantly speedup the recognition time of successive 
high level contexts. This is because we just infer the indirect-atomic contexts of those 
context elements that have undergone some changes. The subset of newly observed 
context elements designated by Cchanges is defined by: 

 
(7) 

 
where “\” means set subtraction. 
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Fig. 2. Context Acquisition and Recognition Cycle. 

5 Ontology Reasoning and Web Service Composition 

Recognized higher-level contexts are fed to the ontology reasoning engine in order to 
customize learning services based on the learner’s context, preferences and back-
ground. Reasoning with recognized higher-level contexts is performed using the two 
ontologies – device/environment ontology – and domain ontology. A set of ontologi-
cal rules are applied to the device/environment ontology to infer the computing re-
sources and the operational environment features compatible with the used mobile 
device and its surrounding environment. We call this process, context-driven re-
sources adaptation. The output of this reasoning process is a set of metadata that will 
help discovering the Web services that can run into such an operational environment. 
The inference rules that are built around the domain ontology however are used to 
provide the learner with a learning sequence and content tailored to his/her current 
activity, previous background and preferences. 

The two ontologies are coded in the Web Language Ontology – OWL; and the in-
ference engine is implemented in Rule Markup Language – RuleML. Metadata de-
rived from the ontology reasoning process is compliant with the IEEE-LTSC Learn-
ing Object Metadata (LOM) specification which is coded in XML. In particular, the 
XML description of both the inferred learning concepts and the device-related opera-
tional environment are used for Web services discovery. However, the inferred learn-
ing sequence which we call in this paper domain-context (i.e. the order of learning 
concepts inferred using the properties and relations between the domain-ontology’s 
classes [16]) is used for Web service composition. This is described in OWL-S. A 

ii tAEDLtAEDLchanges ccccccccC ),,,(\),,,(
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=
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domain context represents a control structure that makes it possible to adapt the do-
main knowledge to a particular higher-level context. This adaptation is facilitated by 
the ontology MO for a given domain M . MO  is defined by ),( MMM RCoO = , where 

},...,{ 1 nM cocoCo =  is a set of concepts and 
1{ ,..., }M qR r r= is an ordered set of rules 

defined as follows: )...()...( 1 lkrj cocoqcocop
s

→ , where p  and q  are predicates 

reflecting respectively the factual information and the resulting one based on the 
inferential rule sr . 

The semantic of the ontological links is obtained by the rules in RM. These rules are 
prioritized to reflect their importance or abstraction levels in a given knowledge tax-
onomy. For example, if the sensed higher-level context reflects a time-constrained 
learning scenario, one would like to focus only on say “the necessary-part-of” rules of 
the ontology to get a quick abstraction on the general structure of the requested 
knowledge. In a less time-stringent learning scenario however, this abstraction could 
further include the “part-of”, and/or “case-study” rules, etc. These knowledge-
supporting rules generate additional concepts of the ontology in multi-level clusters 
which are used to infer a progressive knowledge based on the learners’ context de-
noted by CL and the activity context denoted by CA as described in section 3. 

A software agent as shown in Fig. 1 is spawned at the server side to supervise a 
learning session for each learner. The agent typically represents the learner on the 
Semantic Web. The agent successively invokes the inference engine to get the current 
learner’s focus, then discovers, composes, and invokes the chosen Web services ac-
cordingly. 

To illustrate the main functions provided by our framework, we provide the fol-
lowing example ontologies describing a C++ programming course as a domain ontol-
ogy, and a device/environment ontology. These are shown in Fig. 3 and Fig. 4 respec-
tively. 
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Fig. 3. Ontology for C++ Programming Course. 

70



 Mobile Devices 

Hardware 

Screen 

Keyboard 

Navigation device 

Memory 

Software Customization 

Normal Screen 

Touch Screen 

Size 

Colors 

Virtual 

Physical 

Scroll Wheel 

Thumb Wheel 

Stylus 

Size 

Speed 

Operating System 

Palm OS 

Windows Mobile 

RIM 

GPE 

OPIE 

Windows 

Speakers 

Connectivity 

Networks 

GSM 900 

GSM 1800 

GSM 1900 

EGSM 

Applications 

Bluetooth 

Wimax 

WAP 

Personal Inf. Manager 

Multimedia 

Wi Fi 

Video Player 

Audio player 

SW Applications 

Devices 

Memory Slot

USB 

Infrared 

WLAN 

Device-Type 

PDA 

Laptop 

Pocket PC 

Cell Phone Programming 

J2ME 

Symbian 

BREW 

Televison 

E-Book 

Symbian OS 

Linux 

GPRS 

3G 

1 

2 3 4 5 6 

60 

61 

62 

63 

50

53

54

51

55

56

57

52

58

59

36

45

46

44

43

42

41

39

40

38

47

48

49

37

23

26

27

28

29

31

30

32

33

25

24

34

35

7 

12 

13 

14

15

8 

16

17

9 

18 

19 

20

10

22

11

21

Part-of Relation 

Necessary Part-of Relation 

 Concept 

Prerequisite Relation 

i i: Concept Id 

Is-a Relation 

 

Fig. 4. Device/Environment Ontology. 

A fragment of the ontology shown in Fig. 3, describing concept 3 “Program De-
velopment Process”, is described in OWL in Fig. 5. The OWL definition of the se-
mantics of the different relationships used in the C++ programming ontology is also 
given in Fig. 5. 

Details about the rules used by the ontology reasoning engine to customize the 
learning sequence can be found in our previous work [17].  
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Fig. 5. Fragments of OWL description of the C++ Programming ontology. 

6 Conclusions 

In this paper, we proposed a proactive mobile-learning system on the Semantic Web. 
We argued that a probabilistic learning model is more suitable that an ontology-based 
approach for context recognition. This is mainly due to uncertainty embedded in 
some atomic contextual information. Higher-level recognized contexts are however 
described at the semantic level using ontology rules and axioms. The ontology rea-
soning process allows the system to react to any observed contextual changes by 
interpreting the newly sensed contexts as triggers of actions yielding a Web service 
composition. We are currently implementing a prototype of our framework as part of 
our personalized-learning provision project. 

 
<owl:ObjectProperty rdf:ID="NecessaryPartOf"> 
  <rdf:type rdf:resource="&owl;TransitiveProperty"/> 
  <owl:inverseOf rdf:resource="#hasNecessaryPart"/> 
</owl:ObjectProperty> 
<owl:ObjectProperty rdf:ID="isPartOf"> 
  <rdf:type rdf:resource="&owl;TransitiveProperty"/> 
  <owl:inverseOf rdf:resource="#hasPart"/> 
</owl:ObjectProperty> 
<owl:ObjectProperty rdf:ID="is-a"> 
  <rdf:type rdf:resource="&owl;TransitiveProperty"/> 
  <owl:inverseOf rdf:resource="#has"/> 
</owl:ObjectProperty> 
<owl:ObjectProperty rdf:ID="isPrerequisiteOf"> 
  <rdf:type rdf:resource="&owl;TransitiveProperty"/> 

  <owl:inverseOf rdf:resource="#hasPrerequisite"/> 
 

<owl:Class rdf:ID="Program Development Precess_3"> 
  <rdfs:subClassOf rdf:resource="#C++ Programming_1"/> 
  <owl:disjointWith rdf:resource="#Prog and PS_2"/> 
  <owl:disjointWith rdf:resource="#Program I/O_4"/> 
  <owl:disjointWith rdf:resource="#Selection_5"/> 
  <owl:disjointWith rdf:resource="#Looping_6"/> 
  <owl:disjointWith rdf:resource="#Functions_7"/> 
</owl:Class> 
 
<owl:Class rdf:ID="C++ Programs_18"/> 
  <rdfs:subClassOf rdf:resource="#Program Development Process_3"/> 
  <rdfs:subClassOf> 
    <owl:Restriction> 
   <owl:onProperty rdf:resource="#isNecessaryPartOf"/> 
   <owl:allValuesFrom rdf:resource="#program Development Process_3"/> 
    </owl:Restriction> 
  </rdfs:subClassOf> 
  <rdfs:subClassOf> 
    <owl:Restriction> 
   <owl:onProperty rdf:resource="#isPrerequisiteOf"/> 
   <owl:allValuesFrom rdf:resource="#Testing and Debugging_21"/> 
    </owl:Restriction> 
  </rdfs:subClassOf> 
  <owl:disjointWith rdf:resource="#Program Construction_19"/> 
  <owl:disjointWith rdf:resource="#Program Execution_20"/> 
  <owl:disjointWith rdf:resource="#Testing and Debugging_21"/> 

</owl:Class> 
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