Formal Semantics for Property-Property Relations in
SEAM Visual Language: Towards Simulation and
Analysis of Visual Specifications

Irina Rychkova and Alain Wegmann

‘School of Communication and Computer Science
Ecole Polytechniqueétkrale de Lausanne (EPFL)
CH-1015 Lausanne, Switzerland

Abstract. SEAM is an enterprise architecture method that defines a visual lan-
guage for modeling. Our goal is to provide formal semantics for SEAM. Model
simulation, model comparison, and refinement verification are practical benefits
we expect from this formalization. This paper complements the existing SEAM
semantics by formalizingroperty-property relation his formalization is based

on the theory of multi-relations and Relation Partition Algebra (RPA).

1 Introduction

In enterprise architecture projects, an enterprise, its environment, and its information
systems are analyzed and designed. In general, the EA frameworks such as ISA [1],
TOGAF [2] (for a more exhaustive list, see also [3]) do not propose a visual modeling
notation. SEAM (Systemic Enterprise Architecture Methodology)[4] is a visual EA

Property -property relation
A

S 71\
L - \
N
S8
Action-property | 1 X % e E

relation [[®*&

~ /

< T
Action-Action relation System (Working Object)

Fig. 1. SEAM visual notation.

method, based on Systems Thinking principles [5]. SEAM represents an enterprise and
its environment as a hierarchy of systems (e.g. market, company, IT system, etc.)[4].
Figure 1 illustrates the SEAM visual notation: Syst8ia modeled as a collaboration of
two systemsSl andS2. SystenBl is described by its observalppeopertiesP1,P2, and
a behavior. The latter is represented by a setaiionsA,B organized withinactivity
AC. SEAM specifies three types of relations between its elementgerty-property
relations action-action relation@ndaction-property relations

Our current research focuses on the definition of formal semantics for the SEAM
visual language. In software engineering, formal methods have been successfully used

Rychkova I. and Wegmann A. (2007).

Formal Semantics for Property-Property Relations in SEAM Visual Language: Towards Simulation and Analysis of Visual Specifications.

In Proceedings of the 5th International Workshop on Modelling, Simulation, Verification and Validation of Enterprise Information Systems, pages
138-147

DOI: 10.5220/0002435501380147

Copyright © SciTePress

139

in combination with UML[6] to formalize its visual notatipand to provide means for
model analysis [7],[8]. However, to our knowledge, no sugpegience in the domain
of EA is reported in literature. Model simulation [9], refment verification [10], and
model comparison for SEAM specifications are the main bene# expect from this
formalization.

In our previous work [10], formal semantics for SEAM projpest actions, activi-
ties, and action-property relations (Fig. 1) have been ddfirsing higher-order logic
and Refinement Calculus [11]. To complete the formalizatibBEAM, the semantics
for property-property relations and action-action relasi has to be provided. This pa-
per introduces a formal semantics for property-propelitians, based on the Relation
Partition Algebra (RPA)[13] and on the theory of multi-riédas [12]. This semantics is
especially useful for refinement propagation techniquplagsed in [10]: introduction,
elimination, or modification of model elements (includingperty-property relations)
affects the model correctness and consistency and requods| adjustments. Refine-
ment propagation technique is based on the formal semaottiowdel elements. It
defines the set of rules to enforce model consistency andatogss and allows to au-
tomate aforementioned adjustments.

This paper is organized as follows. In Section 2 we introdilnee SEAM visual
language and define its main modeling concepts. In Sectioa Bresent in more de-
tails the three types of relations defined in SEAM. In Sectlone provide an exten-
sion of Relation Partition Algebra and the theory of mudtiations that formalizes the
property-property relations in SEAM. Based on this formoation, we specify the con-
sistency criteria for SEAM specifications. In Section 5 wecdis the related work.
Section 6 presents our conclusions.

2 The SEAM Visual Modeling Language

The SEAM ontology is based on the second part of the RM-ODP $pédcification.
Based on this standard, the main modeling concepts suclopsrpy, state, action are
defined. We briefly introduce these concepts below. For dldétaxplanation, see [15].

Any system or system component in SEAM is modeled ageking object We
distinguish between the following views of a working object
- Working object as a whole - a black box system specification;

- Working object as a composite - a white box system spedificat

A working object as a wholé describes a system by a numbermbperties
P1 ... Pnthat specify data types, amehavior 3.

We distinguish betweeprimitive andcompoundroperties. The former can be con-
sidered as an alias for an operational data type (@tgString, Booleanetc.); the latter
is defined by a set afomponent propertieendreferenceso properties usingroperty-
property relations

A state of the primitive property denotes a value of the correspogdiperational
type (e.g. 1"ABC’,true); a state of the compound property is defined by the states of
its components and references.

Lin this paper, we focus on modeling the working object as a whole and doonsider the
working object as a composite, therefore the identifier 'as a whole’ eaontitted

140

A tuple of property instances and their corresponding vatlefines aystem state
o € 2, whereX specifies atate spacea set of all possible states of the modeled system.
A system state can be changed by a system behavior.
Behavior 8 of a working object can be seen as an action or as an activity.
Action A is defined by a three-tuplPre,U, Post}. PreconditiorPre specifies a set of
system states € X~ whereA is applicable. PostconditidRost specifies a set of system
statesy’ € X after the application of. U specifies a state transition and is callgdiate
Pre-, post- conditions, and updates are modeled as anthatztien-property relations
Activity Ac can be considered as a detailed specification of a¢tiondescribeshow
the transition from pre- state to post- state is perforrdediefines a set of component
actions and the way they are composed to carry out the tiamsit

AcCEAIOA0...OA
where () stands for component action ordering. This ordering is ddfiby action-
action relations

3 The Three Types of Relations in SEAM

Action-Action(AA) Relations. SEAM specifies AA-relations using the BPMN [16]
notation. Figure 2 illustrates activithC1l composed of four action#,B,C, andD.

(Aci e (e e
ro8t b
|Start o Endl

Fig. 2. Action-action relations.

An activity starts with a control action, called 'Start’ afidishes with a control action
'End’. Actions A andB are connected by tansitionrelation that specifies a sequen-
tial invocation ofB after A terminates. ActiomB is connected with its successors by an
and-splitrelation, which specifies that actioBsaandD are performed in parallel. Based
on a joint-type ¢r-joint) of the last AA-relation towards the End symbol, the acivit
will terminate after at least one of the actiorts er D - terminates. We will address the
formalization of AA-relations in our future work.

Action-Property(AP) Relations. Contrary to languages like UML [6], in which di-
agrams are specialized (e.g. class diagram, state diagmetivity diagram), SEAM
describes system behavior and data structure within omggatiaand provides explicit
relations between them (Fig. 3). A group of expressions erdéstination end speci-
fies an information, useful for specification simulatidarget expressionspecify the
relation type: Pre-, Post- conditions, or Updatestance expressiorspecify the in-
stance names to be used by the corresponding target express#lect expressions
(optional) specify the instance choice providing multipistances available. In UML,
this information is usually provided by annotated OCL[22peessions.

Action GDiv in Fig. 3 specifies a division operation and selects the gstaevisor
if more then one is available.

141

|
|

Il
wl
|

|

* |
=y
I

|

|

|

|
=
|

|

|

Data
Structure

{Int} {Int}

RBehaviof

Instanée Targef Selectllon

Expression Expression Expression

Fig. 3. Action-property relations annotated with instance, selection, and targetssions.

Property-Property (PP) Relations.Relation Partition Algebra (RPA) [13] defines 'part-
of’ and 'use’ relations as a special type of binary relatioFfisese terms can be used to
represent PP-relations in SEAM. Consider a system datetsteudefined by a number
of data types (properties). The modularization of the dgiag (definition of compound
properties) gives rise to thpart-of relationg(Fig. 4-b, 5-a). Mechanism, when one prop-
erty references (uses) another, can be modeladgbyelationgFig. 4-c)Fig. 5-b).

In SEAM, part-of relations are used to designate the contexthich a property
exists. These relations are depicted by a line with a 'bldakndnd’ at its destination
end and an expression at its source end, to be’fsadrce] is a part of [destination]”.
Use relations are depicted by a line with an expression atadination end, to be
read[source] references (uses) [destinatiofdxpressions specify relationultiplicity
(usually, an integer-valued interval with a possibly irnénupper bound) and a list of
instance names. The multiplicity constrains the minimum #ie maximum allowable
number of instances of a given property in the system. Theipliaity of the opposite
relation end is constant and equal tlmthe SEAM specifications (usually omitted).

4 Formalization of Property-Property Relations Using RPA

The Relation Partition Algebra (RPA) by Feijs and van Ommegiil3] definespart-
of anduserelations as special types of binary relations. The thebmuti-relations
by Feijs and Krikhaar [12] defines a formalism, suitable feagoning about relation
multiplicities. We combine these theories and formalizer@Btions in SEAM apart-
of anduserelations with multiplicities that can be also call8&AM multi-relations

4.1 SEAM Multi-Relations

Multi-relation m(x,y) = n (Fig. 4-a), defined in [12], specifies occurrences of the

binary relation(x,y). Wherex € X,y € Y - are elements of corresponding sets.
SEAM multi-relationspart and use(Fig. 4-b,c) between propertiégsand Q, and

P andT, whereP,Q, T € P, specify 'relations with multiplicities’ between instaes

x: P y:Q, z: T of corresponding properties.

SEAM multi-relationspart anduseon P are defined by pairs of total functions:

parts, usenf : PxP — NU{e}, partsyp, us@up:PxP — NU{w} Q)
0 < partips < partsyp < o, 0 < usgns < usgup< ©

142

{ . l ﬂ r1.r2|zrn. ZrZ
(a) (b) Ny.ny| an Xn2 (C

m(x,y)=n parthP Q) =n; usein(P, T) =n
partsyp(P,Q) = n2 usesyp(P,T) = 12
npsnsn, rMsrsr;

Fig. 4. SEAM multi-relations. a) binary multi-relation; b) SEAM ’part-of’ relatiof® is a part of
Q'’; c) SEAM 'use’ relation: P usesT'. Above: short notation, below: detailed notation.

There areat least n andat most n instances of propertly for each instance dp:
parti,;(P,Q) = ny, partg,y(PQ) =n2 < Vy:Q3Ix,...xn:Plm<n<m (2)
There areat least k andat most p instances of property used (or referenced) by each

instance of propert:
useni(PT) =r1, usa(RT) =12 & VXx:P 32,z :T[ri<r<rz (3)

Above,n andr are the correspondingctualnumber of instances.

Example 1.Figure 5-a illustrates the part-of relation between progeP andQ:
partsup(P, Q) = My; partins(P,Q) =0, where'P is a part ofQ’ and there exist at most
M1 instances oP for each instance d. x4, .., Xv;, - is alist of available instance names.
O

Specl 0..My|t;..t;
) .M;\xl..xmn MLl
1.Mlyi.. -n - 1.M M
[y1.-ym <Ml 0.Mzlyi..ymz

(a) (b)

Fig. 5. Property-property relations annotated with multiplicity and instance exXpress)part-
of relations; buserelation; c)Well-formedness of PP-relations.

Example 2.Figure 5-b illustrates the use relation between propeRiasdT:
partsyp(P, T) = My; partint(P,T) = 0 , where'P references (use€)’ and there exist
at mostM references ol for each instance of. y;,..,ym, - is a list of available
reference names&]

Similarly to [13], we define a relation compositiorof SEAM multi-relations (Fig. 6:
smosn = {(PR)[3QcP e sm(PQ) A smp(Q,R)} 4

Identity relationl is a neutral element.o sm=smo| = sm

For propertie®, Q,R € P we write:

(smeosmp)int(PR) = g smuint(P, Q) - sMpinf(Q, R)
cP

(smosmp)sup(PR) = g SMsup P, Q) - sMpsud Q, R)
cP

|sup(P7Q):|inf(PaQ):0 if P#Q

143

where the following holds:
(Sm o SNp) o ST = Sy o (SMp o SM) = SM 0 SIMp o SN

We define the exponentiation for SEAM multi-relations Brassni' = smo sm. osm
(n-times), puttingsn? = | - identity relation.

0..n
) Ej

(smy o smp)indP,R) = (N1 K1) + (N3 K3) + (ns ks) lin(P,P) = 0
(smy o smy)sup(P,R) = (N2 k2) + (N4 ke) + (g ks) Isup(P,P) = n

Fig. 6.a) SEAM multi-relation compositiorsm - a relation with sourc®, sy - a relation with
destinatiorR; b) Identity relation.

We define a transitive closusm’ (P;,P,) on P iff there exists a sequence of ele-
mentsQ; € P,i = 1..n such thaP; = Q1 and

sMQ1,Q2) 0...0SMQn-1,Qn) 0SMQn, P2) = sni'(Py,).

00

Sm—;f = U sy and S”ﬁup: U Srrgup ®)

n=1 n=1
Heresnf'(P;,P,) is an n-step path frorR; to P..

4.2 ’Part-Of’

A part-of relation between properti®sandQ (Fig. 4-b) specifies the fact that property
P is a part of a data type, defined by prope@tysee Example 1). ProperB/can be a
part of one and only one compound property, i.e. part-otiga is functional:

vV PQR € Ppartgp(PQ) > 0 A partgp(PR) > 0 & Q = R (6)

PropertyP cannot be a part of itself, and there is no path of one or mgetleat starts
atP and leads back tB, i.e. part-of relations is cycle-free, as defined in [13]:

YPeP part"(PP)=0 (7)
We define a part-of relation between a property and a systemifeng object):
partsyp: P — NU{co}, partps : P — NU{oo} (8)

Here, part-of relation specifies a collection of instanceP provided by the system.
These instances can be identified with the global varialflésecsystem.

Example 3.Figure 5-a illustrates the part-of relation whe€is a part ofSped’ and
there exist at mod¥l instances o in Sped: partsy,p(Q) = M; partix(Q) = 1, and
y1,--, Y™ - is a list of available instance named.]

Dynamic creation and deletion of property instances is gmoitant issue that can be
specified on the diagram, using part-of relations, prior talet simulation.

144

Example 4.In Fig.5-a, consider some acti@reateQthat creates instances of property

Q, actionDeleteQthat deletes them, arid,; - the actual number of instances@fin

the system (i.e. a number gfat a given moment of simulation), wherelIMa¢; < M.
Using multiplicities, the effect of creation of an instangean be expressed by the

following statementMact := Mact + 1. For instance deletion we can writ€y, := Ma — 1.

This can be interpreted as follows:

1)If M € N is a constant - every time, after a new instanc®ad dynamically created,

one more namg is taken from the list of available instance namigsyy . WhenMae; =

M - CeateQmust not be available any more.

2)If M = w0 - CreateQis not restricted.

3) Every time one instance & is deleted, one namg is put back to the lisy;..ym.

WhenMgc; = 1 - DeleteQmust not be available any morg.

We generalize the assertion that part-of relation is fumet eq.(6) for the part-of rela-
tion compositions:

Lemma 1. For each ordered pair of properties Pi,P, > there exists at most 1 se-
quence of properties .., Qn € P with P, = Q; and a corresponding sequence of part-
of relations

part(Q1,Qz) o...o part(Qn_1,Qn) o part(Qn, P2) = part"(Py, P>)

such that pat(P,P,) = part™ (P, P,).
Here part'(Py,P,) is a path from Pto B, of the length n, where ‘As a part of @, and
Qzisapartof @, and .. and Qs a part of B’.

This lemma stipulates that between two properties can bedfatimost one sequence
of 'part-of’ relations of an arbitrary length and this seqoe is linear.
We can generalize the definition of part-of relations foatieh composition:

Definition 1. If for two properties P and Q there exists some A such that part(P, Q)
0 then Q contains P as a part.

Corollary 1. For each property P there exists at most one property Bsuch that Q
contains P as a part, and pdh(P, Q) = part® (P,Q) # 0 Here nnax - is the longest
path that starts at P and finishes at Q.

By Lemma 1 and Corollary 1 we can calculate thaximum and minimum number of
instancef propertyP in the systens:

Instmax(P) = partsup(P) + (; par@up(Pa Q) - partsup(Q) 9
cP

Instmin(P) = parts(P) + g part’(P,Q) - parti;(Q) (10)
cP

4.3 ’'Use’

A use relation between properti®sand T (Fig. 4 -¢) specifies the fact that property
P references property (see Example 2). Properfly can be referenced by multiple
compound properties, i.e. use relations is non-functional

I TPP € P | P # P ousgpPT) > 0A usayP,T) > 0 (11)

145

PropertyT can be referenced by itself, i.e. use relations can be cgsliaefined in [13]:
3T eP| use (T,T)#0

We can calculate the number of references ia the system:
V B | useupR,T) > 0, Ref(R,T) = Instha(R) - useup(R,T) (12)

and the maximum number of references:
Refax(T) = mPaX(Instmax(P.) -useyup(R,T)) (13)

4.4 From Property-Property Relations to Specification WellFormedness and
Consistency

PP-relations define a data structure in SEAM specificatibm®btain the well-formed
data structure, the following must be ensured for each syptepertyP:

-Property P can be a part of one and only one compound promer&working object;
-Property P cannot be a part of itself, and there is no pathwaf br more legs that starts
at P and leads back to.P

Formalization of PP-relations enables us to detect ermmserned with data structure
inconsistencyFor example, amstantiation deficiengywhen for some propertly the
number of declared instances in the specificalittya(P) is less then required by the
system (specified by references from other properties):

Qe P| RefhaxQ,P) > Instmax(P)
Example 5.In Fig. 5-c, propertyP is referenced by two propertidsandW. To avoid
instantiation deficiency, the specification must guaratitaemaxMa, M3} < M, i.e.
the number of references dhfrom eitherW or T must not exceed the number of
instancedM of P, defined by the specification. O

A free-floating propertys a data type that is not instantiated in the system.
Definition 2. Property P is free-floating iff Ingfax(P) = 0.

Example 6.In Fig. 5-c, propertied W, Q are free-floating:
INStnax(T) = InStnax(W) = Instpa(Q) =0. O

A propertycanbe specified as a free-floating, when the number of instasogst i
important at a given level of abstraction. For example, a lmemof 'items for sale’
might be omitted in an abstract specification of a vendinghimes; since a behavior of
this machine is the same for each item.

If free-floating propertyP is referencedby some propert, i.e.
3QeP|RefhaQ,P) >0
this causes an instantiation deficiency in the specificai®®fnax(Q, P) > 0= Instmax(P).
We summarize with the following criteria of consistency:
System data structure defined by SEAM specification is cterdiff:

1. all part-of relations in the specification are functionabl cycle-free (i.e. e(6)
and eq(7) hold),

2. instance declaration is sufficient:
VPeP RefnaxP) < Instnax(P) (14)

3. no reference on a free-floating property exists:
VPeP|Instna(P) =0 = usgR,P)=0VReP (15)

146

5 Related Work

The scientific publications, listed below, report some picat applications in the area
of visual model analysis based on a combination of visualfarrdal methods:

Pons [8] presents the OCL-based technique and a tool sujgpdstML and OCL
model refinement. Object-Z is an underlying theory for rafieat verification. The au-
thors discuss the refinement patterns and formulate theemnaéint conditions for these
patterns in OCL [22].

Muskens et al. [23] focuse on the problem of consistencyldhgdetween soft-
ware views, expressed as UML diagrams. The approach in§28sed on verification
of obligations and constraint rules using relation pantitalgebra.

Modeling languages, listed below, consider formalizatbtheir visual notation as
a bridge to model simulation.

OPM (Object-Process Methodology)[17] proposes a methothiocomplete inte-
gration of the system’ states and behaviors within a sintgplgjcal model. OPM dis-
tinguishes different types of relations between its motkrhents, similarly to SEAM.
An Object-Process Language (OPL) serves as a basis forajiemean executable code
and a database schema and represents a formal semantié3\or O

DEMO (Design & Engineering Methodology for Organizatiofi§] is a method
for (re)designing organizations. DEMO provides a semaritic model simulation.

BPMN (Business Process Modeling Notation)[16] providessual notation for
business process modeling (BPM). SEAM action-action iglatare defined based
on BPMN. Explicit bindings between a BPMN process and tha dais process op-
erates on (represented by action-property relations inNpEi& made by annotation
with BPEL constraints. BPEL (Business Process Executadhglage)[19] was devel-
oped for business process model simulation and verificatiorautomated mapping of
BPMN diagrams to BPEL for further execution is supported angncommercial tools
(e.g. iGrafx, IBM WBI Modeler, etc - sei t p: / / www. bpm. or g/

BPMN_Supporters. ht mécurrent for an exhaustive list). Formal semantics for business
process modeling was provided using Petri Net [20].

UML (Unified Modeling Language) [21], [6] defines a set of sipdized diagrams
for its models. System behavior is addressed in UML by agtigdiagrams. The data
structure of a system is captured by UML class diagrams. Asctiagram defines
classes, organized within a model using association, gggjom, composition, and in-
heritance relations. Part-of relation in SEAM can be idediwith UML composition,
whereas SEAM use relation is defined by analogy with UML aisdion. The semantics
of activity diagrams in UML 2.0 is based on Petri Nets[7]. Hmwer, there were many
attempts to define this semantics based on other formal ¥yagu LOTOS, ASM, CSP,
LTS (see [7] for details).

6 Conclusion

In this work, we introduce the formal semantics of propgutgperty (PP) relations in
SEAM visual language. This formalization enables us reiagpabout consistency of
data structure.

147

In our previous work [10], the refinement propagation tegheifor SEAM visual
specifications has been introduced. The proposed algogipiores the possible con-
flicts between model elements, caused by refinement, anteagpecific rules of re-
finement propagation to enforce the model correctness.

Model refinement where property-property relations anmielated, introduced, or
modified is not considered in [10] and can be captured usiegttieory proposed
in this work. Refinement propagation rules that enforce rhodesistency and well-
formedness, as defined at the end of section 4, can be ingddEor instance, such a
rule may forbid the user from deleting a part-of relationdese it will lead to an instan-
tiation deficiency. Alternatively, an alert can be geneatatethe case of a creation of a
part-of relation if it leads to a cycle. Automated model refirent is the main practical
benefit expected from the proposed formal semantics.

References

1. Zachman J. A.: A Framework for Information Systems ArchitectlB& Systems Journal
(1987)

. The Open Group Architecture Framework (TOGAF), The Open ®(2006)

. Schekkerman, J.: How to Survive in the Jungle of Enterprise Awthite Frameworks: Cre-

ating or Choosing an Enterprise Architecture Framework, Traff@@03).

. Wegmann, A.: On the systemic enterprise architecture methodol&yM}p In proceedings

of International Conference on Enterprise Information SystemsI@Cg003)

. Weinberg, G.M.: An Introduction to General Systems Thinking. Wigleons (1975)

. Unified Modeling Language (UML), v. 2.1.1. OMG (2007)

. Sbrrle, H.: Semantics of UML 2.0 Activities, Proceedings of the IEEE Bggium on Visual

Languages and Human-Centric Computing (VL/HCC) (2004).

8. Pons, C.: Heuristics on the definition of UML refinement patterns.SEMF, (2006).

9. Rychkova, I., Wegmann, A.: A Method for Functional Alignmentiffeation in Hierarchical
Enterprise models. BUSITAL workshop in CAISE (2006)

10. Rychkova, I., Wegmann, A.: Refinement propagation. Tosvattomated construction of
visual specifications. International Conference on Enterpriserrdtion Systems (ICEIS)
(2007)

11. Back, R.-J., von Wright, J.: Refinement Calculus: A Systematioduoction. Springer
(1998)

12. Feijs, L.M.G., Krikhaar R.L.: Relation algebra with multi-relationgetnational Journal of
Computer Mathematics.(1998)

13. Feijs, L.M.G., van Ommering, R.C: Relation partition algebra - mattieal aspects of uses
and part-of relations. Science of Computer Programming (1999)

14. Reference model of open distributed processing. Draft Intierred Standard (DI1S)(1995)

15. Wegmann, A., Naumenko, A.: Conceptual Modeling of Complest&ys Using an RM-
ODP Based Ontology. 5-th IEEE International Enterprise Distributed ®lemputing
Conference (EDOC) (2001)

16. BPMN 1.0: Final Adopted Specification. OMG. (2006)

17. Dori, D., Object-Process Methodology, A Holistic Systems Paradgpringer (2002).

18. Dietz, J. L. G.: Enterprise Ontology Theory and Methodology. $prii2006)

19. Business Process Execution Language for Web Services Vérgiohhe IBM. (2004)

20. van der Aalst, W.: Challenges in business process managemesfitaéen of business pro-
cesses using petri nets. Bulletin of the EATCS.(2003)

21. Rumbaugh, J., Jacobson, I., and Booch, G.: The Unified Mhgdeanguage Reference Man-
ual, Second Edition. Addison-Wesley. (2005)

22. OCL 2.0 Final Adopted Specification. OMG (2003)

23. Muskens, J., Bril, R.J., Chaudron, M.R.V.: Generalizing stescy checking between soft-
ware views. Conference on Software Architecture (WICSA), IEEEDE)

AOwWN

~No o

