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Abstract. We formalize the problem of finding information leaks in multi-user 
database systems, and we reduce this problem to the problem of inferring secret 
answers to database queries from other answers to database queries and a set of 
given Boolean integrity constraints. Furthermore, we investigate some 
sufficient conditions under which the answer to a query can be inferred from a 
previously answered set of database queries and a set of Boolean integrity 
constraints. Finally, show that the problem of finding information leaks is NP-
hard, and we suggest a reformulation of the problem as a query composition 
and simplification problem.  

1 Introduction 

Whenever secret company information that can be accessed by multiple users is 
illegally leaked to a third party, it is crucial for the company to identify the 
information leak. We especially focus on scenarios where the information is leaked 
from a person that has an access right to the leaked information. We call this kind of 
information leakage an attack from the inside, in comparison to attacks from the 
outside where people who do not have an access right illegally try to access secret 
information. While access control helps to prevent attacks from the outside, access 
control is not applicable to our scenario where multiple users have an access right to 
the secret, but leaked information.  

Instead our problem is related to inference and anti-inference, i.e. the problem is 
who of the users that have an access right to secret information that has been leaked 
by someone, did actually submit queries and did retrieve answers that are sufficient to 
infer the leaked information. In other words, given the knowledge an attacker can 
infer from his queries and his answers, can he or can’t he infer the leaked secret 
information.  

Furthermore, our problem is different from k-anonymity and l-diversity both of 
which regard relationships between all values given for certain attributes, whereas our 
secret information is an association of individual combinations of values, i.e. our 
secret can be uncovered even in situations where k-anonymity and l-diversity are 
violated.  

Contributions 
In comparison to related work, e.g. [2], the main contributions of this paper are the 
following:  
• We present an introductory example that demonstrates that checking whether 

secret information is leaked by answering multiple queries is significantly more 
complicated than checking this for single queries only.  
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• We give a formal definition of secret information in databases.  
• We formally define what it means that secret information can be inferred from 

query results.  
• In contrast to related work, we discuss anti-inference attacks in scenarios where 

attackers can combine the knowledge retrieved from multiple queries.  
• We identify anti-inference of single queries using common knowledge (like e.g. 

integrity constraints) as a special case of anti-inference for scenarios regarding 
multiple query attacks.  

• We show that proving anti-inference is NP-hard. 
• We provide a reformulation of the information leak identification problem as a 

query composition and simplification problem.  

Paper organization 
Section 2 presents a motivating example and summarizes the main contributions. 
Section 3 outlines a formal definition of the information leak identification problem, 
and Section 4 discusses steps towards a solution. Section 5 discusses related works 
and is followed by the Summary and Conclusions.  

2 A Motivating Example 

As an example, let us consider a relational database that contains two relations 
AB(account,balance) and AC(account,customer), and a secret information that "Jane 
has a bank account with a negative balance". When this secret has being leaked, i.e. is 
known to a third party, Jane may blame her bank that the leaked information 
originates from the bank’s database. In such a case, it is important for the bank to 
know who inside the bank could have known about the secret information. Assuming 
that inside the bank the secret information is stored only in the database, the bank 
could analyze the queries Qi of different users in order to check which queries Qi 
have accessed information that is sufficient to infer the secret information and start 
interviews with the users submitting these queries. Or even better, the bank can prove 
that no query Qi has accessed information which is sufficient to infer the secret, i.e. 
the information leakage is not related to accessing the bank’s database.  
Given the relations AB and AC, the secret that "Jane has a bank account with a 
negative balance" can be computed by joining two tuples. For example, a query Q1 

   Q1  = select customer from AC  where exists  
  ( select * from AB where AB.account = AC.account and AB.balance < 0 )  
would uncover the secret information.  
Furthermore, let us consider two queries Q2 and Q3:  
   Q2  = select customer from AC  
   Q3  = select customer from AC  where not exists  

  ( select * from AB where AB.account = AC.account and AB.balance < 
0 )  
Note that each of the queries Q2 and Q3 alone does not uncover the secret, i.e. we can 
not prove from the answer of Q2 alone or from the answer of Q3 alone the secret 
information that "Jane has a bank account with a negative balance".  
However, if an attacker has submitted both queries Q2 and Q3 to the same database 
state and received the results R2 of Q2 and R3 of Q3, he could externally compute the 
difference R2-R3 which is the answer R1 to the query Q1. In other words, the 
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combination of two queries, here computing the set difference of two answers is 
sufficient to uncover the secret.  
We use a second example of two queries Q4 and Q5 that count tuples and the 
combination of which uncovers the secret:  

   Q4  = select count(*) from AC  
   Q5  = select count(*) from AC  where AC.customer != “Jane” or not exists  
 ( select * from AB where AB.account = AC.account and AB.balance < 0 )  

Again, each of the queries Q4 and Q5 alone does not uncover the secret, i.e. we can 
not prove from the answer of Q4 alone or from the answer of Q5 alone the secret 
information that "Jane has a bank account with a negative balance". However, if an 
attacker has submitted both queries Q4 and Q5 to the same database state and 
received the results R4 of Q4 and R5 of Q5, he could externally compute the 
difference R4-R5, and see that R4-R5>0. Therefore, the attacker can conclude that 
“there is a customer Jane that has a negative bank account”. Note that the secret is 
also uncovered by knowing the results of Q2 and Q5 because the attacker could 
simply count the number of answer tuples given in Q2 which is the answer to Q4, 
however the knowledge of the answer to Q3 and the answer to Q4 is not sufficient to 
uncover the secret information.  

3 Formal Problem Definition  

A relation schema is the cartesian product of n domains D1,…,Dn (n≥1), where each 
domain is an ordered finite set of elements. Typical domains are sub-intervals of in 

3.1 Logical Definition of the Relational Data Model 
Definition 1 (relation schema, tuple, attribute):  
A relation schema is the cartesian product of n domains D1,…,Dn (n≥1), where 
each domain is an ordered finite set of elements. Typical domains are sub-intervals of 
integers or strings up to a limited length. The elements of the relation schema 
(d1,…,dn) are called tuples because they take one value di from each domain Di.  
An attribute is a function from a relation schema to one of its domains which maps 
each tuple (d1,…,dn) to one value di.  
Let r be a tuple of a relation schema R and A be an attribute defined for R, then we 
write r.A for applying the attribute A to the tuple r.  

As usually only a small subset of the tuples that are possible according to relation 
schema are regarded to be true, we use an interpretation of the schema to 
distinguish which tuples are true and which are false. Only the tuples that are 
regarded to be true are stored in the relation corresponding to a relation schema.  

Definition 2 (interpretation of a relation schema, relation):  
An interpretation I is a function from a relation schema to the set {true, false}. A 
relation R corresponding to a relation schema RS is that subset of the tuples of RS 
which are interpreted as true, i.e. R={r∈RS | I(r)=true}.  

Definition 3 (database schema, database state):  
A database schema DS={RS1,…,RSn} is a set of relation schemas RS1,…,RSn.  
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A database state D of a database schema DS is a set of relations D={R1,…,Rn} 
where Ri is a relation corresponding to the relation schema RSi.  

3.2 Definition of Relational Expressions 

Within the Definition 4, Definition 5, and Definition 6, we recursively define 
operands, Boolean relational expressions and bag-valued relational expressions.  

Definition 4 (Operands):  
O1: Let r be a tuple variable bound to a relation R and A be an attribute defined for 
the relation R, then  

r.A is an operand.  
O2: Each constant is an operand.  
O3: If Ri is a Bag-valued relational expression, then  

count(Ri) is an operand.  
O4: nothing else is an operand.  

Definition 5 (Boolean relational expressions):  
BRE1: Let op ∈ {<,=,>,≤,≠,≥} be an operator and o1 and o2 be operands, then  

o1 op o2 is a Boolean relational expression.  
BRE2: true and false are Boolean relational expressions. 
BRE3: If B1 and B2 are Boolean relational expressions and R is a bag-valued 
relational expression, then also the following are Boolean relational expressions:  

B1 and B2 
B1 or B2 
not B1 
(∃ r ∈ R) B1 
(∀ r ∈ R) B1 

BRE4: Nothing else is a Boolean relational expression.  

Definition 6 (Bag-valued relational expressions):  
BVRE1: Each relation name of a relation in the given database is a Bag-valued 
relational expression. 
BVRE2: Let R1 and R2 be Bag-valued relational expressions, let B be a Boolean 
relational expression, and let Ai,…,Aj be attributes defined for R1. Then, the 
following are Bag-valued relational algebra expressions:  

 [ t1 ∈ R1 | B ] - bag-selection: select bag of tuples of R1 
         for which B is true 
 R1 × R2     - cartesian product of R1 and R2 
 R1 ∪bag R2   - bag-union of R1 and R2 
 R1 −bag R2   - bag-difference of R1 and R2 
 R1 ∪set R2   - set-union of R1 and R2 
 R1 −set R2   - set-difference of R1 and R2 
 <Ai,…,Aj>(R1)  - bag-projection of R1 to the attributes Ai,…,Aj 
 rdup(R1)    - removes duplicates from R1 

Note that bag-union and bag-projection do not remove duplicates. We have 
introduced these operations which are not part of the relational algebra because an 
attacker can use them to get more information than he would get if he were restricted 
to use set union and duplicate-free projection only. Whenever duplicate-free results 
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are desired, the rdup-operator can be applied. Furthermore, the bag-difference 
R1−bag R2 eliminates up to as many tuples from R1 as occur in R2.  

Definition 7 (Relational expressions):  
Each Boolean relational expression is a relational expression.  
Each Bag-valued relational expression is a relational expression.  
If B is a Bag-valued relational expression, then count(B) is a relational expression.  

Definition 8 (Closed relational expressions):  
A tuple variable r is bound to a bag-valued relational expression R if and only if 
each occurrence of r appears in the scope of a binding “(∃r∈R)”, “(∀r∈R) B1” or 
“t1∈R1” of r to a bag-valued relational expression R.  A relational expression Q is 
closed if and only if each tuple r variable occurring in Q is bound to a bag-valued 
relational expression.  

3.3 Definition of Queries, Answers and Secret 

Definition 9 (Answers to closed relational expressions):  
Let Q be a closed relational expression, and D be a given database state to which Q can 
be applied. If Q is a Boolean relational expression, the result R is of type Boolean and 
expresses whether or not, the interpretation of Q is true for D. If Q is a Bag-valued 
relational expression, the result R is the bag of those tuples which are interpreted to be 
true according to D. Whenever R is the result of Q applied to D, i.e. R=Q(D), we call 
Q a query and the R an answer to Q in the database state D.  

Definition 10 (Secret and Secret Query):  
A secret is the answer Rs to a closed relational expression Qs, and we call Qs the 
secret query.  

Note that we describe the secret by an answer to a closed relational expression Qs, i.e. 
the secret query. This includes Boolean secrets like one that represents that “Jane has 
a bank account with a negative balance”, bag-valued secrets like a secret that “the set 
of customers that have a bank account with a negative balance is equal to 
{“Jane”,”Bob”}, and integer-valued secrets like a secret that “the number of 
customers that have a bank account with a negative balance is equal to 2”.  Note that 
this is more general than other approaches (e.g. [2]) that consider only a subset of 
bag-valued secrets.  

3.4 Problem Definition 

We use Q1, …, Qn for the closed relational expressions used in user queries. The 
problem is whether or not the answer Rs to Qs can be derived from the knowledge of 
Q1,…, Qn, Qs and the answers R1, …, Rn to Q1, …, Qn. This is more 
formally stated in the following problem definition.  

Problem definition (secret is provable):  
Let Q1,…,Qn,Qs be closed relational expressions and R1,…,Rn,Rs be the 
answers to Q1,…,Qn,Qs applied to the same database state D. The problem is to 
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check whether or not Rs is provable from Q1,…,Qn,Qs,R1,…,Rn, i.e. whether or 
not Q1(D)=R1,…,Qn(D)=Rn ==> Qs(D)=Rs.  
Note that the answer to a secret can be of type Boolean, i.e. true or false, or it can 
be of type integer, or of the type bag-valued relational expression, i.e. a bag of 
values. In the latter case, the phrase ‘Rs is inferrable’ means that the exact bag of 
values can be inferred, i.e. not only a subset or superset of the values.  

3.5 Treatment of Boolean Integrity Constraints 

Definition 11 (valid database state and set of integrity constraints):  
Together with a database schema, it is common to define a set of closed Boolean 
relational expressions called the set SIC of integrity constraints. Each database state 
in which every integrity constraint IC of SIC is equivalent to true is called a valid 
database state. When Boolean integrity constraints are used as a kind of “background 
knowledge”, we are only interested in valid database states, i.e. we consider each 
integrity constraint IC to be equivalent to true.  

Definition 12 (Boolean integrity constraints):  
A Boolean integrity constraint is a closed Boolean relational expression Qic, the 
answer to which is equivalent to true for every valid database state.  
This definition of Boolean integrity constraints includes key constraints, functional 
dependencies, referential integrity constraints and domain restriction constraints - or 
more generally all integrity constraints that are equivalent to a universally quantified 
Boolean relation expression “(∀r∈R)B1“. Furthermore, Boolean integrity 
constraints include constraints of the form BVRE = Bag, where BVRE is a closed 
bag-valued relational expression and Bag is a bag of tuples. Finally, Boolean integrity 
constraints also contain constraints that are of the form of a comparison.  

Sub-problem (secret is provable under Boolean integrity constraints):  
The sub-problem is whether or not the answer to a secret query Qs can be proved 
from a set of Boolean integrity constraints that are used as a kind of “background 
knowledge” and a single user query Q1 with the answer R1.  

The sub-problem is a special case of the problem definition given in the previous sub-
section for the following reason. When Boolean integrity constraints are used as a 
kind of “background knowledge”, we consider each integrity constraint IC to be 
equivalent to true. Therefore, we can regard each Boolean integrity constraint as a 
Boolean query Qic, the answer Ric of which is equivalent to true.  

4 Steps towards a Solution  

4.1 Solution Complexity  

Lemma 1: 
The sub-problem of whether or not the answer to a secret query Qs can be proved 
from a set of integrity constraints and a query Q1 with the answer R1 is NP-hard.  
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Proof sketch:  
As a special case, we regard Q1 to be a Boolean query, and the answer R1 to Q1 to be 
true, and further we regard Qs to be a Boolean query with the answer true. Then, 
we can prove that the answer Rs to Qs is equivalent to true, if and only if Qs can be 
proved from Q1 and Qic1,…,Qicn. However, proving this for Boolean logic is NP- 
complete [5], therefore, proving the sub-problem is NP-hard.  

Corollary 2:  
The problem (a secret is provable from a set of pairs of query and answer) is NP-hard.  

Proof:  
The sub-problem (a secret is provable under Boolean integrity constraints) is just a 
special case of the problem. Therefore, from the sub-problem being NP-hard, we can 
conclude the problem to be NP-hard.  

4.2 Composition and Simplification of the Given Queries  

One idea towards a solution of the problem as defined above is to search for a 
composition of the given query expressions Q1,…,Qn that is equivalent to the secret 
query Qs. More precisely, Rs is inferable from Q1,…,Qn, Qs, R1,…,Rn if and 
only if there is a composition function f with the following properties:  
1. f(Q1,…,Qn) is a closed relational expression that is an arbitrary composition of the 

given query expressions Q1, …, Qn by any combination of operators that may occur in 
relational expressions.  

2. There is a substitution S = { Qi1/Ri1,…,Qin/Rin } that transforms f(Q1,…,Qn) 
into a relational expression S(f(Q1,…,Qn)) by replacing a subset Qi1,…,Qin of 
the query expressions Q1,…,Qn in f(Q1,…,Qn) with the corresponding answers, 
Ri1,…,Rin.  

3. There is a sequence E1,…,En of equivalence transformations, i.e. query simplification 
steps that do not change the interpretation of a formula for any database state, which 
transform S(f(Q1, …, Qn)) into Qs, i.e. E1(…(En(S(f(Q1, …, Qn))))…) = 
Qs. 

In other words, Rs is inferable, if Qs can be generated from Q1,…,Qn by 
composition, substitution of query expressions with results, and query simplification.  
In this case, Rs is inferable because S(f(Q1, …, Qn)) is a description of how to 
compute Rs for the following reason. We only have to substitute the remaining query 
expressions Qi occurring in S(f(Q1, …, Qn)) with the corresponding answers 
Ri in order to get a relational algebra expression that can be evaluated by the 
database system and returns the secret Rs.  

5 Related Works 

Related works range from audit systems, to K-anonymity to theorem proving to views 
and has been contributed for different data models, ranging from relational databases 
over predicate calculus to XML databases. All work related to relational databases or 
XML covers only sub-problems, e.g. privacy violation detection for single queries, 
and often the sub-class of the queries is restricted, e.g. [2] which is based on 
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hippocratic databases [1] restricts the subclass to select-project join queries. Although 
a partial solution for multiple XML queries is discussed in [4], this shows non-
inferability of XPath query result only for a special case.  
Our problem of inferring database secrets by combining the results of multiple queries 
is different from k-anonymity violation checking for relational views, as discussed 
e.g. in [9], or from l-diversity [7], for the following reason. k-anonymity and l-
diversity both regard relationships between all values given for certain attributes, 
whereas our secret information is an association of individual combinations of values. 
The difference is: even if 2-anonimity and 2-diversity are provably violated for a 
given pair (A,B) of attributes, our secret can still be uncovered for the following 
reason. We can not be sure that a secret as defined in our paper, i.e., an association 
between two concrete values (a1,b1) of the attributes A and B, can be derived because 
the 2-anonymity could be violated for other pairs of values (a2,b2) only and not for 
the pair (a1,b1) of the secret, i.e., 2-anonymity between attributes can be violated 
without the concrete values of the secret being leaked. 
Theorem proving for first order predicate calculus has been investigated a long time, 
e.g. [8], but it is not directly applicable for the following reason. A database relation 
contains only the tuples that are interpreted to be true, but the closed-world 
assumption and operations like negation, set-difference, and bag-difference may 
require to consider also the tuples of a relation schema that are not in the relation. 
When it becomes necessary to model all these facts as being false, the number of 
formulas will be in the order of the number of database schema tuples which is too 
high for today’s theorem provers.  
Nesting of views has been used in query optimization. However, the approaches 
investigated focus on fast execution plans and avoid looking into all possible 
combinations of views which is required here.  
Finally, in contrast to all other approaches to inference on database queries that regard 
only a subset of the database queries, e.g. [3], [6], we regard all relational algebra 
expressions, including bag-valued relational expressions allowing for duplicates.  

6 Summary  

Whenever secret company information that could be accessed by multiple user has 
been illegally leaked to a third party, it is crucial for the company to find all the 
possible information leaks. We have provided a formalization of secret information as 
being the answer Rs to a secret query Qs. Second, we have shown how secret 
information can be inferred from a set of user queries Q1,…,Qn and known answers 
to these queries. Third, we reduced the problem of finding information leaks to an 
inference problem among database queries. Fourth, we have proven that this problem 
is NP-hard. Fifth, we have reduced this problem to searching a composition function f 
that when applied to the user queries Q1,…,Qn generates a relational expression that 
can be transformed into the secret query Qs by query simplification and by 
substitution of query expressions with results. Whenever such a composition function 
f can be found, the secret Rs is inferable, i.e. we have found a potential information 
leak. Finally, as integrity constraints are only a special case of queries, each solution 
to our general problem is also a solution to database inference in the presence of 
integrity constraints or so called “global knowledge” which can be expressed as a 
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relational expression. Therefore, we consider this contribution to be useful for a wide 
range of applications that have to reason about database inferences and privacy 
violation detection.  
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